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Lecture’s content

Todays lecture will cover

I Unsupervised methods for image segmentation

1. K-means
2. Gaussian mixture models

I Morphological operations

I Feature extraction

Konstantinos Konstantinou Spatial Statistics and Image Analysis



Image segmentation

I So far we looked at supervised methods for image classification,
that is we have access to the labels Z1,..., ZN for each image in the
training set, which we then use to train a classifier.

I Now we will study some unsupervised methods for image
segmentation into K different classes without having any label
information.
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Image segmentation example

Goal: group the unlabeled data (pixel values) into K different classes
(rice or not rice).
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Intensity-based thresholding

I Already in lab 1 we have seen how to segment an image using its
histogram and choosing a reasonable threshold.
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K-means

I Recall that in a colour image the set of possible pixel values is
V = {0, ..., 255}3.

I The K-means algorithm:

1. Randomly select K observations as cluster centres
2. Assign each observation to the closest cluster centre.
3. Compute the mean of each cluster and assign these as new cluster

centres
4. Repeat from step 2 until convergence.

Typically you repeat this procedure a number of times with different
starting cluster centres and choose the clustering that has the
minimum total variation within the classes.
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Illustration of the K-means

Konstantinos Konstantinou Spatial Statistics and Image Analysis



Gaussian mixture models

I A Gaussian mixture model is based on the assumption that the
observations in the data come from different classes, for which the
distributions of the observations come from different Gaussians.

I Let K be the number of classes and Zi denote the class membership
of Xi . Then density of Xi is given by

P(Xi = x) =
K∑

k=1

P(Zi = k)P(Xi = x | Zi = k) =
K∑

k=1

πkN(x ;µk ,Ck)

where πk = P(Zi = k) is the probability that X belongs to class k.
As the data are unlabeled Zi ∈ {1, ...,K} is a latent variable.
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Example of GMM with K = 3
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MLE for GMM

Let θ = ({πk}Kk=1, {µk}Kk=1, {Ck}Kk=1) be the parameters of the GMM.
Then the log-likelihood is

`(θ | x1, ..., xn) =
n∑

i=1

log(
K∑

k=1

πkN(xi ;µk ,Ck))

I The summation over k within the logarithm make it impossible to
get a closed form solution for θ.

I We will use the Expectation-Maximization(EM) algorithm to
estimate the parameters θ of the GMM.
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EM algorithm for GMM

I Idea: If we knew the latent variables Zi then estimation of the
parameters θ will be very simple.

I Instead of the likelihood we will use the complete data log likelihood
given by

logP(X ,Z ) =
n∑

i=1

logP(Xi ,Zi ) =
n∑

i=1

logP(Xi | Zi )P(Zi )

=
n∑

i=1

log
K∏

k=1

[πkN(xi ;µk ,Ck)]1{Zi=k}

=
n∑

i=1

K∑
k=1

1{Zi = k}[logπk + logN(xi ;µk ,Ck)]
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EM algorithm

I Unfortunately Zi are not known BUT we can use posterior
expectations for 1{Zi = k} using the current estimates for the
parameters θ∗

I Using the Bayes rule we get that

EZi |X ,θ∗(1{Zi = k}) = P(Zi = k | Xi = xi , θ
∗) =

π∗kN(xi ;µ
∗
k ,C

∗
k )∑K

j=1 π
∗
j N(xi ;µ∗j ,C

∗
j )

I Using the posterior expectations EZi |X ,θ∗(1{Zi = k}) instead of the
unknown values of 1{Zi = k} we can estimate the parameters θ
using the expected complete data log likelihood [E-step].

Q(θ | θ∗) = EZ |X ,θ∗(logP(X ,Z | θ))

=
n∑

i=1

K∑
k=1

EZ |X ,θ∗(1{Zi = k})[logπk + logN(xi ;µk ,Ck)]

I Then we update the parameters θ∗ = argmax(θ | θ∗) [M-step]
I EM is an iterative algorithm that starts from some initial parameters
θ∗ and then iteratively updates θ∗ until convergence (`(θ | x)
increases at each iteration).
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EM algorithm for GMM

I Each iteration consist of two steps:

1. E step: Given the current parameters θ∗ we estimate the

probabilities that Xi belong in cluster k, pik =
π∗
k N(xi ;µ

∗
k ,C

∗
k )∑K

j=1 π
∗
j N(xi ;µ

∗
j ,C

∗
j )

∀i ∈ {1, ...N}, ∀k ∈ {1, ...,K}.
2. M step: We update the current parameters θ∗ using the values pik .

πk =

∑
i pik

N
, k = 1, ...,K

µk =
1∑
i pik

∑
i

pikxi , k = 1, ...,K

Ck =
1∑
i pik

∑
i

pik(xi − µk)
T (xi − µk), k = 1, ...,K

We iterate until convergence.
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Example: GMM with K=3 and K=5

Image segmentation using GMM with K=3 (top) and K=5 (bottom).

Konstantinos Konstantinou Spatial Statistics and Image Analysis



Comments

I The K-means clustering procedure is closely related to the EM
algorithm for estimating a Gaussian mixture model with πk = 1

K and
Ck = σ2I. Those assumptions are generally not satisfied.
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Comments

I A GMM does not take spatial dependencies into account.

I The classes may have additional features except for raw pixel values
which we may want to use.

I We will extend the mixture model to take into account possible
dependencies.

I Markov field mixture model:

P(Xi | Zi = k) ∼ N(x ;µk ,Ck)

Z ∼ P(Z )

where Z is a random field taking the values {1, ...,K} with density
P(Z ).

I We can model spatial dependencies through P(Z )

I Undesired features of the image such as shadows or background
spatial trend might influence the segmentation.
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Relative colours

Shadows might influence the image segmentation. One way to overcome
this is transform the colour space. For example do the segmentation
using relative colours or LAB colours. The relative amount of green in a
pixel is G/(R+B+G).

Konstantinos Konstantinou Spatial Statistics and Image Analysis



Image segmentation using relative colours

Image segmentation using a GMM with K = 3 on the original image
(left) and using the relative color image (right). The water area (orange)
is better classified using the relative color image than the original image.
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Morphological operations on binary images

Morphological operations can be used to regularize or clean binary
images. Let A be a set of pixels in an image, and let Sij be a structuring
element centered in pixel ij .

I Erosion of A: A	 Sij = {ij : Sij ⊂ A}.
I Dilation of A: A⊕Sij = (Ac 	S)c , where Ac is the complement of A.

I Opening of A: ΨS(A) = (A	 S)⊕ S ′, where S ′ is S rotated 180
degrees.

I Closing of A: ΦS(A) = (A⊕ S)	 S ′
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Example for image erosion and dilation.

Let S=

 1
1 1 1

1

 be the structuring element where red color denotes

the origin and a binary image A=


0 0 0 0 1
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

. Then

I A	 S =


0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0



I A⊕ S =


1 1 0 1 1
1 1 1 1 1
1 1 1 1 0
1 1 1 1 1
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Morphological operations

I Erosion: decreases the size of an object and removes the objects
with a radius smaller than the structuring element.

I Dilation: Increases the size of an object, fills holes and gaps,
increase the size of small objects.

I Opening: Removes small white objects.

I Closing: Removes small black objects.
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Morphological operations example
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Morphological operations on grayscale images

Morphological operations can be extended for grayscale images. Let A be
a grayscale image, and S a structuring element.Then

I Erosion of A: (A	 S)ij = min(Akl : kl ∈ Sij)

I Dilation of A: A⊕ Sij = max(Akl : kl ∈ Sij)

I Opening of A: ΨS(A) = (A	 S)⊕ S ′

I Closing of A: ΦS(A) = (A⊕ S)	 S ′
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Morphological operations examples
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Feature extraction

After the image segmentation part we might be interested to calculate
some descriptors of the detected object A. For example:

I Area(A)= number of pixels in A.

I Perimeter(A) = number of pixels in A for which at least one of the
eight neighboring pixels is in Ac

I Compactness(A) = 4π Area(A)
(Perimeter(A))2

I ConvexArea(A) = Area(B), where B is the convex hull of A

I ConvexPerimeter(A)=Perimeter(B)

I Convexity(A) =ConvexPerimeter(A)
Perimeter(A)

I and more.. (see Chapter 6 in Glasbey and Horgan 1995)
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