Spatial statistics and image analysis Lecture 4

Konstantinos Konstantinou

Mathematical sciences Chalmers University of Technology and University of Gothenburg Gothenburg, Sweden

Lecture's content

Todays lecture will cover

- ► Computational problems with kriging.
- ► Gaussian Markov random fields.
- ▶ Pattern recognition (LDA, QDA).
- Image moments.

Kriging

So far we looked at statistical models

$$Y_i = B(s_i)\beta + Z(s_i) + \epsilon_i, \quad i = 1, ..., N$$

where $\epsilon_i \sim N(0, \sigma_e^2)$ and Z(s) is a zero mean Gaussian random field.

▶
$$Y = (Y_1, ..., Y_N) \sim N(B\beta, \Sigma)$$
, with $\Sigma = \Sigma_X + \sigma_e^2 I$

Kriging: If

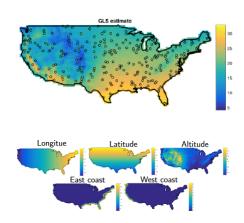
$$\begin{bmatrix} X \\ Y \end{bmatrix} \sim N \left(\begin{bmatrix} \mu_X \\ \mu_Y \end{bmatrix}, \begin{bmatrix} \Sigma_{XX} & \Sigma_{XY} \\ \Sigma_{YX} & \Sigma_{YY} \end{bmatrix} \right)$$

then

$$X \mid Y \sim N(\mu_X + \Sigma_{XY}\Sigma_{YY}^{-1}(Y - \mu_Y), \Sigma_{XX} - \Sigma_{XY}\Sigma_{YY}^{-1}\Sigma_{YX})$$

X is a random field at unobserved locations and Y are the observations.

Temperature example



Implementation aspects

- 1. Memory to store Σ scales as $\mathcal{O}(N^2)$.
- 2. The computation time for the kriging predictor scales as $\mathcal{O}(N^3)$.

Example: For an image x of size $N = n \times n$

	Time (s)	Memory (MB)
n = 50	1.1	47.7
n=100	23.4	762.9
n=150	272.5	3862.4

For an image of size 2500×2500 we need 20 years and 20 GB!

Sparse matrices

Definition: A Matrix Q is sparse if most of its elements are zero

- Efficient algorithms exist to deal with sparse matrices.
 - 1. Memory scales as $\mathcal{O}(N)$
 - 2. Computations scales as $\mathcal{O}(N^{\frac{3}{2}})$

Possible solutions:

- \triangleright Force Σ to be sparse. This forces independence between variables.
- ► Force the precision matrix $Q = \Sigma^{-1}$ to be sparse. What does this correspond to?

Conditional independence

Definition: A and B are conditionally independent given C and we write $A \perp \!\!\! \perp B \mid C$, iff conditioned on C, A and B are independent, that is

$$P(A, B \mid C) = P(A \mid C)P(B \mid C)$$

Conditional independence is represented with an undirected graph G = (V, E), where $V = \{1, ..., n\}$ is the set of vertices/nodes and $E = \{\{i, j\} : i, j \in V\}$ is the set of edges in the graph.

The neighbours of a node i are all nodes in G having an edge to i. i.e $N_i = \{j \in V : (i,j) \in E\}$

Gaussian Markov random field

Definition: A random vector X is called a Gaussian Markov random field (GMRF) with respect to the undirected graph G = (V, E) with mean μ and precision matrix Q iff its density has the form

$$f_X(x) = (2\pi)^{-\frac{n}{2}} \mid Q \mid^{\frac{1}{2}} exp\left(-\frac{1}{2}(x-\mu)^T Q(x-\mu)\right)$$
 and $Q_{i,j} \neq 0 \iff \{i,j\} \in E$, for all $i \neq j$.

Example: The simplest example of a GMRF is the AR(1) process

$$x_0 \sim N(0, \frac{1}{1 - \alpha^2}), \qquad \alpha \in (-1, 1)$$

 $x_i = \alpha x_{i-1} + \epsilon_i, \qquad i = 1, ..., n \qquad \epsilon_i \sim N(0, 1)$

Here Q is a tridiagonal matrix.

Simulating from a GMRF

How can we simulate a zero mean GMRF with precision matrix Q?

- 1. Compute the Cholesky factorization $Q = LL^T$.
- 2. Solve $L^T x = z$, where $z \sim N(0, \mathcal{I})$

Then x is a zero mean GMRF with precision matrix Q

Proof:

$$E(x) = E(L^{-T}z) = 0$$

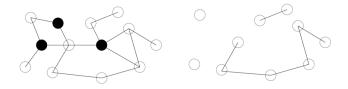
 $Cov(x) = Cov(L^{-T}z) = L^{-T}Cov(z)L^{-1} = L^{-T}IL^{-1} = (LL^{T})^{-1} = Q^{-1}$

Subgraph G^A

Definition: Let $A \subset V$, the subgraph G^A is the graph restricted to A.

- ▶ Remove all nodes not belonging to A and
- ▶ Remove all edges where at least on node is not A.

Example:



Conditional distributions

Theorem: Let $V = A \cup B$ where $A \cap B = \emptyset$, and let x be a GMRF wrt G with

$$X = \left[\begin{array}{c} X_A \\ X_B \end{array} \right], \quad \mu = \left[\begin{array}{c} \mu_A \\ \mu_B \end{array} \right], \quad Q = \left[\begin{array}{cc} Q_{AA} & Q_{AB} \\ Q_{BA} & Q_{BB} \end{array} \right]$$

then $X_A \mid X_B$ is a GMRF wrt to the subgraph G^A with $\mu_{A|B}$ and $Q_{A|B} > 0$ where

$$\mu_{A|B}=\mu_A-Q_{AA}^{-1}Q_{AB}(X_B-\mu_B)$$
 and $Q_{A|B}=Q_{AA}$

Note that

- $ightharpoonup Q_{A|B} = Q_{AA}$ is known
- ▶ If Q_{AA} is sparse then $\mu_{A|B}$ is the solution of a sparse linear system.

Theorem: If $x \sim N(\mu, Q^{-1})$, then for $i \neq j$

$$x_i \perp \!\!\! \perp x_j \mid x_{-ij} \quad \Longleftrightarrow \ Q_{ij} = 0$$

Corollary of the theorem

If we take $A = \{i\}$ and $B = \{-i\} := \{j : j \neq i\}$ then

$$\mu_i \mid \mu_{-i} = \mu_i - \sum_{j \in N_i} \frac{Q_{ij}}{Q_{ii}} (X_j - \mu_j) = \mu_i + \sum_{j \in N_i} \beta_{ij} (X_j - \mu_j)$$

$$Q_i \mid Q_{-i} = Q_{ii} = Var(X_i \mid X_{-i})^{-1} = \kappa_i$$

- ▶ The expectation of X_i is a weighted mean of the neighbouring X_j with weights β_{ij} .
- ▶ It is common to specify the GMRF through the full conditionals $P(X_i \mid X_{-i})$. These models are called Conditional autoregressions (CAR models).
- Since Q should be symmetric we require that $\kappa_i \beta_{ij} = \kappa_j \beta_{ji}$
- ▶ Also Q should be positive definite. We often deal with that issue by forcing Q to be diagonal dominant i.e

An example

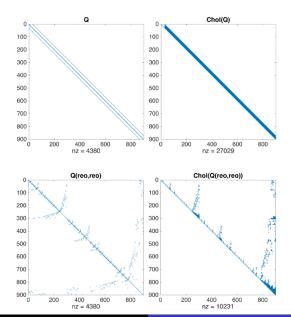
- ▶ Let $\epsilon > 0$, $\kappa_i = 4 + \epsilon^2 \ \forall i$ and $\mu = \mathbf{0}$.
- Now assume that the neighbourhood of a pixel i is given by the 4 nearest pixels with equal weights given by $\beta_{ij} = \frac{1}{4}$
- ▶ Then the precision matrix *Q* is given by

$$Q_{ij} = \begin{cases} 4 + \epsilon^2 & \text{if } j = i \\ -1 & \text{if } j \in N_i \\ 0 & \text{otherwise} \end{cases}$$
 (1)

Sparsity of Q and L

- ▶ The main computation tasks in the GMRFs approach are
 - 1. Compute the Cholesky factorisation of $Q = LL^T$, and
 - 2. Solve $Lz = Q_{AB}(X_B \mu_B)$ and $L^T x = z$.
- ► The crucial aspect of computations with GMRFs is that the Cholesky factor *L* is sparse, but it is less sparse than *Q*.
- ► The additional non-zero nodes are called fill-in.
- ▶ We can reduce the fill-in by reordering the nodes.
- Finding the optimal reordering is an NP-hard problem, but there are many fast methods for finding good reorderings. For example, the approximate minimum degree reordering is generally a good option.
- ▶ If you use reorderings, you should also reorder the observations, covariates, etc. using the same reordering.

An example



Implementation aspects

Image reconstruction using GMRF is more efficient than working with Σ.

Example: For an image x of size $N = n \times n$

	Time (s)	Memory (MB)
n = 50	0.012	0.21
n=100	0.054	0.83
n=150	0.177	1.88

Optimal discrimination with K=2 and $X \in \mathcal{R}$

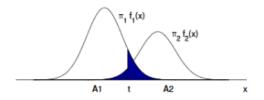
- ► Suppose we have two classes: Class 1 and Class 2
- ▶ A real valued feature variable *X* for each object to be classified.
- Let π_i be the prior probability of class i, i=1,2.
- ▶ Let f_i be the probability density of X for and observation from class i. Then we should choose class i over j if

$$\pi_i f_i(x) > \pi_j f_j(x)$$

Optimal discrimination with K=2 and $X \in \mathcal{R}$

"Proof": Choose the threshold *t* that minimizes the probability of misclassification

$$Pr(\textit{Misclassification}) = \pi_1 \int_{A_2} f_1(x) dx + \pi_2 \int_{A_1} f_2(x) dx$$



Pr(misclassification) is given by the coloured area, and is minimized when t is the point where the curves intersect. Hence we should choose class i over j if

$$\pi_i f_i(x) > \pi_j f_j(x)$$

Discriminant analysis

- Suppose we have K classes
- Let X be a d-dimensional feature vector for each object to be classified and $f_i(x)$ the probability density for an observation from class i.
- Let π_i be the prior probabilities of class i

Then the posterior class probabilities are given by

$$P(Class = m \mid X = x) = \frac{P(Class = m)P(X = x \mid m)}{\sum_{j=1}^{K} P(Class = j)P(X = x \mid j)} = \frac{\pi_m f_m(x)}{\sum_{j=1}^{K} \pi_j f_j(x)}$$

We shall then prefer class i to class j when

$$\pi_i f_i(x) > \pi_j f_j(x)$$

Quadratic discriminant analysis

- Assume X is a d-dimensional feature vector with multivariate normal distribution $N(\mu_i, C_i)$ in class i, i = 1, ..., k
- ▶ Then we shall prefer class *i* to *j* if

$$\begin{split} &\frac{1}{2}x^{T}(C_{j}^{-1}-C_{i}^{-1})x+(\mu_{i}^{T}C_{i}^{-1}-\mu_{j}^{T}C_{j}^{-1})x+\frac{1}{2}(\mu_{j}^{T}C_{j}^{-1}\mu_{j}-\mu_{i}^{T}C_{i}^{-1}\mu_{i})\\ &> \ln\left(\frac{\pi_{j}\mid C_{i}\mid^{\frac{1}{2}}}{\pi_{i}\mid C_{j}\mid^{\frac{1}{2}}}\right) \end{split}$$

▶ Since the border between the two regions in *d*-dimensional space where we should or should not prefer *i* to *j* is given by a quadratic surface we call this case *Quadratic discriminant analysis(QDA)*.

Linear discriminant analysis

▶ If $C_i = C$, for i = 1, ..., k then we shall prefer class i to j if

$$(\mu_i - \mu_j)^T C^{-1}(x - \frac{1}{2}(\mu_i + \mu_j)) > ln \frac{\pi_j}{\pi_i}$$

- ▶ Proof: Set $C_i = C_j = C$ in the expression derived for QDA.
- As the expression above is linear in x this case is called *linear discriminant analysis (LDA)*.

In MATLAB:

templateDiscriminant('DiscrimType','Linear') for LDA and templateDiscriminant('DiscrimType','Quadratic') for QDA.

Parameter estimation

Suppose that we have a training set with n_i objects from class i. Let the observation vectors be denoted X_{im} , $m = 1, ..., n_i$, i = 1, ..., K Then

$$\hat{\pi}_k = \frac{n_k}{\sum_{i=1}^K n_i}, \quad k = 1, ..., K$$

$$\hat{\mu}_k = \frac{1}{n_k} \sum_{m=1}^{n_k} X_{im}, \quad k = 1, ..., K$$

$$\hat{C}_k = \frac{1}{n_k - 1} \sum_{m=1}^{n_k} (X_{im} - \hat{\mu}_i) (X_{im} - \hat{\mu}_i)^T, \quad k = 1, ..., K$$

If we assume that the covariance matrices are equal then

$$\hat{C} = \frac{1}{\sum_{i=1}^{K} (n_i - 1)} \sum_{i=1}^{K} (n_i - 1) \hat{C}_i$$

Moment features

Let $f = (f_{ij})$ be a binary/grey level image and A be a subset of pixels. The moment of order (p, q) in A is defined as

$$\mu_{pq}(A) = \sum_{(i,j)\in A} i^p j^q f_{ij}, \qquad p, q = 0, 1, ...$$

Examples:

- \blacktriangleright μ_{00} : area = number of white pixels in A
- \blacktriangleright μ_{01} : sum over y
- $\blacktriangleright \mu_{10}$: sum over x

$$\mathsf{centroid}(\mathsf{A}) = \left(\frac{\mu_{10}}{\mu_{00}}, \frac{\mu_{01}}{\mu_{00}}\right) = (\bar{x}, \bar{y})$$

Translation invariant moments

Image moments with respect to the centroid can be defined as

$$\mu_{pq}(A) = \sum_{(i,j)\in A} (i - \bar{x})^p (j - \bar{y})^q f_{ij} \qquad p + q > 1$$

Central moments are invariant under translations.

Hu moments are translation, rotation and scale invariant moments.

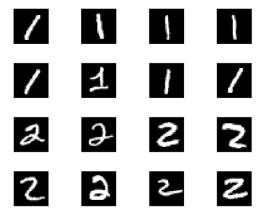
There are 8 such moments, the first two are

- $\mu_{02} + \mu_{20}$
- $(\mu_{20} \mu_{02})^2 + 4\mu_{11}$

Invariant moments are useful for image classification.

Example: Handwritten digits 1 and 2. Moment features.

Aim: Classify the handwritten digits using the image moments μ_{11} and μ_{20} .



Example: Handwritten digits 1 and 2. Moment features.

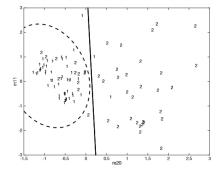


Figure: Plot of standardized moments μ_{11} versus μ_{20} for handwritten digits 1 and 2 among the first 400 digits in the MNIST data base together with the class boundaries corresponding to linear and quadratic discrimination.