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Practical information

We had a (midterm) meeting with the students’ representatives,
Ivan Flensburg, Henrik Häggström, and Viktoria Löfgren. Some
comments

I Course literature could be structured better.
→ There is a folder called ”Course literature” under ”Files” in
Canvas now. The list of books and the book chapters by
Glasbye and Horgan are there.

I Hard to find information on the first two project parts.
→ We will keep this in mind for next year.

I Question: Is the schedule for the projects reasonable? Please,
let us know if something should be changed.

Aila Särkkä Spatial statistics and image analysis (TMS016/MSA301)



Marked point process

I Generalizations of (unmarked) point processes, where each
event (point of the process) xi is assigned a further quantity
m(xi ) (called a mark).

I Often, the marks are integers or real numbers but much more
general marks can be considered.

I A marked point process is denoted by M
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Marked point patterns

Amacrine cells: a point pattern
with two types of points.

Finnish pines: a point pattern
with continues marks
(diameters).
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Stationarity and isotropy

If M = {[x1;m(x1)], [x2;m(x2)], ...} then its translated process is

Mx = {[x1 + x ;m(x1)], [x2 + x ;m(x2)], ...}

Note that in the translated process the marks stay the same and
only the points are translated.

A marked point process M is stationary if and only if M and Mx

have the same distribution.

The definition of isotropy is analogous.
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First order characteristics

The intensity function λ(x ,m) gives the mean behaviour of the
marked point process. The mean number of marked points of M
located in the set B and having marks in C is given by

E(M(B × C )) =

∫
B

∫
C

λ(x ,m) dm dx ,

where M(B × C ) denotes the number of events in B that have
marks in C .

In the stationary case we can use two types of first-order
characteristics, one that concerns the points (intensity λ), and
another that describes the marks (mark probabilities pi for
qualitative marks and density function for quantitative marks).

The intensity λ is the same intensity as in the unmarked case: the
mean number of events per unit area (volume)
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Second-order characteristics: qualitative marks

From now on, we assume stationarity and isotropy.

Let N1 and N2 be two sub point processes with mark 1 and
intensity λ1 and mark 2 and intensity λ2, respectively.

Ripley’s cross K function K12 is defined as

λ2K12(r) = Eo1(N2(b(o, r))) for r ≥ 0,

where Eo1 is the conditional expectation given that there is an
event of type 1 at o.

Therefore, λ2K12(r) gives the mean number of events of type 2 in
a disc of radius r centered at an arbitrary event of type 1.

Can be estimated in a similar way as the ”usual” Ripley’s K
function (including edge corrections).
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Remarks

I K11 and K22 are the ”usual” K functions for the types 1 and
2, respectively.

I K12(r) = K21(r) for r ≥ 0. (Remark! Estimators may not
coincide completely.)

I Transformation to L function can be done as in the univariate
case.
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Special situations

I If the two sub processes are independent (here, in 2D), i.e. we
have a superposition of two processes, then

K12(r) = πr2 for i 6= j

(compare to the completely spatially random case). However,
that the equation above holds does not guarantee
independence between the two processes.

I If the marking can be regarded as random labelling (i.e. the
sub processes are independent random thinnings of the entire
process), then

K12(r) = K11(r) = K22(r) = K (r),

where K (r) is the K function of the entire process N (M
without marks).
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Amacrine cells

Estimated K (top) and L(r)− r =
√
K (r)/π − r

(bottom) functions for the whole pattern (left), the
on cells (middle), and the off cells (right).
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Amacrine cells: cross L function
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Left: The cross L12(r)− r function is close to the Poisson line.
Sub processes independent?

Right: The cross L12(r)− r seems to differ from the (unmarked)
L(r)− r function giving evidence against random labelling.

Remark: Formal tests would be needed.
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Mark-correlation function (quantitative marks)

Let us define

cmm(r) = Eor (m(o)m(r)) for r > 0,

the conditional expectation of the product of the marks of a pair of
events in M given that one of the events is in the origin and the
other distance r away.

For example, a value of cmm(r) that is larger than the squared
mean mark µ2 indicates increased marks at distance r .

The mark-correlation function is defined by

kmm(r) =
cmm(r)

µ2
for r > 0.

The mark correlation function has the value 1 if the marks are
uncorrelated.
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Remarks

I cmm(r) in the mark correlation function can be replaced by
some other function of marks.

I Mark-correlation function can be estimated by kernel
estimation.
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Finnish pines

Estimated L(r)− r function (top right) and mark correlation
function (bottom right) for the Finnish pines data (left).
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Models for marked point patterns

How to generate a point pattern with varying sized discs, where
the discs do not overlap?

Step 1: Generate an initial configuration by

I generating a realization of a Poisson point process with
constant intensity λ in your observation window.

I generating an identically distributed radius for each point
(event) from some predefined distribution function Fpr . The
radii are mutually independent and independent of the point
process.
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Models for marked point patterns: non-overlapping discs

Step 2: Generate the final pattern by thinning the generated
(Poisson) point pattern by letting all pairs of points whose
associated discs intersect to compete with each other. A point is
kept if it has a higher weight in all pairwise comparisons.

The weights can be assigned e.g. by

1. Pairwise assignment of weights: For each comparison,
independent weights are assigned to the involved pair of
points.

2. Global assignment of weights: Independent weights are
assigned once and for all to all points.

The weight may depend on the associated radius. When the
weights are deterministic functions of the radii, the two approaches
coincide.
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Models for marked point patterns: example patterns

Initial pattern: A realization of a Poisson process with intensity
1000 (left). Disc radii are exponentially distributed with mean 0.01.

From left to right, initial Poisson pattern, all intersecting discs
removed, large discs kept, and a global thinning with uniformly
distributed weights.
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Strauss process

I Two points are neighbours if they are closer than distance R
apart

I The density function for the point pattern x is

f (x) = αβn(x)γs(x),

where
I β > 0 is the effect of a single event (connected to the intensity

of the process)
I 0 < γ ≤ 1 is an interaction parameter.
I n(x) is the number of points in the configuration
I s(x) is the number of R close pairs in the configuration, where

R > 0 is the interaction radius (range of interaction).
I α is a normalizing constant
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Models for marked point patterns: Strauss process with
two types of points

I Two type 1 points are neighbours if they are closer than
distance R1 apart, two type 2 points if they are closer than
distance R2 apart, and a type 1 and a type 2 points if they are
closer than distance R12 apart.

I The density function for the point pattern x is

f (x) = αβ
n(x1)
1 β

n(x2)
2 γ

s1(x)
1 γ

s2(x)
2 γ

s12(x)
12 ,

where
I β1 > 0 and β2 > 0 are the effects of a single type 1 and type 2

events, respectively.
I 0 < γ1 ≤ 1, 0 < γ2 ≤ 1, and 0 < γ12 ≤ 1 are interaction

parameters for 1− 1, 2− 2, and 1− 2 pairs, respectively.
I n1(x) and n2(x) are the numbers of points in the sub patterns.
I s1(x), s2(x), and s12(x) are the numbers of R1, R2, R12 close

1− 1, 2− 2, and 1− 2 pairs, respectively.
I α is a normalizing constant
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Models for marked point patterns: marked Strauss process,
models for overlapping discs

I Two points (xi ,mi ) and (xj ,mj) are neighbours if the discs
b(xi ;mi ) and b(xj ;mj) overlap.

I The density function for the point pattern {[xi ;m(xi )]}is

f (x ;m) = α(
∏
xi∈x

β(mi ))γsm(x),

where
I β(mi ) > 0 is the effect of a single event with mark mi

I 0 < γ ≤ 1 is an interaction parameter
I sm(x) is the number of neighbours, i.e. the number of pairs of

discs that overlap.
I α is a normalizing constant

I Can be simulated by MCMC.
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Point processes with noise

Example: How to estimate the tree top and/or tree base positions
from aerial photos?

An original image on the left and a smoothed (filtered) image on
the right.
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Point processes with noise: general model

Three sources of distortion:

1. Some points can be lost. In the tree example,
I some trees (small trees shadowed by large ones) may not be

identified.
I model: each tree is given a probability to be identified as a

tree, i.e. to give rise to a maximum.

2. Some points can be displaced, for example due to
measurement error. In the tree example,
I some trees are displaced as a consequence of image geometry

and lighting conditions.
I model: displacement of a tree is systematic but may even have

a random (measurement error) component.

3. Some extra points that do not correspond to any real point
are generated. In the tree example,
I some ghost trees (large trees counted twice) may be added.
I model: extra trees added according to a Poisson process with

constant intensity
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Point pattern with extra points: spatial pattern of air
bubbles in polar ice

I Polar ice has information on the climate
of the past

I To be able to interpret the ice core
records, one has to know how old the ice
is. How to determine the age?

I Polar ice is compacted snow. If we go
deep enough, the air pores are isolated in
the ice.
→ Study the anisotropy (deformation) of
these air inclusions in the ice samples
from a deep ice core at different depths.

Reference: Redenbach, C., Särkkä, A. and Sormani, M. Classification of Points in Superpositions of Strauss and
Poisson Processes. Spatial Statistics 12, (2015), 81–95.
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Data

I Computer tomographic
(CT) images of ice samples
from Antarctica (imaged
inside a cold room at
−15◦ C (5◦ F)).

I In addition to the ”real” air
bubbles, the samples contain
relaxation (extra) bubbles
that do not give any
information on the motion
of the ice.
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Problem/question

Since the extra bubbles do not carry any information on the
motion of the ice and disturb the directional analysis, we would like
to remove them before performing the analysis

Question: How to classify each bubble either as “real pore” or as
noise?
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Model assumptions

I Real air pores modeled by a Strauss process (regular process).

I Noise bubbles are modeled as Poisson process with intensity
λ0.

I The complete point process N is a superposition of the
Strauss process N1 and the Poisson process N0

I Parameter vector θ = (λ0, β, γ,R)

Aila Särkkä Spatial statistics and image analysis (TMS016/MSA301)



Strauss-Poisson superposition
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Model assumptions

I The data consist of n bubbles, n1 Strauss (real) bubbles and
n0 Poisson (noise) bubbles

I Z ∈ {0, 1}n is a random vector such that

Zi =

{
1 if the ith bubble belongs to the Strauss pattern
0 if the ith bubble belongs to the Poisson pattern

I We want to estimate
I the vector Z (classification into real (Strauss) and noise

(Poisson) bubbles)
I the vector of parameters θ = (λ0, β, γ,R)
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Bayesian approach

I To estimate the parameters, sample from the posterior
distribution

P(θ,Z |y) ∝ P(y |θ,Z )Π(θ,Z ),

where y is the point pattern we observe, P(y |θ,Z ) is a
product of the Strauss density and the Poisson density, and
Π(θ,Z ) is the prior distribution for the parameters.

I Independent uniform priors for the parameters in
θ = (λ0, β, γ,R)

I Prior for Z is

Π(Z |θ) = Π(Z |n0, θ)Π(n0|θ) =

(
λ0

λ0 + λ1

)n0
(

λ1

λ0 + λ1

)n1

,

where λ0 and λ1 are the intensities of the Poisson and Strauss
processes, respectively, and Π(Z |n0, θ) = 1/

(
n
n0

)
.
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MCMC algorithm

I Select initial parameters according to the prior distributions
I Iterate the following steps

I Update θ: Pick one of the parameters in θ at random and
propose to change it to θ′i = θi exp(X ), where X ∼ N(0, τ 2).

I Update Z : Pick one data point at random and propose to
move it to the other process.

Accept a move with the probability given by the Hastings
ratio.

I Discard the first K − 1 iterations. The remaining sample
(θK ,ZK ), ..., (θN ,ZN) (or every kth value of it) is considered
a sample from the posterior distribution of (θ,Z ).
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Results

I In a simulation study with fixed θ, we observed three classes
of posterior probabilities for Z : high (classified as real), low
(classified as noise) and intermediate:
I The intermediate class consists of close pairs of bubbles: one

of the points was randomly classified as real and the other one
as noise.

I The spatial pattern of real bubbles remained the same

I When estimating the model parameters simultaneously with
the classification
I isolated noise bubbles were typically classified as real bubbles
I λ0 was underestimated and β overestimated (too many real

bubbles and too few noise bubbles)
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Note on spatio-temporal point processes

I Classical spatial point processes are often only ”snapshots” of
a process that develops in time. A space-time description
typically gives much more information and a deeper
understanding of the underlying biological and physical
processes.

I Spatio-temporal point processes are models for
time-dependent, dynamic point patterns, where the points
represent
I events that take place at random times and at random

locations (earthquakes), or
I objects that move through space (animals, storm centers), or
I objects that appear at random instants at random locations

and remain there for a random length of time (trees in a forest)
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