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Todays lecture will cover
» Computational problems with kriging.
» Gaussian Markov random fields.
» Pattern recognition ( LDA, QDA).

> Image moments.
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So far we looked at statistical models
)/,': B(S;)ﬂ—FZ(S;)—FG,', i= 1,...7N

where ¢; ~ N(0,02) and Z(s) is a zero mean Gaussian random field.
> Y= (Y., Yn) ~ N(BB,X), with £ = Ex + 02/

» Kriging: If
X1 MTARE Yxx Xxvy
Y ty |7 Xyx Xy

X| Y~ N(ux + ZxyZpul Y — 11y), Zxx — ZxyZ v Zyx)

then

X is a random field at unobserved locations and Y are the observations.
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1. Memory to store ¥ scales as O(N?).
2. The computation time for the kriging predictor scales as O(N?).

Example: For an image x of size N=nXxn

Time (s) Memory (MB)

n =50 1.1 47.7
n = 100 23.4 762.9
n = 150 272.5 3862.4

For an image of size 2500 x 2500 we need 20 years and 20GB!
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Definition: A Matrix @ is sparse if most of its elements are zero
> Efficient algorithms exist to deal with sparse matrices.
1. Memory scales as O(N)
2. Computations scales as O(N%)

Possible solutions:
» Force ¥ to be sparse. This forces independence between variables.

» Force the precision matrix @ = X! to be sparse. What does this
correspond to?
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Definition: A and B are conditionally independent given C and we write
A UL B| C, iff conditioned on C, A and B are independent, that is

P(A,B| C)=PA| O)P(B| O

Conditional independence is represented with an undirected graph
G = (V,E), where V= {1,..., n} is the set of vertices/nodes and
E={{i,j} : i,j € V} is the set of edges in the graph.

The neighbours of a node i are all nodes in G having an edge to i.
ie Ni={je V:(ij) € E}
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Definition: A random vector X is called a Gaussian Markov random field
(GMRF) with respect to the undirected graph G = (V, E) with mean
and precision matrix Q iff its density has the form
) 1 1 T
Al = () 1 Q1Y e (50— m)TQx—p))  and
Qij#0 < {ijt€E forall i#j

Example: The simplest example of a GMRF is the AR(1) process

1
xo ~ N(O, m)a a€(-1,1)

Xj = aXxj—1 + €}, i= 1,...,[7 €j ~ N(O,l)

1 2 3 4 5

Here Q is a tridiagonal matrix.
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How can we simulate a zero mean GMRF with precision matrix Q7
1. Compute the Cholesky factorization Q = LL".
2. Solve LTx = z, where z~ N(0,7)

Then x is a zero mean GMRF with precision matrix @

Proof:

Ex)=E(L Tz)=0
Cov(x) = Col(L™T2) = L TCov() Lt = L TZL 7 = (LLT) 1 = Q71
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Definition: Let A C V, the subgraph G* is the graph restricted to A.
» Remove all nodes not belonging to A and
» Remove all edges where at least on node is not A.

Example:
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Theorem: Let V= AU B where AN B= (), and let x be a GMRF wrt G

with
Xa HA Qaa Qas ]
X = R = s =
[XB} s [NB} Q {QBA (OFT:

then X, | Xg is a GMRF wrt to the subgraph G* with pag and Qap > 0
where

fag = ta — QuaQas(Xe — pg) and  Qas = Qaa
Note that

> QA|B = Qaa is known
> If Qaa is sparse then pi4 g is the solution of a sparse linear system.
Theorem: If x ~ N(u, @1), then for i # j

xid x| x_j <= Q;=0
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If we take A= {i} and B= {—i} := {j:j# i} then

Q
il poi=pi= > SOG— ) = i+ Y Bi(X — 1)

JEN; JEN;

Qi Qui= Qi= Var(X; | X_)) ! = &;

> The expectation of Xj is a weighted mean of the neighbouring X;
with weights §;;.

» [t is common to specify the GMRF through the full conditionals
P(Xi| X_;). These models are called Conditional autoregressions
(CAR models).

» Since Q should be symmetric we require that x;8;; = K;f3;i

» Also Q should be positive definite. We often deal with that issue by
forcing @ to be diagonal dominant i.e

Qii>Z|Qij| Vi

JEN;
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> Lete >0, n;:4+e2Viandu:0.
» Now assume that the neighbourhood of a pixel i is given by the 4
nearest pixels with equal weights given by 3; = %

» Then the precision matrix Q is given by

4+e ifj=i
Q= -1 if je N; (1)
0 otherwise
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The main computation tasks in the GMRFs approach are

1. Compute the Cholesky factorisation of @ = LL" , and

2. Solve Lz = Qas(Xs — pg) and L'x = z.
The crucial aspect of computations with GMRFs is that the
Cholesky factor L is sparse, but it is less sparse than Q.
The additional non-zero nodes are called fill-in.
We can reduce the fill-in by reordering the nodes.
Finding the optimal reordering is an NP-hard problem, but there are
many fast methods for finding good reorderings. For example, the
approximate minimum degree reordering is generally a good option.

If you use reorderings, you should also reorder the observations,
covariates, etc. using the same reordering.

Konstantinos Konstantinou



200 400 600 800

nz = 4380
Q(reo,re0)
P
300 S
400
500
600
700
800
900 - o - -
200 400 600 800
nz = 4380

Chol(Q)

200 400 600 800
nz = 27029

600

200 400
nz = 10231

Konstantinos Konstantino



» Image reconstruction using GMRF is more efficient than working
with X.

Example: For an image x of size N=nXx n

Time (s) Memory (MB)

n =50 0.012 0.21
n = 100 0.054 0.83
n = 150 0.177 1.88
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» Suppose we have two classes: Class 1 and Class 2
» A real valued feature variable X for each object to be classified.
» Let 7; be the prior probability of class i, i=1,2.

> Let f; be the probability density of X for and observation from class i.
Then we should choose class i over j if

Tfi() > 7,f()
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"Proof”: Choose the threshold t that minimizes the probability of
misclassification

Pr(Misclassification) = my /
Az

A(x)dx+ / H(x)dx

Ay

f’ \"'.__1 fy{x)
/ \ =, T, £, (x)
IIIII." '-,‘. -.,/ \\‘:? 2‘
,'.. /! ‘\
,- / \
Al t A2 x

Pr(misclassification) is given by the coloured area, and is minimized when
t is the point where the curves intersect. Hence we should choose class i
over j if

mifi(x) > mifi(x)
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» Suppose we have K classes

» Let X be a d—dimensional feature vector for each object to be
classified and f;(x) the probability density for an observation from
class i.

» Let 7; be the prior probabilities of class i

Then the posterior class probabilities are given by
P(Class= m)P(X=x|m)  7wpnfn(x)
S P(Class = )P(X=x|j) S5 mifi(x)

We shall then prefer class i to class j when

P(Class=m | X=x) =

mifi(x) > mjfi(x)
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» Assume X is a d-dimensional feature vector with multivariate normal
distribution N(u;, G;) inclass i, i=1,..., k

» Then we shall prefer class i to j if
1 1
X (G = G x+ (0 G = ] G xS (0 Gy — o G i)

» Since the border between the two regions in d-dimensional space
where we should or should not prefer i to j is given by a quadratic
surface we call this case Quadratic discriminant analysis(QDA ).
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» If C;=C, for i=1,..., k then we shall prefer class i to j if
_ 1 s
(= )T CHx = S (i pyy)) > I~

» Proof: Set C; = C; = Cin the expression derived for QDA.

P As the expression above is linear in x this case is called linear
discriminant analysis (LDA).
In MATLAB:
templateDiscriminant(’'DiscrimType', Linear") for LDA and
templateDiscriminant(’Discrim Type’,’Quadratic’) for QDA.
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Suppose that we have a training set with n; objects from class i.
Let the observation vectors be denoted Xj,,, m=1,....n;,i=1,.... K

Then
> =i k=1..K
> k= >y Xim k=1,..,K

> Co= i Y (Xim — ) (Xim — )7, k=1,... K
If we assume that the covariance matrices are equal then
> (—_ 1 VK A
¢ Z/il("i—l) Zl:l(n/ l)C’
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Let f= (f;) be a binary/grey level image and A be a subset of pixels.
The moment of order (p, q) in A is defined as

MPQ(A) = Z iquf;ja p,q= 07 1)
(ij)eA

Examples:
» i90: area = number of white pixels in A
» [i01: sum over y

P [i10: sum over x

centroid(A) :(m &> =y

1007 oo
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Image moments with respect to the centroid can be defined as

Npq(A) = Z (i—=Xx)P(—y) p+qg>1
(if)eA
Central moments are invariant under translations.

Hu moments are translation, rotation and scale invariant moments.
There are 8 such moments, the first two are

> Lo + 2o

> (p20 — po2)? + 4p11
Invariant moments are useful for image classification.
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Example: Handwritten digits 1 and 2. Moment features.

Aim: Classify the handwritten digits using the image moments u1; and
H20-

Konstantinos Konstantinou Spatial statistics and image analysis
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Figure: Plot of standardized moments p11 versus pgo for handwritten digits 1
and 2 among the first 400 digits in the MNIST data base together with the
class boundaries corresponding to linear and quadratic discrimination.
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