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Compared to last year, some changes were made to the material. The Student’s t-distribution
was added to the introductory chapter. The section on the sample autocorrelation function and
the Ljung–Box test was updated with a new example. The section on trend and seasonality was
restructured with the addition of applications for all trend smoothing methods to real data, along
with an explanation of how both trend and seasonal components can be estimated by linear least
squares. New material on how to compute forecasts for data which have been differenced to make
it stationary was added. Finally, the section on ARIMA processes was extended to SARIMA
processes and some details were changed in the chapter on GARCH processes.

Göteborg, May 2020, Andreas Petersson
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Some additional introductory material was added and some forecasting and estimation algorithms
for linear time series were removed. Details were added for the theoretical results on linear times
series. The chapter on GARCH processes was significantly expanded. Some clarifications were
added in the chapter on non-linear time series.

Göteborg, May 2019, Andreas Petersson
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Minor changes and corrections were done.

Göteborg, May 2018, Annika Lang & Andreas Petersson

Preface to v2017
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“Introduction to Time Series and Forecasting” by Brockwell and Davis [6]. Furthermore, new
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Preface to v2016

These lecture notes provide additional material to the lecture “Financial Time Series”
(TMS087/MSA410) at Chalmers University of Technology and University of Gothenburg. The
course is the fourth in a series of four financial courses (Options and Mathematics, Financial Risk,
Stochastic Calculus) and assumes the student to be familiar with the mathematical content of the
lectures as well as with basic statistical methods. It is to be seen as an early master level course.
The intention of the course is to provide a mathematical framework for financial time series rather
than to introduce as many available methods as possible. The student should understand the
mathematical background of easy linear models, should be able to implement these from scratch,
and should learn to transfer the knowledge to more advanced models.

First simulation examples have been added this year, more are planned in future years. Fur-
thermore an introductory chapter to probability theory was included and the last chapter about
extreme value theory was omitted. Since the notes are still under construction, we are thankful
for any comments that help to improve them.

Göteborg, May 2016, Annika Lang & Andreas Petersson

Preface to v2015

These lecture notes were written in parallel to the lecture “Financial Time Series”
(TMS087/MSA410) held by the author at Chalmers University of Technology and University
of Gothenburg in Spring 2015. They are based on [5, 4, 13, 22].

The lecture notes are no more than a first draft, where examples, especially financial applica-
tions, as well as graphs and plots are still missing. They are first just exclusively handed to the
students of the class.

Please help to improve the notes for future students and send any typos, problems, and remarks
to the author (annika.lang@chalmers.se).

Göteborg, May 2015, Annika Lang
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CHAPTER 1
Prerequisites

The intention of this chapter is to provide all readers with the necessary prerequisites in probability
theory, mathematical statistics, and financial mathematics. In the lecture it is assumed that this
content is already known and it is the personal responsibility of every student to be familiar with
the introduced definitions, notations, and results included in this chapter.

1.1 Review on probability theory

The attempt of this section is to give an introduction to probability theory that is as short as
possible but provides the reader with all basics that are required throughout the lecture. The
presentation of results is highly inspired by [17]. For a more extended but still easy introduction
to probability theory in English than that given below the reader is referred for example to [20].
A nice text to extend a statistical point of view to a probabilistic one can be found in [18]. We
start with the very basic concept of a probability space.

Let Ω be a nonempty set. A system A of subsets A ⊆ Ω is called a σ-algebra on Ω if Ω ∈ A, it
is closed under complements, i.e., A ∈ A implies Ac = Ω\A ∈ A, and it is closed under countable
unions, i.e., for all sequences (An, n ∈ N), An ∈ A for all n ∈ N, it holds that

⋃
n∈NAn ∈ A. The

pair (Ω,A) is called a measurable space and elements of A are called measurable sets. A subset
G ⊂ A is a sub-σ-algebra of the σ-algebra A if G is a σ-algebra itself.

There exist many different σ-algebras. The simplest (and most boring) σ-algebra just consists
of the empty set ∅ and Ω. It is an easy exercise to show that this is actually a σ-algebra. More
interesting and frequently used σ-algebras include the power set P(Ω) of Ω, which is the set of
all subsets of Ω, the σ-algebra generated by a subset E of the power set, which is the smallest
σ-algebra that contains E , and the Borel σ-algebra over Ω = R, which is the σ-algebra generated
by all half-open intervals of R. This latter σ-algebra is denoted by B(R).

To “measure sizes” on a measurable space (Ω,A), let µ : A → R+ ∪ {∞} be a mapping that
satisfies µ(∅) = 0 as well as being σ-additive, i.e., for all sequences (An, n ∈ N) of pairwise disjoint
sets being elements of A, it holds that

µ
(⊎
n∈N

An
)

=
∑
n∈N

µ(An).

Then µ is called a measure on (Ω,A) and the triple (Ω,A, µ) is called a measure space. If further-
more µ(Ω) = 1, µ is called a probability measure and usually denoted by P : A → [0, 1]. The triple
(Ω,A, P ) is then called a probability space.

1
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A well-known measure is the Lebesgue measure λ which is defined on (R,B(R)) by

λ([a, b)) := b− a

for all half-open intervals [a, b) ⊂ R.
Next, let f : Ω→ R be a function and set for B ∈ B(R)

f−1(B) := {ω ∈ Ω, f(ω) ∈ B}.

If f−1(B) ∈ A for all B ∈ B(R), f is called measurable. When Ω = R in this definition, A is
taken to be B(R). The σ−algebra σ(f) is generated by {f−1(B), B ∈ B(R)} ⊆ P(Ω) and it is the
smallest σ-algebra on Ω with respect to which f is measurable. It is an easy exercise to show that
{f−1(B), B ∈ B(R)} is a σ-algebra so that in fact σ(f) = {f−1(B) : B ∈ B(R)}.

In the following lemma, it is shown that measurability is preserved under the composition of
measurable functions.

Lemma 1.1.1. Let g : Ω → R and f : R → R be measurable functions, then f ◦ g : Ω → R is
measurable.

Proof. Observe that for any B ∈ B(R)

(f ◦ g)−1(B) = {ω ∈ Ω, f(g(ω)) ∈ B} = {ω ∈ Ω, g(ω) ∈ f−1(B)} = g−1(f−1(B)).

Since f−1(B) ∈ B(R) due to the measurability of f , g−1(f−1(B)) ∈ A by the measurability of g
and the claim is proven.

In the context of a probability space (Ω,A, P ), a measurable mapping X : Ω → R is called a
(real-valued) random variable and the lemma implies that for any measurable function f : R→ R
the function f ◦X is also a random variable.

Let X be a random variable and consider for B ∈ B(R)

PX(B) := P (X−1(B)) = P ({ω ∈ Ω, X(ω) ∈ B}) = P (X ∈ B),

where we use all notations as synonyms. Then it can be shown that PX : B(R) → [0, 1] is a
probability measure on (R,B(R)) called the image measure of P under X. It is also called the
distribution of X. The cumulative distribution function FX : R→ [0, 1] is then defined by

FX(x) := PX((−∞, x]) = P (X ≤ x), x ∈ R.

To omit the introduction of Lebesgue integration in what follows, we have to distinguish
between continuous and discrete random variables and use Riemann integration and summation
rules to define expectations of random variables.

A random variable X is called discretely distributed if it takes values in a countable subset
of R with probability 1, i.e., there exists a real-valued (and possibly finite—but we use the infinite
notation for simplicity) sequence (xi, i ∈ N) with xi 6= xj for all i, j ∈ N such that

P (X = xi) = pX(xi) > 0

for all i ∈ N and

P (X = xi, i ∈ N) = P
(⊎
i∈N
{X = xi}

)
=
∑
i∈N

pX(xi) = 1.

Then with

εx(A) :=
{

1 if x ∈ A,
0 else
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for all A ∈ B(R) one obtains with the properties of a probability measure that the distribution
of X can be expressed by

PX(A) =
∞∑
i=1

pX(xi)εxi(A).

While the cumulative distribution function of a discrete random variable is a stepfunction, a
random variable X is called continuously distributed if its cumulative distribution function FX is
continuous. In what follows let us take the stronger assumption that FX is differentiable with
derivative fX . Then it holds that

FX(x) =
∫ x

−∞
fX(x) dx

and fX is called the density of X. This implies that for all intervals (a, b] we are able to compute
the probability that X is in (a, b] by

P (X ∈ (a, b]) = PX((a, b]) = PX((−∞, b])− PX((−∞, a]) = FX(b)− FX(a) =
∫ b

a

fX(x) dx.

We should remark that not all random variables follow either a continuous or a discrete distri-
bution but that there exist mixtures of both.

An important quantity of interest is the “average” or “mean” of a random variable. What can
we expect to be its value when observing it? Put into a mathematical framework, the average is
described by the expectation of a random variable which is formally (or if Lebesgue integration
is known and X is integrable with respect to P ) given by the integration of the random variable
with respect to the probability measure P

E(X) :=
∫

Ω
X(ω) dP (ω).

By the transformation theorem this rather abstract expression can be simplified for continuous
random variables to

E(X) =
∫
R
xfX(x) dx

and for discrete random variables to

E(X) =
∞∑
i=1

pX(xi)xi.

We note that if X i non-negative, i.e., if P (X < 0) = 0, and if E(X) = 0 then, as an easy
consequence of the definition of the expectation, X = 0 P -almost surely. This means that P (X =
0) = 1. As we have already learned, g ◦X is a random variable if g is measurable. Frequently we
will compute expectations of more general expressions than E(X) which are of the form g(X) =
g ◦ X. Therefore we include the computing rules for expectations of these random variables for
the convenience of the reader. For continuous random variables we obtain

E(g(X)) =
∫
R
g(x)fX(x) dx,

while for discrete ones we compute

E(g(X)) =
∞∑
i=1

pX(xi)g(xi).
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An important inequality that relates probabilities and expectations is Chebyshev’s inequality which
states that for any α > 0 and any strictly increasing function g on R+ it holds that

P (|X| > α) ≤ g(α)−1 E(g(|X|)). (1.1)

If g is the identity, the inequality is known as Markov’s inequality. Another frequently used
function is g(x) = x2 which has the desired properties.

The definition of the expectation enables us to define the variance of a random variable X,
which is given by

Var(X) := E((X − E(X))2).
In an easy exercise one shows that the variance is equal to

Var(X) = E(X2)− (E(X))2.

From this expression it is clear that a finite variance requires besides a finite expectation that the
second moment exists, i.e., E(X2) < +∞.

If X and Y are two random variables with finite variance, then a “generalization” of the
variance is the so-called covariance of X and Y which is defined by

Cov(X,Y ) := E((X − E(X))(Y − E(Y ))).

It can be scaled to a quantity taking values in [−1, 1] by

Cor(X,Y ) := Cov(X,Y )√
Var(X) Var(Y )

and is called the correlation of X and Y . The covariance is well-defined as a consequence of the
Cauchy–Schwarz equality, which says that |E(XY )|2 ≤ E(|X||Y |)2 ≤ E(|X|2)E(|Y |2).

If Cov(X,Y ) = 0 and therefore also Cor(X,Y ) = 0 (under the assumption of the non-trivial
case that neither Var(X) nor Var(Y ) is equal to zero), X and Y are said to be uncorrelated or
orthogonal (in the sense of L2(Ω;R)).

While the expectation is linear, i.e., for random variables X, Y and constants α, β ∈ R

E(αX + βY ) = αE(X) + β E(Y ),

which is due to the linearity of the integral and of sums, respectively, this does not hold for the
variance and covariance. Nevertheless, under the assumption of uncorrelated random variables we
obtain the following formula for the variance of sums of random variables.

Theorem 1.1.2 (Bienaymé). Let X1, . . . , Xn be pairwise uncorrelated random variables and
α1, . . . , αn ∈ R, then

Var
(

n∑
i=1

αiXi

)
=

n∑
i=1

α2
i Var(Xi).

Proof. Let us divide the proofs into two steps. We first observe that for α ∈ R and a random
variable X is holds that

Var(αX) = E((αX − E(αX))2) = α2 E((X − E(X))2) = α2 Var(X).

Therefore it is sufficient to prove the claim for α1 = · · · = αn = 1. Furthermore we can assume
without loss of generality that E(X1) = · · · = E(Xn) = 0. We compute

Var
(

n∑
i=1

Xi

)
= E((X1 + · · ·+Xn)2) =

n∑
i=1
E(X2

i )+
∑
i6=j
E(XiXj) =

n∑
i=1

Var(Xi)+
∑
i 6=j

Cov(Xi, Xj).

Since the random variables are pairwise uncorrelated, it holds that Cov(Xi, Xj) = 0 for all i 6= j
by definition and the claim follows.
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Let us next consider a stronger assumption on sequences of random variables than was assumed
in the theorem of Bienaymé. Therefore let (Xn, n ∈ N) be a sequence of random variables. The
sequence is called independent if for all n ∈ N, all positive integers k1 < · · · < kn, and all choices
xk1 , . . . , xkn ∈ R it holds that

P (Xk1 < xk1 , . . . , Xkn < xkn) =
n∏
i=1

P (Xki < xki) = P (Xk1 < xk1) · · ·P (Xkn < xkn).

One can prove that this definition is actually sufficient for independence and implies the “usual”
condition that for all Bk1 , . . . , Bkn ∈ B(R)

P (Xk1 ∈ Bk1 , . . . , Xkn ∈ Bkn) =
n∏
i=1

P (Xki ∈ Bki).

In order to show that the independence of random variables is stronger than the requirement that
they are uncorrelated, we need the following result first.

Theorem 1.1.3. Let X1, . . . , Xn be independent random variables and g1, . . . , gn measurable func-
tions such that

E(g1(X1) · · · gn(Xn)) < +∞
exists, then

E(g1(X1) · · · gn(Xn)) = E(g1(X1)) · · ·E(gn(Xn)).

We remark for the interested reader that the theorem is proven by the observation that the
product measure of the random variables is equal to the product of the image measures, i.e.,

PX1,...,Xn = PX1 ⊗ · · · ⊗ PXn
and Fubini’s theorem.

Coming back to the comparison of independent and uncorrelated random variables, let us set
for two independent random variables X and Y

g1(X) := g2(X) := X − E(X),

which is a measurable function under the assumption that E(X) < +∞ and E(Y ) < +∞. Then
the theorem implies that

Cov(X,Y ) = E(g1(X)g2(Y )) = E(g1(X))E(g2(Y )) = (E(X)− E(X))(E(Y )− E(Y )) = 0,

i.e., we have shown that the independence of two random variables implies that they are uncor-
related. Nevertheless, the reader should be aware that uncorrelated random variables are usually
not independent.

Product measures were already mentioned in the remark on the proof of Theorem 1.1.3 but
were not discussed so far. The product measure PX,Y of two random variables X and Y is defined
by the completion of

PX,Y (A×B) := P (X ∈ A, Y ∈ B), A,B ∈ B(R).

The conditional probability of X given Y is defined by

P (X ∈ A|Y ∈ B) := P (X ∈ A, Y ∈ B)
P (Y ∈ B)

for A,B ∈ B(R) with P (Y ∈ B) 6= 0, which leads for continuously distributed random variables
with joint density fX,Y to the conditional density given by

f(x|y) =
{
fX,Y (x,y)
fY (y) if fY (y) 6= 0,

0 else
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for x, y ∈ R. Here fY is the (marginal) density of Y which can be derived by

fY (y) =
∫
R
fX,Y (x, y) dx.

For discrete random variables we obtain

p(x|y) =
{
pX,Y (x,y)
pY (y) if pY (y) 6= 0,

0 else,

where the weights are given by pX,Y (x, y) = P (X = x, Y = y) and the (marginal) weights pY (y)
can be computed by

pY (y) =
∞∑
i=1

pX,Y (xi, y) = P (Y = y),

where (xi, i ∈ N) denotes the values in R with strictly positive probability.
In what follows next, we use this concept to define conditional expectations. The reader

should be aware that we are doing this introduction for a very specific case. Usually conditional
expectations are considered in the more general setting with respect to σ-algebras instead of
random variables. The experienced reader will observe quite easily that using the σ-algebra σ(Y )
generated by the random variable Y instead of Y leads to the same conditional expectations as
those introduced in what follows.

Let X and Y be two random variables and assume that X is integrable or positive. Then, by
the theorem of Radon–Nikodym, there exists a P -almost surely unique random variable Z with
the properties that there exists a measurable function g : R→ R such that

Z(ω) = g(Y (ω))

for all ω ∈ Ω and for all B ∈ B(R)∫
{Y ∈B}

Z(ω) dP (ω) =
∫
{Y ∈B}

X(ω) dP (ω).

The random variable Z is called the conditional expectation of X given Y and denoted by E(X|Y ).
Observe that in contrast to E(X), the conditional expectation E(X|Y ) is a random variable which
could be interpreted as the best approximation of X given just Y . In this context P -almost
surely means that for all random variables Z ′ that also satisfy the two properties it holds that
P (Z = Z ′) = 1.

For practical purposes and a more specific and concrete form of the conditional expectation
we add that the abstract condition of integration with respect to the probability measure implies
for continuous random variables that the conditional expectation is given by

E(X|Y ) =
∫
R
xf(x|Y ) dx.

For discrete random variables one obtains that

E(X|Y ) =
∞∑
i=1

p(xi|Y )xi,

where one should be aware that the result is a random variable which could be characterized by
computing E(X|Y = yj) for all yj ∈ R, j ∈ N, with P (Y = yj) > 0.

In what follows we give a selection of properties of the conditional expectation, where the
reader is referred to the literature for the proofs or derives the results in easy computations. The
conditional expectation has the following properties:
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(i) The conditional expectation is linear, i.e., for a1, a2 ∈ R and random variables X1, X2, and
Y it holds that

E(a1X1 + a2X2|Y ) = a1 E(X1|Y ) + a2 E(X2|Y ).

(ii) The expectation of the conditional expectation E(X|Y ) is equal to the expectation of the
random variable X, i.e.,

E(E(X|Y )) = E(X).

(iii) If X is independent of Y , the conditional expectation satisfies

E(X|Y ) = E(X),

i.e., the best approximation of X given Y is the expectation of X.

(iv) For every constant a ∈ R it holds that

E(a|Y ) = a.

(v) For any measurable function g : R→ R and random variables X and Y it holds that

E(g(Y )X|Y ) = g(Y )E(X|Y ).

We will need conditional expectations given a whole family of random variables in the lecture
to obtain the best forecast using the past observations of a time series. Therefore we have to
generalize the conditional expectation to E(X|Y1, . . . , Yn) for random variables X and Y1, . . . , Yn.
This is easily be done by finding a measurable function g : Rn → R such that Z = g(Y1, . . . , Yn).
All presented results stay the same under this generalization (and instead of σ(Y ) one considers
σ(Y1, . . . , Yn) to consider it in the “usual approach” of conditional expectations). In addition, it
holds that

(vi) if the random variables (X,Y1, . . . , Yn) are all independent of the random variable Z, then

E(X|Y1, . . . , Yn, Z) = E(X|Y1, . . . , Yn).

We continue this very short introduction to probability theory with a collection of examples of
frequently used distributions.
Example 1.1.4 (Bernoulli distribution). The Bernoulli distribution is a discrete distribution
that takes values in {0, 1} and that models a coin flipping experiment. It is characterized by the
parameter p ∈ (0, 1). A Bernoulli distributed random variable X has the distribution

P (X = 1) := p, P (X = 0) := 1− p.

In an easy computation one obtains that

E(X) = p, Var(X) = p(1− p).

Example 1.1.5 (Uniform distribution). A random variable X is uniformly distributed on the
interval [a, b] denoted by X ∼ U([a, b]) if it is continuous with density given by

fX(x) :=
{

(b− a)−1 if x ∈ [a, b],
0 else.

It is an easy exercise to compute that

E(X) = a+ b

2 , Var(X) = (b− a)2

12 .

A useful observation especially for simulations is that if X ∼ U([0, 1]), then

a+ (b− a)X ∼ U([a, b])

for real numbers a < b.



8 CHAPTER 1. PREREQUISITES

Example 1.1.6 (Normal distribution). One of the most famous and most frequently used dis-
tributions is the normal distribution. A random variable X is normally distributed or Gaussian
with expectation µ and variance σ2 denoted by X ∼ N (µ, σ2) if it is continuously distributed with
density given by

fX(x) := 1√
2πσ2

exp
(
− (x− µ)2

2σ2

)
for x ∈ R. The cumulative distribution function of this distribution is usually denoted by

Φ(x) := 1√
2πσ2

∫ x

−∞
exp

(
− (y − µ)2

2σ2

)
dy.

The expectation and the variance fully characterize the distribution and a family of normally
distributed random variables is independent if it is jointly normally distributed and uncorrelated
(see the concept of a joint distribution function below).

Example 1.1.7 (Student’s t-distribution). A random variable X has a Student’s t-distribution
with ν > 0 degrees of freedom (denoted by X ∼ tν) if it is continuously distributed with density
given by

fX(x) := Γ((ν + 1)/2)√
νπΓ(ν/2)

(
1 + x2

ν

)− ν+1
2

for x ∈ R, where Γ is the gamma function. If ν > 1, E(|X|) < ∞ and E(X) = 0. If ν > 2,
E(X2) <∞ and Var(X) = ν/(ν − 2). In order to be able to specify what the mean and variance
of a t-distributed random variable is, we say that X has a generalized Student’s t-distribution with
ν > 2 degrees of freedom with mean µ and variance σ2 if

Y := (X − µ)
√
ν

σ
√
ν − 2

∼ tν .

A central property of the normal distribution is the simple but remarkable fact that the sample
or empirical mean X̄n of a large number of random variables of any distribution will be approx-
imately normally distributed under some simple conditions. This is not proven in these lecture
notes but merely stated below. For a proof the reader is referred for example to [20]. The reader
should be aware that there exist many versions of this theorem with different assumptions on
the underlying random variables. The following is one of the most common with the strongest
assumptions.

Theorem 1.1.8 (Central Limit Theorem (CLT)). Let (Xn, n ∈ N) be a sequence of independent
and identically distributed random variables, each having finite mean µ and finite non-zero variance
σ2 and let X̄n = n−1∑n

i=1Xi. Then the distribution of the standardized sample mean tends to
the standard normal distribution, i.e. for all x ∈ R

P

(√
n(X̄n − µ)

σ
≤ x

)
→ Φ(x).

The concept of random variables is straightforward to extend to random vectors. A random vec-
tor in Rn is an n-dimensional vector X = (X1, X2, . . . , Xn)′ whose components Xi, i = 1, 2, . . . , n,
are random variables. The cumulative distribution function or joint distribution function of X,
FX , is then defined by

FX(x) = FX(x1, x2, . . . , xn) = P (X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn)

where x = (x1, x2, . . . , xn)′. For continuously distributed random vectors, the density function of
X is defined by the equation

FX(x) = FX(x1, x2, . . . , xn) =
∫ xn

−∞
· · ·
∫ x2

−∞

∫ x1

−∞
f(y1, . . . , yn)dy1dy2 . . . dyn
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if there exists such a function f : Rn → R. The concept of the mean extends to random vectors
via

E(X) = (E(X1),E(X2), . . . ,E(Xn))′ (1.2)

and the notion of variance corresponds to the covariance matrix Cov(X) ∈ Rn×n defined by

Cov(X) = E((X − E(X))(X − E(X))′), (1.3)

which can also be written as Cov(X) = (Cov(Xi, Xj))ni,j=1.

The most important example of a random vector will for us be a Gaussian random vector, i.e.,
a random vector that follows the multivariate normal distribution.

Example 1.1.9 (Multivariate normal distribution). X has amultivariate normal distribution with
mean µ = E(X) and non-singular covariance matrix Σ = Cov(X), which we write X ∼ N (µ,Σ),
if it has the density function

fX(x) = 1√
2πn det Σ

exp
(
−1

2(x− µ)′Σ−1(x− µ)
)
. (1.4)

A useful fact is that a random vectorX = (X1, X2, . . . , Xn)′ has a multivariate normal distribution
if and only if the random variable

∑n
i=1 aiXi is normally distributed is normally distributed for

any vector a ∈ Rn. Note that, by Example 1.1.6, X is a vector of independent Gaussian random
variables if and only if Σ = I, where I is the identity matrix.

1.2 Review on mathematical statistics

A hypothesis is a statement about a parameter. We have two complementary hypotheses in a
hypothesis testing problem which are called the null hypothesis H0 and the alternative hypothe-
sis H1. Finally a hypothesis testing procedure or hypothesis test is a rule that specifies for which
sample values the decision is made to accept H0 as true and for which H0 is rejected and H1 is
accepted as true. The level of a hypothesis test is the probability that H0 is rejected given that
H0 is true. The power of a hypothesis test is the probability that H0 is rejected given that H1 is
true.
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CHAPTER 2
Stationary time series and seasonality

This chapter is based on Brockwell and Davis’ book “Introduction to Time Series and Forecast-
ing” [6] as well as Grandell’s lecture notes “Time series analysis” [13], which are based on [6]
and [4]. d We start with an introduction to times series in general before focusing on stationary
time series. We discuss especially the testing and forecasting of stationary times series. Finally we
introduce methods to remove trend and seasonal components from observed data in order to ob-
tain a stationary time series. Let us from here on in all of what follows consider random variables
with respect to a fixed probability space (Ω,A, P ).

2.1 Introduction to time series

The goal of this section is to set up a mathematical framework that describes the behavior of
observed data which might come from the stock market but many other sources in engineering,
ecology, and finance can be treated in a similar way. We consider special types of stochastic
processes which we are observing and trying to estimate, fit, and forecast. Therefore we first
recall that a stochastic process X := (Xt, t ∈ T) is a collection of random variables with respect
to an index set T, usually a subset of R. We call X a stochastic process in continuous time if
T is a (possibly unbounded) interval while it is called a stochastic process in discrete time if T
is countable, e.g., T = {tn, n ∈ N} with tn ∈ R for all n ∈ N. While a stochastic process is the
mathematical construction of some random behavior over time, we are interested in the observation
of this process, e.g., of the evolution of a stock price. This will be done in the following framework:

Definition 2.1.1. A time series is a real-valued sequence of observations (xt, t ∈ T) with respect
to an index set T ⊂ R. A time series model for the observed data (xt, t ∈ T) is a specification
of the joint distributions (or possibly only the means and covariances) of a sequence of random
variables (Xt, t ∈ T) of which (xt, t ∈ T) postulates to be a realization.

The definition implies that a time series model is a stochastic process, but it might happen that
we do not know all of its properties explicitly but just some specific quantities like the expectation
or the covariances. We remark that we use the term time series to mean both the data and the
underlying stochastic process if there is no danger of confusion.

Example 2.1.2. An example of a time series in the sense of a realization of a stochastic process
is the set of quarterly earnings (xt, t = 1, . . . , 42) for the Swedish clothing company H&M. Figure
2.1 shows these earnings in million SEK from January 2006 through April 2016.

Example 2.1.3. Another example of a type of time series, that will be important for us in the
latter half of the course, are log-returns, or continuously compounded returns (rt, t ∈ Z). These are

11
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Figure 2.1: Quarterly earnings of H&M from January 2006 through April 2016.

defined by rt = log(Pt) − log(Pt−1), where Pt is the price of some asset at time t ∈ Z. In Figure
2.2, we plot daily log-returns (rt, t = 1, . . . 2584) of the S&P500 index from January 2006 to April
2016. At each point t, rt is the logarithm of the percentage (divided by 100) that a stock portfolio
allocated according to this index has increased or decreased from one month to the next.

Let us observe that in reality we are just able to observe the stochastic process at finitely many
times. Therefore, we focus in these lecture notes on discrete-time time series and allow also for
infinitely many observations, to allow for the arrival of new data. Let us assume from now on that
T is a discrete set {tn, n ∈ N} and let us abbreviate (Xtn , n ∈ N) by (Xn, n ∈ N) or (Xn, n ∈ Z) if
we want to account for unlimited historical data. Equivalently we write (xn, n ∈ N) and for finite
observations and models (x1, . . . , xn) and (X1, . . . , Xn), resp., for some finite and fixed n ∈ N.

For a discrete time series, the specification of the joint distributions in Definition 2.1.1 simplifies
to the knowledge of all probabilities

PXi1 ,...,Xim ((−∞, y1], . . . , (−∞, ym]) = P (Xi1 ≤ y1, . . . , Xim ≤ ym)

for all finite random vectors (Xi1 , . . . , Xim) of any {i1, . . . , im} ⊂ N with finite m ∈ N and all
yj ∈ R, j = 1, . . . ,m.

Although we claimed that the characterization of the joint distribution of a discrete time
series is already simpler, it is still not convenient and in general not easy to derive results in this
framework. To keep the technicalities in these lecture notes as low as possible, we will therefore
introduce in what follows so-called iid noise.
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Figure 2.2: Daily log-returns of the S&P500 index from January 2006 to April 2016.

Definition 2.1.4. A stochastic process X = (Xt, t ∈ T) is called iid noise with mean µ and vari-
ance σ2 if the sequence of random variables (Xt, t ∈ T) is independent and identically distributed
(abbreviated by iid) with E(Xt) = µ and Var(Xt) = σ2 for all t ∈ T. An iid noise is denoted by
X ∼ IID(µ, σ2).

Please note that iid noise is sometimes called white noise in the literature (e.g., in [22]). We
will use the terminology white noise for a more general process that satisfies weaker assumptions
than iid noise.

In what follows we treat two simple examples of time series models.
Example 2.1.5 (Binary process). A simple stochastic process and an example of an iid noise is
the binary process which describes the flipping of a fair coin. In this case (Xn, n ∈ Z) is a sequence
of iid random variables characterized by

P (X1 = 1) = P (X1 = −1) = 1
2 .

It is easy to see that it has mean zero, i.e.,

E(X1) = (−1) · 1
2 + 1 · 1

2 = 0,

and variance 1, i.e.,

Var(X1) = E((X1 − E(X1))2) = E(X2
1 ) = (−1)2 · 1

2 + 12 · 1
2 = 1.
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Example 2.1.6 (Random walk). A random walk (Sn, n ∈ N0) is obtained by the cumulative
summing of iid random variables, i.e., for a given iid noise (Xn, n ∈ Z), it is defined by S0 := 0
and for n ∈ N by

Sn :=
n∑
i=1

Xi = Sn−1 +Xn.

If the sequence of random variables is given by the binary process in Example 2.1.5, the corre-
sponding random walk is called a simple symmetric random walk.

We finish this section by introducing the important example of a Gaussian time series.

Definition 2.1.7. A time series X is said to be a Gaussian time series if all finite-dimensional
distributions are normal, i.e., all finite-dimensional vectors are multivariate Gaussian distributed.

A useful fact of the multivariate normal distribution is that any linear combination of the
components of a multivariate normal random vector is also normal. In our context this means
that a time series (Xt, t ∈ T) is Gaussian if and only if for any collection {t1, . . . tn} of times,
n ∈ N, and any vector a ∈ Rn, the sum

∑n
i=1 aiXti is normally distributed.

2.2 Characterization of stationary time series

Having seen time series models in general in the previous section, let us focus on the specific class
of stationary times series and its properties in what follows.

Definition 2.2.1. Let X = (Xt, t ∈ T) be a stochastic process with Var(Xt) < +∞ for all t ∈ T.
The mean function µX : T→ R of X is given by

µX(t) := E(Xt)

for all t ∈ T and the covariance function γX : T× T→ R is defined by

γX(r, s) := Cov(Xr, Xs) = E ((Xr − µX(r))(Xs − µX(s)))

for all r, s ∈ T.

In order to avoid problems with the index set of the stochastic process especially when summing
indices, let us consider for simplicity T = Z in what follows, where we allow for negative times
keeping in mind historical data.

Definition 2.2.2. Let X = (Xt, t ∈ Z) be a time series with Var(Xt) < +∞ for all t ∈ Z. The
time series X is called (weakly) stationary if

(i) there exists µ ∈ R such that µX(t) = µ for all t ∈ Z and

(ii) γX(r, s) = γX(r + h, s+ h) for all r, s, h ∈ Z.

Definition 2.2.3. A time series X = (Xt, t ∈ Z) (for which Var(Xt) < ∞ for all t ∈ Z is
not necessarily true) is said to be strictly stationary if the random variables (X1, . . . , Xn) and
(X1+h, . . . , Xn+h) have the same joint distributions for all h ∈ Z and n ∈ N.

It is an easy exercise that a strictly stationary time series with finite variance is also weakly
stationary. Whenever stationary is used in what follows, we shall mean weak stationarity. Fur-
thermore observe that the converse is just true in very special cases. The typical example is that
a weakly stationary Gaussian time series is also strictly stationary since the normal distribution
is completely determined by its mean and covariance.
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Example 2.2.4. Consider the time series X := (Xt, t ∈ Z) given by

Xt := Yt(Zt + Zt−1)

where Z := (Zt, t ∈ Z) is IID(0, σ2
Z) and Y := (Yt, t ∈ Z) is a stationary time series independent

of Z. We use Definition 2.2.2 to show that X is a (weakly) stationary time series. First we check
Condition (i), i.e., we show that µX is constant. We have for all t ∈ Z

µX(t) = E(Xt) = E(Yt(Zt+Zt−1)) = E(Yt)E(Zt+Zt−1) = E(Yt)(E(Zt)+E(Zt−1)) = E(Yt) ·0 = 0

which is constant and therefore does not depend on t. Here we used the independence of Y and
Z in the second equality and after that Z has zero mean. Using the same independence and that
X has mean zero, we obtain further that

Var(Xt) = E(X2
t ) = E(Y 2

t (Zt + Zt−1)2) = E(Y 2
t )E((Zt + Zt−1)2)

= E(Y 2
t )(E(Z2

t ) + 2E(Zt)E(Zt−1) + E(Z2
t−1)) = 2(Var(Yt) + E(Yt)2)σ2

Z < +∞,

since the mean and variance of Y are finite due to its stationarity. It remains to show Condition (ii)
of Definition 2.2.2. Using the definition and the independence of Y and Z, we first observe for all
r, s, h ∈ Z that

γX(r + h, s+ h) = E(Xr+hXs+h) = E(Yr+h(Zr+h + Zr+h−1)Ys+h(Zs+h + Zs+h−1))
= E(Yr+hYs+h)E(Zr+hZs+h + Zr+hZs+h−1 + Zr+h−1Zs+h + Zr+h−1Zs+h−1).

The stationarity of Y further implies that

E(Yr+hYs+h) = γY (r + h, s+ h) + µ2
Y = γY (r, s) + µ2

Y = E(YrYs)

and similarly for Z that

E(Zr+hZs+h + Zr+hZs+h−1 + Zr+h−1Zs+h + Zr+h−1Zs+h−1)
= E(ZrZs + ZrZs−1 + Zr−1Zs + Zr−1Zs−1).

Doing the same computations back in the other direction, we derive

γX(r + h, s+ h) = E(Xr+hXs+h) = E(XrXs) = γX(r, s),

which shows stationarity of X.

Now, we observe that Condition (ii) in Definition 2.2.2 is equivalent to γX(r, s), with r, s ∈ Z,
being a function of the distance |r − s| and therefore it is convenient and sufficient to write

γX(h) := γX(h, 0) = γX(s+ h, s)

for h, s ∈ Z for stationary time series. In this context h is called the lag.

Definition 2.2.5. Let X be a stationary time series. The autocovariance function (ACVF)
γX : Z→ R of X is defined by

γX(h) := Cov(Xt+h, Xt)

for h ∈ Z and t ∈ Z. The autocorrelation function (ACF) ρX : Z→ [−1, 1] of X is defined by

ρX(h) := γX(h)
γX(0)

for h ∈ Z.
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Note that γX is well-defined due to the stationarity ofX and, since the covariance is symmetric,
γX is even, i.e., γX(h) = γX(−h), h ∈ Z. Furthermore we observe that ρX is given by the
correlations of the time series. It is straightforward to see that

ρX(h) = Cor(Xt+h, Xt) = Cov(Xt+h, Xt)√
Var(Xt+h) Var(Xt)

for all h, t ∈ Z.
Let us introduce next the already announced generalization of iid noise.

Definition 2.2.6. A stochastic process X = (Xt, t ∈ Z) is called a white noise with mean µ and
variance σ2 if it is a stationary process with E(Xt) = µ, t ∈ Z, and for h ∈ Z

γX(h) =
{
σ2 if h = 0,
0 else.

If X is a white noise it is denoted by X ∼WN(µ, σ2).

In other words a white noise is a sequence of uncorrelated random variables with constant
mean and variance. It is clear from the definition that an iid noise is a white noise. For a white
noise to be iid noise on the other hand, the random variables must be independent and identically
distributed. For example, a white noise that is Gaussian is necessarily iid, since random variables
that are uncorrelated and jointly normal are independent.

Example 2.2.7. Let us continue with the time series X of Example 2.2.4 and compute its ACVF.
From the computations in the previous example we obtain first that

γX(h) = γX(h, 0) = (γY (h, 0) + µ2
Y ))(γZ(h, 0) + γZ(h,−1) + γZ(h− 1, 0) + γZ(h− 1,−1))

= (γY (h) + µ2
Y )(γZ(h) + γZ(h+ 1) + γZ(h− 1) + γZ(h)).

Since Z ∼ IID(0, σ2
Z), this expression simplifies to

γX(h) =


2(γY (h) + µ2

Y )σ2
Z if h = 0,

(γY (h) + µ2
Y )σ2

Z if |h| = 1,
0 else.

2.3 Sample mean and sample autocorrelation function

The mean and the covariance function as well as the autocovariance and the autocorrelation
function of a time series are theoretical properties of the time series model. In practice we observe
data and they are unknown. We assume a certain model that our data follows and try to estimate
the parameters such as the four mentioned functions. In what follows we introduce estimators
for the quantities of interest which is indicated by adding sample to the names. Observe that the
introduced estimators are random variables while the estimates (the estimators applied to data)
are just numbers.

Definition 2.3.1. Let X = (Xt, t ∈ N) be a time series. The sample mean X̄n of X is given by

X̄n := n−1
n∑
t=1

Xt.

The sample autocovariance function γ̂ is defined by

γ̂(h) := n−1
n−h∑
t=1

(Xt+h − X̄)(Xt − X̄)
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for h = 0, . . . , n− 1. Furthermore the sample autocorrelation function ρ̂ is given by

ρ̂(h) := γ̂(h)
γ̂(0)

for h = 0, . . . , n− 1.

We remark that the definitions of the sample autocovariance and autocorrelation function can
be extended to h = −n, . . . ,−1 by setting for h < 0

γ̂(h) := γ̂(|h|),

which makes them symmetric functions around zero.

In an exercise one shows the well-known facts that X̄n is an unbiased estimator for the mean
if X is stationary, i.e., E(X̄n) = E(X1), while γ̂ and ρ̂ are not. We observe that the sample
autocovariance and autocorrelation functions even stay biased if the factor n−1 is replaced by
(n− h)−1. Nevertheless, for large sample sizes they will nearly be unbiased.

Furthermore, we observe the convergence of the sample mean to the mean in the sense of the
mean squared error in the following proposition, which could be interpreted as a “stronger law of
large numbers”, since it is stronger than the weak law of large numbers.

Proposition 2.3.2. Let X be a stationary time series with mean µ and autocovariance γX . Then

lim
n→∞

Var(X̄n) = lim
n→∞

E
(
(X̄n − µ)2) = 0

if
∑
|h|<∞ |γX(|h|)| < +∞.

Proof. Let n ∈ N be fixed. Since the covariance is bilinear, we observe that

Var(X̄n) = Cov(X̄n, X̄n) = 1
n2

n∑
i,j=1

Cov(Xi, Xj) = 1
n2

n∑
i,j=1

γX(|i− j|).

Let us simplify the sum next. It holds that

∑
1≤i,j≤n

γX(|i− j|) = 2
∑

1≤i<j≤n
γX(i− j) +

n∑
i=1

γX(0) = 2
n∑
h=1

(n− h)γX(h) + nγX(0).

Coming back to our original computation we obtain that

Var(X̄n) = 2
n

n∑
h=1

(
1− h

n

)
γX(h) + 1

n
γX(0) = 1

n

∑
|h|<n

(
1− |h|

n

)
γX(|h|) ≤ 1

n

∑
|h|<n

|γX(|h|)|.

The assumption that C :=
∑
|h|<∞ |γX(|h|)| < +∞ yields that

lim
n→∞

Var(X̄n) ≤ lim
n→∞

C

n
= 0,

which finishes the proof.

From the last line of the proof we obtain especially that the rate of convergence of the mean
squared error in the size of the sample is at least one, i.e., for all n ∈ N

E
(
(X̄n − µ)2) ≤ C · 1

n
.
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It can be shown that limh→∞ γX(h) = 0 suffices to show that limn→∞ Var(X̄n) = 0 (without a
rate), but the proof is more involved. We leave it to the interested reader to confirm this as a
somewhat challenging exercise.

We remark that the sample mean of a Gaussian time series X is Gaussian since sums of
jointly Gaussian distributed random variables are Gaussian. More specifically, one computes in
an exercise that

n1/2(X̄n − µ) ∼ N

0,
∑
|h|<n

(1− n−1|h|)γ(h)

 .

Even if the time series is not Gaussian, this is usually a good approximation.
Let us next have a look at the estimation of the autocovariance and autocorrelation function.

First of all, it is evident that it is impossible to give reasonable estimates for γX(h) and ρX(h) for
h ≥ n, and even for h near to n the results are not reliable due to few samples. A useful guide
can be found in [3], which says that one should take n ≥ 50 and h ≤ n/4. Moreover, it is possible
to prove asymptotic results such as Proposition 2.3.2 also for γX(h), but this requires stronger
assumptions on the time series. The interested reader is referred to [4, Chapter 7].

In applications such as forecasting, the sample autocovariance function is often used in a
matrix. We denote by

Γ̂k :=


γ̂(0) γ̂(1) · · · γ̂(k − 1)
γ̂(1) γ̂(0) · · · γ̂(k − 2)
...

...
. . .

...
γ̂(k − 1) γ̂(k − 2) · · · γ̂(0)


the k-dimensional sample covariance matrix. It is nonnegative definite, which is shown in [6,
Section 2.4.2]. The same holds true for the sample autocorrelation matrix R̂k defined by

R̂k := γ̂(0)−1Γ̂k.

The matrices are nonsingular if γ̂(0) > 0, i.e., if there is a t ∈ Z s.t. Xt 6= X̄. One can show that
if the factor n−1 were replaced by (n− h)−1 in the definition of γ̂, the matrices could be singular
even if γ̂(0) > 0.

Observe that these functions can be defined for all observed time series, even if the time series
is not stationary. In fact, the sample autocorrelation function can be used to detect deviations
from stationarity, as we shall see.

Example 2.3.3. Let us revisit the data from Example 2.1.2, i.e., the set (xt, t = 1, . . . , 42)
of quarterly earnings of H&M. The sample mean is found to be x̄ ≈ 4007. For the sample
autocorrelation function, we compute ρ̂(h) for h = 0, 1, . . . , 10 in MATLAB with the following
code:

n=length ( data ) ;
mx=mean( data ) ;
l a g s =10;
gamma=ze ro s (1 , l a g s+1) ;
f o r h=0: l a g s

gamma(h+1)=(data(1+h : end )−mx) ∗( data ( 1 : end−h)−mx) ’/n ;
end
ac f=gamma/gamma(1) ;

The result is shown in Figure 2.3. We see that ρ̂(h) displays a periodic behaviour - the peaks at
lag h are similar to the peaks at lag h − 4. This is often evidence of the presence of a so-called
seasonal component, something that will be discussed in Section 2.5. We also note that the bounds
±1.96/

√
n have been included in the figure, something that is explained below.
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Figure 2.3: Sample autocorrelation function for the H&M data of Example 2.1.2.

The first application of the estimators introduced above is in the context of hypothesis testing.
The first thing that we do when giving a data set is to check if there is any temporal structure to
it, i.e., if we believe that it is something other than iid noise. If now Y = (Y1, . . . , Yn) is a sequence
of iid random variables with finite variance, then the sample autocorrelations ρ̂(h), h = 1, 2, 3, . . .
for sufficiently large n approximately iid and N (0, n−1) distributed. So if we are given a data set
(y1, . . . , yn), an informal hypothesis test is to check if 95% of the computed values of ρ̂ should fall
between the bounds ±1.96/

√
n if the data set is a realization of Y . Otherwise we can reject the

null hypothesis of Y being iid noise.

The same reasoning is behind the following hypothesis tests that we introduce to check if there
is any temporal structure to the data we have at hand. More details on the concept of hypothesis
testing can be found in Section 1.2 if the reader is not familiar with ideas.

If (Y1, . . . , Yn) is a sequence of iid random variables with finite variance, then one can show
that the test statistic

λ := n

h∑
i=1

ρ̂(i)2.

is approximately χ2
h distributed, i.e., chi-squared distributed with h degrees of freedom. This

forms the basis of the Portmanteau test.

Method 2.3.4 (Portmanteau test, Box–Pierce test). We have

H0 :Y ∼ IID(µ, σ2),
H1 :Y � IID(µ, σ2).
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and the test statistic

λ := n

h∑
i=1

ρ̂(i)2.

The null hypothesis is rejected at the α-level, with α ∈ (0, 1), if λ > χ2
1−α,h, where χ2

1−α,h denotes
the 1− α-quantile of the χ2 distribution with h degrees of freedom.

This classical test, which originates to Box and Pierce in 1970, has been modified by Ljung
and Box in 1978 and it has been shown that it performs better especially also for small sample
sizes (of less than 100 elements). In what follows the modified test statistic is given.
Method 2.3.5 (Ljung–Box test). This test is a modification of the Portmanteau test. Use instead
the test statistic

λ := n(n+ 2)
h∑
i=1

ρ̂(i)2

n− i
, (2.1)

which is asymptotically χ2
h-distributed for iid random variables. Use the same rejection regions as

in the Portmanteau test 2.3.4.
Example 2.3.6. Let us revisit the data from Example 2.1.2, i.e., the set (xt, t = 1, . . . , 42) of
quarterly earnings of H&M. We apply the Ljung–Box test (Method 2.3.5) with h = 4 and α = 0.05
to this data set to see whether it is likely that the earnings are a realization of iid noise. Recall
that the sample autocorrelation function was computed in Example 2.1.2. The test statistic (2.1)
is found to be 38.87 which is much greater than the critical value χ2

0.95,4 = 9.49. Therefore we
reject the null hypothesis of x being a realization of X ∼ IID(µ, σ2) at the 5% level, something
that is not surprising given Figure 2.1.

Some care has to be taken when applying these tests to financial time series. In many contexts,
the tests have low power, i.e., there is a large probability that they fail to reject the null hypothesis
when the alternative hypothesis is true. This is illustrated in the next example.
Example 2.3.7. In Figure 2.4(a) we plot x = (xt, t = 1, . . . , 205), monthly observations of
the Australian Trade Weighted Index (ATWI), a weighted sum of exchange rates between the
Australian dollar and other currencies from January 1978 to January 1995. In Figure 2.4(b)
we show the corresponding log-returns y = (yt, t = 1, . . . , 204) with yt = log(yt+1) − log(yt)
and in Figure 2.4(c) the sample autocorrelation function of these. We again apply the Ljung–
Box test to y, now with h = 20 and α = 0.05. The test statistic (2.1) is found to be 24.37
which is smaller than the critical value χ2

0.95,20 = 31.41. From this result we have no reason to
reject the null hypothesis that y is the realization of Y ∼ IID(µ, σ2) for some µ, σ2. However, if
(Yt, t = 1, . . . , 204) is a sequence of iid random variables, then so are (|Yt|)204

t=1. Therefore, if the
power of the Ljung–Box test were big, we would expect H0 to not be rejected if we applied it to
the time series (|yt|, t = 1, . . . , 204). In Figure 2.4(d) we plot the sample ACF of this series. If we
now calculate (2.1) again, we find it to be 84.25, which means that we decidedly reject the claim
that the data is iid at the 5% level.

More tests like the turning point test, the difference sign test, and the rank test are available
but not treated in these lecture notes. For those the reader is referred to [6, Section 1.6]. As the
example above illustrates, it is usually a good idea to apply a couple of transformations to the
data when testing for iid, so that we do not fail to reject the null hypothesis by mistake.

2.4 Forecasting stationary time series

The goal of forecasting a stationary time series with known mean µ and autocovariance function γ
is to predict (Xn+h, h > 0) in terms of (Xt, t = 1, . . . , n). We will find best predictors in the sense
of minimal mean squared errors. To that end, let us start with the necessary definitions.
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(a) Monthly observations of the ATWI.
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(b) Log-returns of the ATWI.
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(c) Sample ACF of the log-returns.
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(d) Sample ACF of absolute log-returns.

Figure 2.4: Observations and sample ACF of the ATWI data.

Definition 2.4.1. Let X and Y be random variables and let Y be an approximation of X. The
mean squared error of Y is defined by

MSE(Y,X) := E((Y −X)2).

Note that the mean squared error is one (very popular) way to measure the error of a prediction
and that one could think of many other “measures”. This choice of error measure influences
essentially the following analysis and definition of best. Here we only consider forecasting as
minimization of the mean squared error, since its theoretical properties lead to easy-implementable
algorithms.

Definition 2.4.2. Let (Xt, t ∈ Z) be a time series with Var(Xt) < ∞ for all t ∈ Z and Xn :=
(Xt1 , . . . , Xtn) a collection of random variables of the time series at n different times. Then the
function of Xn denoted by bt(Xn) is called a best predictor of Xt for some t ∈ Z, if it minimizes
the mean squared error, i.e.,

bt(Xn) := arg min
g(Xn)

MSE(g(Xn), Xt) = arg min
g(Xn)

E((g(Xn)−Xt)2),

where the minimum is taken over all measurable functions g : Rn → R.

In the following proposition we show that a best predictor exists theoretically and that it is
unique.
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Proposition 2.4.3. Let (Xt, t ∈ Z) be a time series with Var(Xt) < ∞ for all t ∈ Z and
Xn := (Xt1 , . . . , Xtn) a collection of random variables of the time series at n different times.
Then the best predictor of Xt for some t ∈ Z is the conditional expectation of Xt given Xn, i.e.,

bt(Xn) = E(Xt|Xn).

Proof. To prove that the conditional expectation is a best predictor of Xt, let us first observe that

E((g(Xn)−Xt)2) = E((g(Xn)− E(Xt|Xn) + E(Xt|Xn)−Xt)2)
= E((g(Xn)− E(Xt|Xn))2) + E((E(Xt|Xn)−Xt)2)

+ 2E((g(Xn)− E(Xt|Xn))(E(Xt|Xn)−Xt)).

We show next that the last term is equal to zero. To do this, we use the properties of the
conditional expectation. We obtain by Property (ii) and since g(Xn) and E(Xt|Xn) are both
measurable functions of Xn with Property (v) that

E((g(Xn)− E(Xt|Xn))(E(Xt|Xn)−Xt)) = E(E((g(Xn)− E(Xt|Xn))(E(Xt|Xn)−Xt)|Xn))
= E((g(Xn)− E(Xt|Xn))E(E(Xt|Xn)−Xt|Xn)).

Next the linearity of the conditional expectation Property (vi) implies together with the measur-
ability of E(Xt|Xn) that

E(E(Xt|Xn)−Xt|Xn) = E(E(Xt|Xn)|Xn)− E(Xt|Xn) = E(Xt|Xn)− E(Xt|Xn) = 0.

Putting these results together we have just shown that

E((g(Xn)− E(Xt|Xn))(E(Xt|Xn)−Xt)) = 0.

Therefore we have transformed our minimization problem to

min
g(Xn)

E((g(Xn)−Xt)2) = min
g(Xn)

(
E((g(Xn)− E(Xt|Xn))2) + E((E(Xt|Xn)−Xt)2)

)
= E((E(Xt|Xn)−Xt)2) + min

g(Xn)
E((g(Xn)− E(Xt|Xn))2).

Due to the positivity of squares, it is clear that

min
g(Xn)

E((g(Xn)−Xt)2) ≥ E(E(Xt|Xn)−Xt)2).

By choosing g(Xn) := E(Xt|Xn) we therefore obtain a minimum, which finishes the proof for the
existence of a minimum.

Uniqueness (in P -a.s. sense) follows since the minimum in the previous computation is just
attained if

E((g(Xn)− E(Xt|Xn))2) = 0,

i.e., if g(Xn) = E(Xt|Xn) in mean square and therefore also P -almost surely by Chebyshev’s
inequality (1.1).

We have just seen that the conditional expectation is the best predictor with respect to the
mean squared error. It remains to see how we compute its value in practice if we are given a
finite set of observations, e.g., of an asset, that we want to use to predict future values as accurate
as possible. Since the conditional expectation is not necessarily linear and computable in closed
form, we restrict ourselves next to linear predictors.
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Definition 2.4.4. Let (Xt, t ∈ Z) be a time series with Var(Xt) < ∞ for all t ∈ Z and Xn :=
(Xt1 , . . . , Xtn) a collection of random variables of the time series at n different times. Then the
linear function of 1 and Xn denoted by blt(Xn) is called a best linear predictor of Xt for some
t ∈ Z if it minimizes the mean squared error, i.e.,

blt(Xn) := arg min
g(Xn)

MSE(g(Xn), Xt) = arg min
g(Xn)

E((g(Xn)−Xt)2),

where the minimum is taken over all linear functions g of 1 and Xn, i.e., for all functions g such
that there exist a0, . . . , an ∈ R such that g(Xn) := a0 + a1Xtn + a2Xtn−1 + · · ·+ anXt1 .

Note that when Xn := (X1, . . . , Xn), the authors of [6] usually denote bln+h(Xn) by PnXn+h

and bln+1(Xn) by X̂n+1.
Let us now derive the coefficients (ai, i = 0, . . . , n) explicitly, which automatically also shows

the existence of the minimum. From calculus we know that we obtain an extremum of a (sufficiently
smooth) function by differentiation. Therefore set

S(a) := E((a0 + a1Xtn + · · ·+ anXt1 −Xt)2)

with a = (a0, . . . , an), which is a positive and quadratic function in terms of the coefficients and
bounded from below by zero. Therefore at least one minimum exists. To find it explicitly, we
compute

∂S(a)
∂a0

= 2a0 + 2E(a1Xtn + · · ·+ anXt1 −Xt). (2.2)

as well as, for j = 1, . . . , n,
∂S(a)
∂aj

= 2E(Xtn+1−j (a0 + a1Xtn + · · ·+ anXt1 −Xt)). (2.3)

By setting these equations equal to zero, we derive from (2.2) that

E(Xt − (a0 + a1Xtn + · · ·+ anXt1)) = E(Xt − blt(Xn)) = 0 (2.4)

and from (2.3)

E
(
(Xt − (a0 + a1Xtn + · · ·+ anXt1))Xtn+1−j

)
= E

((
Xt − blt(Xn)

)
Xtn+1−j

)
= 0 (2.5)

for j = 1, . . . , n.

In fact, these equations determine the predictor uniquely. To see this, let (a(1)
j , j = 0, . . . , n)

and (a(2)
j , j = 0, . . . , n) be two different solutions and denote by Z the difference between the two

resulting predictors, i.e.,

Z := a
(1)
0 − a

(2)
0 + (a(1)

1 − a
(2)
1 )Xtn + (a(1)

2 − a
(2)
2 )Xtn−1 + · · ·+ (a(1)

n − a(2)
n )Xt1 .

Then
E(Z) = 0 + E(Xt)− (0 + E(Xt)) = 0

by (2.4) and
E(ZXtn+1−j ) = 0

for all j = 1, . . . , n by (2.5), which implies that

E(Z2) = E(Z(a(1)
0 − a

(2)
0 + (a(1)

1 − a
(2)
1 )Xtn + (a(1)

2 − a
(2)
2 )Xtn−1 + · · ·+ (a(1)

n − a(2)
n )Xt1))

= (a(1)
0 − a

(2)
0 )E(Z)

= 0.

Therefore the mean squared error of the difference is zero and the predictors are (P -almost surely)
the same.

In conclusion we have shown the following proposition:
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Proposition 2.4.5. Let (Xt, t ∈ Z) be a time series with Var(Xt) < ∞ for all t ∈ Z and
Xn := (Xt1 , . . . , Xtn) a collection of random variables of the time series at n different times.
Then the best linear predictor of Xt is given by

blt(Xn) = a0 + a1Xtn + a2Xtn−1 + · · ·+ anXt1 ,

where the coefficients (ai, i = 0, . . . , n) are determined by the linear equations

(i) E(Xt − blt(Xn)) = 0,

(ii) E(Xtj (Xt − blt(Xn))) = 0 for all j = 1, . . . , n.

An important property of the best linear predictor of a Gaussian time series is that it coincides
with the conditional expectation (see, e.g., [4, Exercise 2.20]). This means due to Proposition 2.4.3
that under this assumption we obtain blt(Xn) = bt(Xn) = E(Xt|Xn).

If (Xt, t ∈ Z) is stationary with mean µ and autocovariance function γ, then it is an easy
exercise to check that (2.4) simplifies to

a0 = µ

(
1−

n∑
i=1

ai

)
, (2.6)

which implies, together with (2.5), that, for j = 1, 2, . . . , n,

a1γ(tn − tn+1−j) + · · ·+ ajγ(0) + · · ·+ anγ(t1 − tn+1−j) = γ(t− tn+1−j).

The following corollary expresses these facts in matrix notation.

Corollary 2.4.6. Let X = (Xt, t ∈ Z) and Xn be as in Proposition 2.4.5 and assume in addition
that X is stationary with mean µ and autocovariance function γ. Then the coefficients (ai, i =
0, . . . , n) of blt(Xn) are determined by the linear equations

a0 = µ

(
1−

n∑
i=1

ai

)

and
Γn(a1, . . . , an)′ = (γ(t− tn), . . . , γ(t− t1))′ (2.7)

with
Γn = (γ(tn+1−j − tn+1−i))ni,j=1.

Moreover,

MSE(blt(Xn), Xt) = E((blt(Xn)−Xt)2) = γ(0)− (a1, . . . , an)(γ(t− tn), . . . , γ(t− t1))′.

Proof. The first two claims follows directly by the previous proposition. To compute the mean
squared error we observe that

MSE(blt(Xn), Xt) = 2a0 E(a0 + a1Xtn + · · ·+ anXt1 −Xt)− a2
0

+
n∑
i=1

ai

n∑
j=1

E(Xtn+1−iXtn+1−j )aj − 2
n∑
i=1

ai E(Xtn+1−iXt) + E(X2
t )

= 0− a2
0 + (a1, . . . , an)(Γn(a1, . . . , an)′ − 2(γ(t− tn), . . . , γ(t− t1))′)

+ µ2
n∑

i,j=1
aiaj − 2µ2

n∑
i=1

ai + γ(0) + µ2.
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Due to the first two claims we derive that

(a1, . . . , an)(Γn(a1, . . . , an)′−2(γ(t− tn), . . . , γ(t− t1))′) = −(a1, . . . , an)(γ(t− tn), . . . , γ(t− t1))′.

Additionally we obtain that

µ2
n∑

i,j=1
aiaj − 2µ2

n∑
i=1

ai + µ2 = µ2

 n∑
i=1

ai

( n∑
j=1

aj − 1
)

+ 1−
n∑
i=1

ai

 = a0µ

(
−

n∑
i=1

ai + 1
)

= a2
0.

Therefore we conclude that

MSE(blt(Xn), Xt) = γ(0)− (a1, . . . , an)(γ(t− tn), . . . , γ(t− t1))′.

Remark 2.4.7. Note that (2.7) holds with the autocovariance function γ replaced by the autocor-
relation function ρ, since this corresponds to dividing both sides of the equation with γ(0).
Remark 2.4.8. In the case that Xn := (X1, . . . , Xn) the equations to derive the coefficients
(a0, . . . , an) for the prediction of Xn+h (i.e., the coefficients in bln+h(Xn)) simplify to

a0 = µ

(
1−

n∑
i=1

ai

)

and
(γ(i− j))ni,j=1(a1, . . . , an)′ = (γ(h), . . . , γ(h+ n− 1))′.

Observe that Xn just determines the length of the used history but not necessarily the absolute
time. In other words, under stationarity, you will obtain the same coefficients (a0, a1, . . . , an) in
your best linear predictor blt+n+h((Xt+1, . . . , Xt+n)) for all t ∈ Z.

Note that for a stationary time series, the coefficients (a1, . . . , an) in Corollary 2.4.6 only
depend on the ACVF γ while a0 only depends on (a1, . . . , an) and µ. This means that only a0 will
change if we consider different µ. Therefore, considering only zero-mean stationary time series is
not a restriction in the context of forecasting.

To see an application of the theory, let us now treat two zero-mean stationary examples.

Example 2.4.9 (AR(1)). Let us assume that the stationary time series model is given by

Xt − φ1Xt−1 = Zt,

where (Zt, t ∈ Z) is a WN(0, σ2) process and |φ1| < 1. This model will be called an AR(1)
model in the framework of Chapter 3. Assuming that Zt is uncorrelated with Xt−j for j > 0,
something that follows from the inequality |φ1| < 1 as we will see in Chapter 3, we first compute
the autocovariance function which is given by

γX(0) = E(X2
t ) = E((Zt + φ1Xt−1)2) = σ2 + φ2

1γX(0),

since E(Xt) = 0 and E(ZtXt−1) = E(Zt)E(Xt−1) = 0 by assumption. This implies that

γX(0) = σ2

1− φ2
1

and
γX(h) = E(XtXt+h) = E(Xt(Zt+h + φ1Xt+h−1)) = φ1γX(h− 1)
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with h > 0 for the same reasons as before. Solving the recursion leads to

γX(h) = σ2φ
|h|
1

1− φ2
1
.

The best linear predictor bln+1(Xn) with respect to Xn := (X1, . . . , Xn) is then (noting that
the process has zero mean which implies a0 = 0) by Corollary 2.4.6

∑n
i=1 aiXn+1−i, where the

coefficients ai are determined by the solution of the system of linear equations
1 φ1 φ2

1 · · · φn−1
1

φ1 1 φ1 · · · φn−2
1

...
...

...
. . .

...
φn−1

1 φn−2
1 φn−3

1 · · · 1



a1
a2
...
an

 =


φ1
φ2

1
...
φn1

 .

It is clear that a1 = φ1 and ai = 0, i = 2, . . . , n, solves the system of linear equations and therefore
that the best linear predictor of Xn+1 is

bln+1(Xn) = φ1Xn

with mean squared error σ2, which should be computed in an exercise.

Example 2.4.10 (MA(1)). Let us assume that the stationary time series model is given by

Xt = Zt + θ1Zt−1,

where (Zt, t ∈ Z) is a WN(0, σ2) process. This model will be called a MA(1) model in the
framework of Chapter 3.

It is clear that the mean of the series is µ = 0. Furthermore we get

γX(h) = Cov(Xt, Xt+h) = E(XtXt+h)
= E(ZtZt+h) + θ1 E(ZtZt+h−1) + θ1 E(Zt−1Zt+h) + θ2

1 E(Zt−1Zt+h−1)

so that, since Z ∼WN(0, σ2),
γX(0) = (1 + θ2

1)σ2,

γX(1) = γX(−1) = θ1σ
2

as well as γX(h) = 0 for all |h| > 1.

The best linear predictor bln+1(Xn) with respect to Xn := (X1, . . . , Xn) is by Proposition 2.4.5∑n
i=1 aiXn+1−i. Note that a0 = 0 due to the fact that the series has zero mean. We find the

coefficients ai with Proposition 2.4.5. The equation

E
(

(Xn+1 −
n∑
i=1

aiXn+1−i)Xn

)
= 0

simplifies by use of γX to
θ1 = (1 + θ2

1)a1 + θ1a2.

Similarly for 2 ≤ j ≤ n− 1 we obtain

0 = θ1aj−1 + (1 + θ2
1)aj + θ1aj+1

and also
0 = θ1an−1 + (1 + θ2

1)an.
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It is clear that these difference equations uniquely defines the coefficients a1, . . . , an and they can
in fact for 1 ≤ j ≤ n− 1 be shown (cf. [6, Problem 3.12]) to be

aj = 1 + θ2
1 + . . .+ θ

2(n−j)
1

(−θ1)(n−j) an

with
an = −(−θ1)n

1 + θ2
1 + . . .+ θ2n

1
.

Given these coefficients, we can use Corollary 2.4.6 to compute the mean squared error

E((bln+1(Xn)−Xn+1)2) = γ(0)− (a1, . . . , an)(γX(1), . . . , γX(n))′

= (1 + θ2
1)σ2 − a1θ1σ

2,

which finishes this example.

Example 2.4.11 (AR(1) with missing value). Let us consider the AR(1) model from Exam-
ple 2.4.9 again. Assume that we have observed X1 and X3 but that we are missing X2. Then the
best linear predictor bl2((X1, X3)) of X2 is a1X3 + a2X1 by Corollary 2.3.6, where the coefficients
a1 and a2 solve the system of linear equations(

1 φ2
1

φ2
1 1

)(
a1
a2

)
=
(
φ1
φ1

)
.

An easy computation shows that
a1 = a2 = φ1

1 + φ2
1

is a solution and therefore that the best linear predictor is

bl2((X1, X3)) = φ1

1 + φ2
1

(X3 +X1)

with mean squared error σ2/(1 + φ2
1).

We have stated in Proposition 2.4.5 that there exists a unique solution that is the best linear
predictor, but this involves solving a system of n linear equations. For large n this might be difficult
and especially time consuming. To save computational time, we will introduce two algorithms in
what follows that use a recursive approach, i.e., bln+1(Xn) is used to compute bln+2(Xn+1) in a
cheaper way, where Xn := (X1, . . . , Xn) for all n ∈ N.

To turn the algorithms into something readable we adapt the notation for changing sizes of
matrices. In what follows let the best linear one-step estimator be given by

bln+1(Xn) =
n∑
i=1

aniXn+1−i,

where ani := ai in terms of the previously used notation, i.e., the coefficients are determined by
the solution of the system of linear equations given in Proposition 2.4.5.

One way to compute the estimators more efficiently all at once is the Durbin–Levinson algo-
rithm, which is introduced next. For a proof the reader is referred to [6, Section 2.5.3]. For this
algorithm to work, one needs that the coefficients ani are uniquely determined at each time n,
i.e., that Γn = (γ(i − j))ni,j=1 is non-singular for every n. A sufficient condition for this is the
requirement that γ(0) > 0 and γ(n) → 0 as n → ∞, which holds for many time series used in
applications. For a proof the reader is referred to [4, Proposition 5.1.1].
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Method 2.4.12 (Durbin–Levinson algorithm). Compute the coefficients an1, . . . , ann recursively
from the equations

ann :=
(
γ(n)−

n−1∑
i=1

a(n−1)iγ(n− i)
)
v−1
n−1, an1

...
an(n−1)

 :=

 a(n−1)1
...

a(n−1)(n−1)

− ann
a(n−1)(n−1)

...
a(n−1)1

 ,

and
vn := vn−1(1− a2

nn),

where a11 = γ(1)/γ(0) and v0 := γ(0).

Observe that vn computes the mean squared error of bln+1(Xn), which can be seen from the
proof of the algorithm.

A second algorithm is the so-called innovations algorithm, which can be applied to all time
series with finite second moments, i.e., stationarity is not a requirement. Therefore let us consider
the more general framework that (Xt, t ∈ Z) is a time series with mean zero, E(X2

t ) < +∞ for all
t ∈ Z, and covariance

Cov(Xi, Xj) = E(XiXj) = κ(i, j).

For convenience let us use the following notation for the best linear one-step predictors

X̂n :=
{

0 for n = 1,
bln(Xn−1) for n > 1,

and the mean squared errors

vn := MSE(X̂n+1, Xn+1) = E((X̂n+1 −Xn+1)2).

Lemma 2.4.13. There exist unique coefficients (θij, 1 ≤ j ≤ i ≤ n) such that the best linear
predictors satisfy

X̂n+1 =
{

0 for n = 0,∑n
j=1 θnj(Xn+1−j − X̂n+1−j) for n ≥ 1.

Proof. Observe first that we can change the order of summation to

X̂n+1 =
n∑
j=1

θn(n+1−j)(Xj − X̂j),

which is the formula that we are going to show. Furthermore, the best linear predictors satisfy
with the notation of the Durbin–Levinson algorithm that

X̂n+1 =
n∑
j=1

an(n+1−j)Xj .

Using these representations, we prove the claim by induction.

We first obtain for n = 1 that

X̂2 = a11X1 = a11(X1 − X̂1),

since X̂1 = 0 by definition. Setting θ11 := a11, we establish the base case.



2.4. FORECASTING STATIONARY TIME SERIES 29

Let us next assume that the claim holds for j = 1, . . . , n − 1 and prove the claim for n. We
observe with the definition of the best linear predictor that

X̂n+1 =
n∑
j=1

an(n+1−j)(Xj − X̂j) +
n∑
j=1

an(n+1−j)X̂j

and derive for the second term that

n∑
j=1

an(n+1−j)X̂j =
n∑
j=1

an(n+1−j)

j−1∑
i=1

θ(j−1)(j−i)(Xi − X̂i)

by the induction hypothesis. If we change the order of summation and change the roles of i and
j in a second step, the last equation can be rewritten to

n∑
j=1

an(n+1−j)X̂j =
n−1∑
i=1

( n∑
j=i+1

an(n+1−j)θ(j−1)(j−i)

)
(Xi − X̂i)

=
n−1∑
j=1

( n∑
i=j+1

an(n+1−i)θ(i−1)(i−j)

)
(Xj − X̂j).

Plugging this result in the initial computation, we conclude that

X̂n+1 =
n∑
j=1

(
an(n+1−j) +

n∑
i=j+1

an(n+1−i)θ(i−1)(i−j)

)
(Xj − X̂j),

and therefore we set

θn(n+1−j) := an(n+1−j) +
n∑

i=j+1
an(n+1−i)θ(i−1)(i−j).

Uniqueness is a consequence of [6, Problem 2.20], which we leave for the reader to confirm.

The innovations algorithm generates these coefficients and the mean squared errors vj =
MSE(X̂j+1, Xj+1) recursively.

Method 2.4.14 (Innovations algorithm). Compute the coefficients θn1, . . . , θnn recursively from
the equations

v0 := κ(1, 1)

and

θn(n−k) := v−1
k

κ(n+ 1, k + 1)−
k−1∑
j=0

θk(k−j)θn(n−j)vj


for 0 ≤ k < n and

vn := κ(n+ 1, n+ 1)−
n−1∑
j=0

θ2
n(n−j)vj .

Proof. The statement about v0 is true by definition. Note next that by [6, Problem 2.20], we have
for i, j ∈ {1, . . . , n+ 1},

E((Xi − X̂i)(Xj − X̂j)) = 0 (2.8)
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as long as i 6= j (this is a fairly straightforward consequence of Proposition 2.4.5). Therefore, we
obtain that for 0 ≤ k < n,

E(X̂n+1(Xk+1 − X̂k+1)) = E

 n∑
j=1

θnj(Xn+1−j − X̂n+1−j)(Xk+1 − X̂k+1)


=

n∑
j=1

θnj E((Xn+1−j − X̂n+1−j)(Xk+1 − X̂k+1)) = θn(n−k)vk

(2.9)

where we expanded X̂n+1 using Lemma 2.4.13. By (2.8) we also have

E(Xn+1(Xk+1 − X̂k+1)) = E((Xn+1 − X̂n+1)(Xk+1 − X̂k+1)) + E(X̂n+1(Xk+1 − X̂k+1))
= E(X̂n+1(Xk+1 − X̂k+1)) = θn(n−k)vk,

(2.10)

using (2.9) in the last step. Therefore, by Lemma 2.4.13 again,

θn(n−k) = v−1
k E(Xn+1(Xk+1 − X̂k+1))

= v−1
k

E(Xn+1Xk+1)−
k∑
j=1

θkj E(Xn+1(Xk+1−j − X̂k+1−j))


= v−1

k

κ(n+ 1, k + 1)−
k∑
j=1

θkjθn(n−(k−j))vk−j


= v−1

k

κ(n+ 1, k + 1)−
k−1∑
j=0

θk(k−j)θn(n−j)vj


so we have derived the expression for θn(n−k). Note that we used (2.10) twice, once in the
first equality and once in the third. To find the expression for vn, we note that by (2.8) and
Lemma 2.4.13,

E(Xn+1X̂n+1) = E(X̂2
n+1) + E((Xn+1 − X̂n+1)X̂n+1)

= E(X̂2
n+1) +

n∑
j=1

θnj E((Xn+1 − X̂n+1)(Xn+1−j − X̂n+1−j)) = E(X̂2
n+1)

so that

vn = E((Xn+1 − X̂n+1)2) = E(X2
n+1)− 2E(Xn+1X̂n+1) + E(X̂2

n+1) = E(X2
n+1)− E(X̂2

n+1)

= κ(n+ 1, n+ 1)−
n∑
j=1

θ2
njvn−j = κ(n+ 1, n+ 1)−

n−1∑
j=0

θ2
n(n−j)vj ,

where we again used (2.8) in the fourth equality.

Note that we solve for θ and v in the order v0, θ11, v1, θ22, θ21, v2, θ33, θ32, θ31, v3, . . ..

2.5 Trend and seasonality

So far we have only discussed stationary time series. This allows us to estimate statistical prop-
erties and make forecasts but typically data requires transformations before it can be considered
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stationary. In this chapter we will assume that the data is non-stationary in a particular way,
namely that it is a realization of the stochastic process X which can be split into

Xt = mt + st + Yt. (2.11)

This is called the classical decomposition model. Here m : Z → R is a slowly changing function
called the trend component, s : Z→ R is a function with known period d referred to as the seasonal
component, i.e., st+d = st and

∑d
j=1 sj = 0, and Y = (Yt, t ∈ Z) is a stationary time series with

mean zero.

The trend component is the most important component for financial purposes – when we
model returns on an investment as a time series we hope that we make money on average, and
that therefore the time series has a positive trend. In terms of modeling stock returns the seasonal
component is less relevant—seasonality in stock returns allows for arbitrage—but it is important
in the modeling of business data such as retail sales figures.

Determining if a time series X contains a trend component and or a seasonal component can be
a difficult task. Visual representations of the data in the form of plots of the raw data or the ACF
can be useful. For example, a plot of the ATWI time series of Example 2.3.7 (Figure 2.4(a)) sug-
gests a clear negative trend for this data. A time series with a trend component has a sample ACF
that is decaying very slowly, see Figure 2.5(a) for the sample ACF of the ATWI data. Similarly,
a seasonal component can be seen by the sample ACF displaying periodicity, see Example 2.1.2.
A priori knowledge can also be used to decide on whether to include trend and seasonality or not.
Another possibility is to let models with and without such components compete by forecasting
known data and using the result to determine whether to include them or not. Finally spectral
methods (see [6, Chapter 4]) can be used to detect seasonality, but this is outside the scope of
this course. We will assume that the period d is known. In practice we have to guess d, which
could for example be done by choosing “reasonable” periods (for example, a seasonal component
with period 12 for monthly sales by a clothing company) or by inspection of the raw data plot
and the sample ACF as described above. Typical periods are 24 hours per day, 7 days per week,
12 months per year, or 4 quarters per year.

Once it has been decided that the time series has a trend and/or a seasonal component,
there are two main approaches to obtaining the stationary process Y from (2.11): estimation
and differencing. We will cover the former approach first. In all methods below, let Xn :=
(X1, . . . , Xn), n ∈ N, denote the finite number of random variables from the time series with
available observed data.

2.5.1 Estimation of trend and seasonal components

In what follows we first introduce two methods for trend estimation before giving two methods
that estimate both trend and seasonality. In the first two, we assume that the seasonal component
is zero, i.e., that st = 0 for all t ∈ Z.

Method 2.5.1 (Estimation of trend by a moving average filter). Let q ∈ N with 2q < n be fixed.
Compute for all t = q + 1, . . . , n− q the two-sided moving average

Wt := (2q + 1)−1
q∑

j=−q
Xt−j

of X. Then by the definition of X, it holds that

Wt = (2q + 1)−1
q∑

j=−q
mt−j + (2q + 1)−1

q∑
j=−q

Yt−j ≈ mt,
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(a) ACF of raw ATWI data.
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(b) Moving average trends.
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(c) Exponential smoothing trends.
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(d) Linear least squares trends.

Figure 2.5: Sample ACF and estimated trends of the ATWI data.

if we assume that q is sufficiently small such that (ms, s = t− q, . . . , t+ q) is approximately linear
and that the average of the error terms (Ys, s = t − q, . . . , t + q) is close to zero. The details for
the validity of the assumptions are left to the reader as an exercise.

The moving average therefore leads to the estimator

m̂t := (2q + 1)−1
q∑

j=−q
Xt−j

for q+1 ≤ t ≤ n−q. Observe that this method does not lead to estimates of mt for all t = 1, . . . , n
but only at the “inner” time points, where the definition of “inner” depends on the choice of q. In
Figure 2.5(b) we apply this method with q = 3 and q = 24 to the ATWI data.

Method 2.5.2 (Estimation of trend by exponential smoothing). For any fixed α ∈ [0, 1] define
the one-sided moving averages (m̂t, t = 1, . . . , n) by the recursion

m̂t := αXt + (1− α)m̂t−1

for t = 2, . . . , n and
m̂1 := X1.

The method is referred to as exponential smoothing since the recursion implies for t ≥ 2 that

m̂t =
t−2∑
j=0

α(1− α)jXt−j + (1− α)t−1X1,
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which is a weighted moving average of X with exponentially decreasing weights. In Figure 2.5(c)
we apply this method with α = 0.05 and α = 0.25 to the ATWI data.

In the next two methods, we estimate trend and seasonality in parallel.

Method 2.5.3 (Estimation of trend and seasonality by linear least squares). Assume that the
trend m is given by the polynomial

mt :=
q∑
j=0

ajt
j

for t ∈ Z and some q ∈ N. Let the seasonal component s with known period d be given by the
sinusoid

st :=
p∑
k=0

bk cos(2πλkt/d) + ck sin(2πλkt/d)

for t ∈ Z, p ∈ N and some known coefficients (λj , j = 1, . . . , p) ⊂ N. The unknown coefficients
(aj , j = 1, . . . , q), (bk, k = 1, . . . , p) and (ck, k = 1, . . . , p) are obtained by the least square mini-
mization

arg min
aj ,bk,ck

n∑
t=1

(xt −mt − st)2,

where (xt, t = 1, . . . , n) is the series of observed data. If the design matrix

C :=



1 · · · 1q cos(2πλ1/d) · · · cos(2πλp/d) sin(2πλ1/d) · · · sin(2πλp/d)
...

1 · · · tq cos(2πλ1t/d) · · · cos(2πλpt/d) sin(2πλ1t/d) · · · sin(2πλpt/d)
...

1 · · · nq cos(2πλ1n/d) · · · cos(2πλpn/d) sin(2πλ1n/d) · · · sin(2πλpn/d)


has the property that C ′C is non-singular, then

∑n
t=1(xt−mt−st)2 has a unique minima given by

(â0, â1, . . . , âq, b̂1, . . . , b̂p, ĉ1, . . . , ĉp)′ = (C ′C)−1C ′x, where x = (x1, x2, . . . , xn)′. In Figure 2.5(d)
we apply this method to the ATWI data and fit a linear (q = 1) and a cubic trend (q = 3),
assuming no seasonal component.

Method 2.5.4 (Estimation of trend and seasonality by moving averages). Let us assume that
(for simplicity) the size of the observed data n covers a multiple of the period d, i.e., n/d ∈ N.
We start with the estimation of the trend by applying a moving average filter that eliminates the
seasonal component and dampens the noise. For an even period d := 2q we set

m̂t := d−1(2−1xt−q + xt−q+1 + · · ·+ xt+q−1 + 2−1xt+q)

for q < t ≤ n− q. Similarly we set for an odd period d := 2q + 1

m̂t := d−1
q∑

j=−q
xt−j .

To estimate the seasonal component, we average over the trend eliminated series elements with
the same seasonal component, i.e., we set for k = 1, . . . , d and q < k + jd ≤ n− q

wk := |{j ∈ N0, q < k + jd ≤ n− q}|−1
∑

q<k+jd≤n−q
(xk+jd − m̂k+jd),

where |A| denotes the size of a finite set A, i.e., its number of elements. Note that we sum between
q + 1 and n− q since we have estimated mt at precisely these indices. To satisfy the condition of
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the model that
∑d
j=1 sj = 0, we have to modify the wk’s to obtain a valid seasonal component ŝ

by setting the components

ŝk := wk − d−1
d∑
j=1

wj

for k = 1, . . . , d and ŝk := ŝk−d for k > d.

Finally, we reestimate the trend by applying e.g., Method 2.5.3 to the deseasonalized series
(xt − ŝt, t = 1, . . . , n) to obtain a trend estimator in parametric form which is convenient for
prediction and simulation.

Example 2.5.5. We apply Method 2.5.4 to the data of Example 2.1.2. As we noted in Exam-
ple 2.3.3, there is evidence of a seasonal component with period d = 4. We also choose to fit a
linear trend to the data. The method is applied with the following MATLAB code:

% Input :
% data double vec , data .
% time double vec , time i n d i c e s
% per iod int , l ength o f per iod
%
% Output :
% season double vec , row vecto r o f season , l ength=length (DATA

)
% trend double vec , row vecto r o f c o e f f i c i e n t s o f trend ,

l ength=2
n=length ( data ) ;
%% Preest imat ion o f trend
q=f l o o r ( per iod /2) ;
p r e l t r end=ze ro s (1 , n−2∗q ) ;
i f ( q==per iod /2) % Even per iod

f o r i =1:n−2∗q
p r e l t r end ( i )=sum ( [ data ( i ) /2 , data ( i +1: i+2∗q−1) , data ( i+2∗q

) / 2 ] ) /2/q ;
end

e l s e % Odd per iod
f o r i =1:n−2∗q

p r e l t r end=mean( data ( i : i +2∗q ) ) ;
end

end

%% Estimation o f s e a s o n a l i t y
season=ze ro s (1 , per iod ) ;
f o r i =1: per iod

i f ( i<=q)
season ( i )=mean( data ( i+per iod : per iod : n−q )−pr e l t r end ( i+

per iod−q : per iod : end ) ) ;
e l s e

season ( i )=mean( data ( i : pe r iod : n−q )−pr e l t r end ( i−q : per iod :
end ) ) ;

end
end
season=season−mean( season ) ; % Sum to zero
season=repmat ( season , 1 , f l o o r (n/ per iod ) ) ;
season (n−mod(n , per iod )+1:n)=season ( 1 :mod(n , per iod ) ) ; % Extend

season to f u l l data s e t
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%% Reest imat ion o f l i n e a r trend by l e a s t square
deseasondata=data−season ;
X = ones (n , 2 ) ;
X( : , 2 ) = time ;
trend = X\deseasondata ’ ;

The estimated trend and seasonality m̂t+ŝt are shown along with the original data xt in Figure 2.6.
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Figure 2.6: The H&M data of Example 2.1.2 (stars) with an estimated linear trend and seasonal
component with period 4, m̂t + ŝt (line).

2.5.2 Elimination of trend and seasonal components by differencing

The former section deals with explicit estimation of s andm. This is useful for descriptive purposes,
to answer the question of what any trend or seasonal component of the time series under analysis
looks like. If one is only interested in modeling (and forecasting) it may suffice to eliminate them.
For this, the method of differencing is easy to implement and common in practice.

Define the difference operator ∇ by

∇Xt := Xt −Xt−1 = (1−B)Xt

for t ≥ 2, where B denotes the backward shift operator given by

BXt := Xt−1.



36 CHAPTER 2. STATIONARY TIME SERIES AND SEASONALITY

Powers of B are defined by

BjXt := Bj−1BXt = Bj−1Xt−1 = · · · = Xt−j

for j < t. Similarly we obtain
∇jXt = ∇∇j−1Xt

for j < t, e.g.,

∇2Xt = ∇(Xt −Xt−1) = ∇Xt −∇Xt−1 = Xt − 2Xt−1 +Xt−2.

We apply powers of ∇ to X in order to eliminate trend components. Suppose that the trend m
in (2.11) is given by the polynomial

mt :=
q∑
j=0

ajt
j

for some q < n. Then one shows in an exercise that

∇qmt = q! aq.

(Hint: Start with q = 1 and ∇mt.) If s = 0 in (2.11), we therefore have that

∇qXt = q! aq +∇qYt.

Since Y is assumed to be a stationary process with mean zero, one can show in an exercise that
the same holds for ∇qY . This implies that if s = 0, ∇qX is a mean q! aq, stationary process.

In order to deal with time series with a seasonal component s with period d, we introduce the
lag-d differencing operator ∇d. It is defined by

∇dXt := Xt −Xt−d = (1−Bd)Xt.

Applying this operator to the model, we obtain that

∇dXt = mt −mt−d + st − st−d + Yt − Yt−d = ∇dmt +∇dYt

due to the periodicity of s. One shows in an exercise that ∇dY is a stationary time series, which
implies that ∇dX is a stochastic process without seasonal component. The trend component ∇dm
is then eliminated with multiple applications of ∇ like above.

We end this section with a note on how to forecast a differenced time series. Suppose that we
have eliminated m and s from X = (Xt, t ∈ Z) by applying ∇N and ∇Md for some powers N and
M . Then, by what we have noted above and by expanding ∇N and ∇Md into powers of B, we see
that there are coefficients b1, . . . , bN+Md and a mean zero stationary process Ỹ = (Ỹt, t ∈ Z) such
that

Ỹt = ∇N∇Md Xt = (1−B)N (1−Bd)MXt =
N+Md∑
k=0

bkB
kXt =

N+Md∑
k=0

bkXt−k

for all t ∈ Z, where b0 := 1. Therefore, it holds in particular that

Xn+h = Ỹn+h −
N+Md∑
k=1

bkXn+h−k.

for some h, n ∈ N . Suppose now (by relabeling the indices of your data set if need be) that X is
observed at times −N−Md+1,−N−Md, . . . , n, n ∈ N so that Ỹ is observed at times 1, . . . , n and
let us write Xn+N+Md := (X−N−Md+1, . . . , Xn) and Ỹ n := (Ỹ1, . . . , Ỹn) for the sets of observed
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values of the time series. If we assume that the initial observations X−N−Md+1, . . . , X0 are all
uncorrelated with Ỹ n, then it can be shown that

b`n+h(Xn+N+Md) = b`n+h(Ỹ n)−
N+Md∑
k=1

bkb
`
n+h−k(Xn+N+Md). (2.12)

Since Ỹ is stationary, b`n+h(Ỹ n) can be computed using the methods of Section 2.4. This means
that (2.12) defines a recursive formula that allows us to compute forecasts ofXn+h by first comput-
ing b`n+1(Xn+N+Md), then b`n+2(Xn+N+Md) and so on. Note that b`n+h−k(Xn+N+Md) = Xn+h−k
if h ≤ k.
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CHAPTER 3
Linear time series models

In this chapter we consider linear time series models, where we focus mainly on ARMA models.
For those we discuss parameter estimation, order selection as well as forecasting methods. The
chapter is finished with an extension of the ARMA model to ARIMA models.

3.1 Linear processes

Before we introduce the specific class of ARMA models, let us consider the more general class of
linear processes and its properties. Let us assume that X = (Xt, t ∈ Z) is a stochastic process
in discrete time in what follows. We recall that we use stochastic process and time series as
synonyms.

Definition 3.1.1. A stochastic process X is called a linear process if it has the representation

Xt =
∑
j∈Z

ψjZt−j

for all t ∈ Z, where Z ∼WN(0, σ2) and (ψj , j ∈ Z) is a sequence of real numbers with
∑
j∈Z |ψj | <

+∞.

We remark that the summability condition
∑∞
j=−∞ |ψj | < +∞ ensures that the infinite sum

converges with probability one and in mean square, which is left as an exercise to the interested
reader.

We can rewrite the series in terms of the previously introduced backward shift operator B by

Xt = ψ(B)Zt,

where we define the operator ψ(B) by

ψ(B) :=
∑
j∈Z

ψjB
j .

This is used in the following proposition to characterize the properties of ψ(B)Y , where Y is
assumed to be stationary.

Proposition 3.1.2. Let Y be a stationary time series with mean zero and autocovariance func-
tion γY and let (ψj , j ∈ Z) be a real-valued sequence such that

∑
j∈Z |ψj | < +∞. Then the time

series X defined by
Xt := ψ(B)Yt

39
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for all t ∈ Z is stationary with mean zero and autocovariance function γX given by

γX(h) =
∑
j,k∈Z

ψjψkγY (h+ j − k)

for all h ∈ Z.

In the special case that Y = Z ∼ WN(0, σ2), i.e., that X is a linear process, it holds that the
autocovariance function γX is given by

γX(h) =
∑
j∈Z

ψjψh+jσ
2

for all h ∈ Z, where σ2 is the variance of the underlying white noise sequence.

Proof. We first observe that E(|Yt|) ≤ E(|Yt|2)1/2 = γY (0)1/2 by the Cauchy–Schwarz inequality
and therefore we may (by Fubini’s theorem) interchange sum and expectation

E(|Xt|) ≤
∑
j∈Z
|ψj |E(|Yt−j |) ≤

∑
j∈Z
|ψj |

 γY (0)1/2 < +∞.

This implies (by, e.g., Chebyshev’s inequality) that the series converges with probability one and
that X is well-defined.

Since
∑
j∈Z |ψj | < +∞ and Y is stationary with finite variance, we are allowed to interchange

the expectation and the sum to obtain for all t ∈ Z

E(Xt) = E(ψ(B)Yt) = E

∑
j∈Z

ψjYt−j

 =
∑
j∈Z

ψj E(Yt−j) = 0,

where we used in the last step that Y is stationary with mean zero.

With a similar argument we are allowed to compute the covariance for t, h ∈ Z

Cov(Xt, Xt+h) = E

∑
j,k∈Z

ψjYt−jψkYt+h−k

 =
∑
j,k∈Z

ψjψk E(Yt−jYt+h−k)

=
∑
j,k∈Z

ψjψkγY ((t+ h− k)− (t− j)) =
∑
j,k∈Z

ψjψkγY (h+ j − k),

which does not depend on t. For details we refer to [6, Example C.1.1]. Therefore X is stationary.

If Y is mean zero white noise with variance σ2, then the previous expression simplifies to

γX(h) =
∑
j,k∈Z

ψjψkγY (h+ j − k) =
∑
j∈Z

ψjψh+jσ
2,

since γY (h+ j − k) 6= 0 if and only if k = h+ j. This finishes the proof.

3.2 ARMA models

An important class of linear processes is the one given by ARMA models. To understand the
notation and the background, we first define autoregressive and moving average processes.
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Definition 3.2.1. A time series X is called an autoregressive process of order p or AR(p) process
if X is stationary and if for all t ∈ Z

Xt −
p∑
j=1

φjXt−j = Zt,

where Z ∼WN(0, σ2).

Definition 3.2.2. A time series X is called a moving average process of order q or MA(q) process
if X is stationary and if for all t ∈ Z

Xt = Zt +
q∑
j=1

θjZt−j ,

where Z ∼WN(0, σ2).

If we combine AR(p) and MA(q) processes, we end up with the following generalization to an
ARMA(p, q) process.

Definition 3.2.3. A time series X is an ARMA(p, q) process if X is stationary and if for all t ∈ Z

Xt −
p∑
j=1

φjXt−j = Zt +
q∑
j=1

θjZt−j , (3.1)

where Z ∼WN(0, σ2) and the polynomials (1−
∑p
j=1 φjz

j) and (1 +
∑q
j=1 θjz

j) have no common
zeros. Further a time series X is called an ARMA(p, q) process with mean µ if X − µ is an
ARMA(p, q) process.

To simplify the notation, we set

φ(z) := 1−
p∑
j=1

φjz
j

and

θ(z) := 1 +
q∑
j=1

θjz
j .

Then the recursive form of the ARMA(p, q) process can be rewritten as

φ(B)Xt = θ(B)Zt, (3.2)

where we recall that B denotes the backward shift operator.

Proposition 3.2.4 (Existence and uniqueness). A stationary solution X of Equation (3.1) exists
and is the unique stationary solution if and only if

φ(z) = 1−
p∑
j=1

φjz
j 6= 0

for all z ∈ C with |z| = 1.

Proof. We only prove that the condition on φ implies that a stationary solution exists. For
uniqueness, and for the fact that no solution exists if φ(z) = 0 for some z ∈ C with |z| = 1, the
reader is referred to [4, Chapter 3] and [4, Problem 4.28]. If φ(z) 6= 0 for all z ∈ C on the unit
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circle, then, by a fact from complex analysis (see, e.g., [1, Chapter 5]), there exists δ > 0 such that
for all 1− δ < |z| < 1 + δ

φ(z)−1 =
∞∑

j=−∞
χjz

j

with
∑∞
j=−∞ |χj | < +∞, i.e., it has a Laurent series expansion. Let us define the operator φ(B)−1

by

φ(B)−1Yt :=
∞∑

j=−∞
χjB

jYt =
∞∑

j=−∞
χjYt−j

for stationary time series Y = (Yt, t ∈ Z). Note that the sum on the right hand side exists and
is stationary as a consequence of Proposition 3.1.2. We define a time series X = (Xt, t ∈ Z) by
setting, with θ0 := 1,

Xt := φ(B)−1θ(B)Zt = φ(B)−1
q∑
i=0

θiZt−i =
∞∑

j=−∞

q∑
i=0

χjθiZt−i−j . (3.3)

By Proposition 3.1.2, this is a well-defined stationary time series, so it only remains to check that
it fulfills (3.2).

To this end, we note that, with φ0 := −1, we have

1 = φ(z)φ(z)−1 = −
(

p∑
k=0

φkz
k

) ∞∑
j=−∞

χjz
j

 = −
∞∑

j=−∞

p∑
k=0

χjφkz
j+k.

If we make the index change m = j + k we therefore get

−1 =
∞∑

m=−∞

(
p∑
k=0

χm−kφi

)
zm.

By equating coefficients of zm, m ∈ Z, we find that the coefficient in front of z0 is 1 and the rest
0, i.e.,

p∑
k=0

χ−kφk = −1 and
p∑
k=0

χm−kφk = 0 for all m 6= 0.

If we apply this fact to φ(B)Xt, after making the same index change m = j + k, we have

φ(B)Xt = −
p∑
k=0

φkXt−k = −
∞∑

j=−∞

q∑
i=0

p∑
k=0

χjθiφkZt−i−j−k

= −
∞∑

m=−∞

q∑
i=0

(
p∑
k=0

χm−kφk

)
θiZt−i−m =

q∑
i=0

θiZt−i = θ(B)Zt,

which completes the proof.

An index change in the explicit formula (3.3) for X shows that

Xt = φ(B)−1θ(B)Zt =
∞∑

k=−∞

(
q∑
i=0

χk−iθi

)
Zt−k.

With ψ(z) := φ(z)−1θ(z), we can write this as

Xt =
∞∑

k=−∞
ψkZt−k,
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where ψk = (
∑q
i=0 χk−iθi) are the coefficients in the Laurent series expansion of ψ(z).

In what follows two important properties and their equivalent characterizations are introduced
that allow us to regard the ARMA process either as an infinite-dimensional autoregressive or an
infinite-dimensional moving average process.

Definition 3.2.5. An ARMA(p, q) process X is causal or a causal function of Z if there exists a
real-valued sequence (ψj , j ∈ N0) such that

∑∞
j=0 |ψj | < +∞ and

Xt =
∞∑
j=0

ψjZt−j

for all t ∈ Z, i.e., if X is a moving average/MA(∞) process.

The following lemma enables us to check for causality in practice.

Lemma 3.2.6. An ARMA(p, q) process X is causal if and only if

1−
p∑
j=1

φjz
j 6= 0

for all z ∈ C with |z| ≤ 1.

Proof. We have seen that the unique solution is given by

Xt = ψ(B)Zt =
∞∑

j=−∞
ψjZt−j .

Therefore we can conclude that X is causal if and only if ψj = 0 for j < 0, i.e., the ψ(z) as defined
in the proof of Proposition 3.2.4 has a power series expansion with only positive powers,

ψ(z) =
∞∑
j=0

ψjz
j

and
∑∞
j=0 |ψj | < +∞, so that |ψ(z)| <∞ for all z ∈ C with |z| ≤ 1. Since

ψ(z) = θ(z)/φ(z)

and φ and θ have no common zeros, this means that φ(z) 6= 0 for all z ∈ C with |z| ≤ 1.
Conversely, if φ(z) 6= 0 for all z ∈ C with |z| ≤ 1 then ψ(z) = θ(z)/φ(z) can, by a fact from
complex analysis, be expanded into a power series of only positive powers from which existence
and causality follows.

Together with Proposition 3.2.4, the lemma implies the following corollary as an immediate
consequence.

Corollary 3.2.7. A causal ARMA(p, q) process has a unique stationary solution.

Since for a causal process, ψ(z)φ(z) = θ(z), or equivalently

(ψ0 + ψ1z + · · · )(1− φ1z − · · · − φpzp) = (1 + θ1z + · · ·+ θqz
q),

one can explicitly find the coefficients in the power series expansion of ψ(z) by equating coefficients
of zj , j ∈ N0, in this expression. This means that the sequence (ψj , j ∈ N0), can be determined
from the equations

ψj −
p∑
k=1

φkψj−k = θj (3.4)
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for all j ∈ N0, where θ0 := 1, θj := 0 for j > q, and ψj := 0 for j < 0.

A second important property of an ARMA(p, q) process is invertibility which in some sense
interchanges the roles of X and Z.

Definition 3.2.8. An ARMA(p, q) process X is invertible if there exists a real-valued sequence
(πj , j ∈ N0) such that

∑∞
j=0 |πj | < +∞ and

Zt =
∞∑
j=0

πjXt−j

for all t ∈ Z, i.e., if X is an autoregressive/AR(∞) process.

A similar lemma and characterization as for causal processes also holds for invertible processes
that helps for practical purposes since it can be checked relatively easy.

Lemma 3.2.9. An ARMA(p, q) process X is invertible if and only if

1 +
q∑
j=1

θjz
j 6= 0

for all z ∈ C with |z| ≤ 1.

Proof. Looking at the structure of the problem, it is clear that the method of proof of Lemma 3.2.6
can be used by interchanging the roles of X and Z, i.e., the invertibility is equivalent to the
existence of the inverse of θ with power series expansion

θ(z)−1 =
∞∑
j=0

πjz
j ,

which—again as consequence of complex analysis—holds if and only if θ(z) 6= 0 for all z ∈ C on
the (closed) unit disc.

In the same way as in (3.4), the sequence (πj , j ∈ N0) is determined by the equations

πj +
q∑

k=1
θkπj−k = −φj

for j ∈ N0, where we set φ0 := −1, φj := 0 for j > p, and πj := 0 for j < 0.

Example 3.2.10. Let us again consider the time series X of Example 2.2.4, which was given by

Xt = Yt(Zt + Zt−1)

for all t ∈ Z, where Z ∼ IID(0, σ2
Z) and Y is a stationary time series with ACVF γY . For

simplicity we now assume that γY (h) = 2−|h| and that µY = 0. Then, using the computations
from Example 2.2.7, we derive

γX(h) =


2σ2

Z if h = 0,
σ2
Z

2 if |h| = 1,
0 else.

This ACVF is zero when |h| > 1, exactly like the ACVF of the MA(1) process in Example 2.4.10.
Therefore, we can represent X as an MA(1) process by

Xt = Vt + θ1Vt−1,
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for some white noise process V ∼ WN(0, σ2
V ). To find θ1 and σ2

V , we note from Example 2.4.10
that γX(0) = (1 + θ2

1)σ2
V and that γX(1) = θ1σ

2
V . Therefore, by solving the system of equations

2σ2
Z = (1 + θ2

1)σ2
V ,

σ2
Z

2 = θ1σ
2
V

and picking one of the solutions, we have the representation

Xt = Vt + (2−
√

3)Vt−1, (3.5)

where V ∼WN(0, σ2
Z

2(2−
√

3) ). That the process Vt exists follows from [6, Proposition 2.1.1] and due
to the representation (3.5) we directly see that the process X is causal by definition. To see if it is
invertible, we must by Lemma 3.2.9 check if any of the roots of the polynomial f(z) = 1+(2−

√
3)z

is inside of the unit circle. Since the only root is −(2−
√

3)−1 and since | − (2−
√

3)−1| > 1, the
process X is invertible.

From now on, we will restrict our attention to causal and invertible models, since any non-
causal and/or non-invertible ARMA process can be rewritten as a causal/invertible ARMA process
with respect to another white noise series, see [4, page 127].

3.2.1 Autocovariance and partial autocorrelation function

Let us consider autocovariance, autocorrelation, and partial autocorrelation functions as well as
their computation in this section. We start with the calculation of the autocovariance function.
Therefore we recall that an ARMA(p, q) process is given by

φ(B)Xt = θ(B)Zt,

where Z ∼WN(0, σ2) and

φ(z) := 1−
p∑
i=1

φiz
i

as well as

θ(z) := 1 +
q∑
j=1

θjz
j .

Let us assume that the process is causal, then by definition there exists a real-valued sequence
(ψj , j ∈ N0) such that

Xt =
∞∑
j=0

ψjZt−j ,

where the coefficients ψj are determined by Equation (3.4).

In what follows we introduce three methods to compute the autocovariance function of an
ARMA(p, q) process.

Method 3.2.11. Proposition 3.1.2 implies with the above representation that

γ(h) = E(Xt+hXt) = σ2
∞∑
j=0

ψjψj+|h|.

The coefficients can be computed using (3.4).
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Method 3.2.12. If we multiply each side of the equations

Xt −
p∑
j=1

φjXt−j = Zt +
q∑
j=1

θjZt−j

by Xt−k for k ∈ N0 and take expectations on each side, noting that

Xt−k =
∞∑
j=0

ψjZt−k−j ,

we obtain

γ(k)−
p∑
j=1

φjγ(k − j) = σ2
q−k∑
j=0

θk+jψj (3.6)

for 0 ≤ k ≤ q and

γ(k)−
p∑
j=1

φjγ(k − j) = 0 (3.7)

for k > q, where ψj := 0 for j < 0, θ0 := 1, and θj := 0 for j /∈ {0, . . . , q}. These equations can
sometimes be solved explicitly.

Method 3.2.13. This method is a numerical version of Method 3.2.12. Use (3.6), and if p > q
also (3.7), to create a system of linear equations for k = 0, . . . , p and solve them numerically to
find γ(0), . . . , γ(p). Afterwards, use the result to successively determine γ(j) for j > p.

Another important function for the estimation and fitting of models is the partial autocorrela-
tion function. We will first define the function before we give the definition of the sample partial
autocorrelation function that can be computed from observed data.

Definition 3.2.14. Let X be an ARMA(p, q) process. The partial autocorrelation function α
(PACF for short) of X is defined by

α(0) := 1,
α(h) := φhh

for h ≥ 1, where φhh is the last component of

φh =
(
(γ(i− j))hi,j=1

)−1 (γ(1), γ(2), . . . , γ(h))′,

i.e., the coefficient ah in

blh+1((X1, . . . , Xh)) =
h∑
i=1

aiXh+1−i.

For any series of observations (x1, . . . , xn) with xi 6= xj for some i and j, the sample partial
autocorrelation function α̂ is given by

α̂(0) := 1,
α̂(h) := φ̂hh

for h ≥ 1, where φ̂hh is similarly the last component of

φ̂h =
(
(γ̂(i− j))hi,j=1

)−1 (γ̂(1), γ̂(2), . . . , γ̂(h))′.
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It can be shown that
α(1) = Cor(Xt+1, Xt) = ρ(1)

and for h ≥ 2
α(h) = Cor(Xt+h − blt+h(Xh), Xt − blt(Xh))

where Xh := (Xt+1, . . . , Xt+h−1), which means that the partial autocorrelation α(h) can be
thought of as the correlation between Xt and Xt+h when adjusting for the intervening observations
Xt+1, . . . , Xt+h−1, hence the name of the function. This equivalence holds for more general time
series, but not for all weakly stationary time series, which is why we choose to restrict the definition
to ARMA processes.

Example 3.2.15. Let us again revisit the set of quarterly earnings of H&M from Example 2.1.2,
after having removed the trend and seasonality in Example 2.5.5. We are interested in the cor-
relation structure of the remaining data. We can compute its sample PACF α̂, which we do for
h = 0, 1, . . . , 10 in MATLAB with the following code, assuming that we have calculated the sample
ACF beforehand:

% Input :
% gamma double vec , a c f in vec to r form
% lag s int , number o f l a g s to eva luate

% Output :
% pacf double vec , row vecto r o f sample pac f va lue s

pac f=ones (1 , l a g s+1) ;
% Find phi_k , k
phi=ze ro s ( lags , l a g s ) ;
v=ze ro s (1 , l a g s ) ;
phi ( 1 , 1 )=gamma(2) /gamma(1) ;
v (1 )=gamma(1) ∗(1−phi (1 , 1 ) ^2) ;
f o r k=2: l a g s

phi (k , k )=(gamma(k+1)−gamma(k+1−(1:k−1) ) ∗ phi (k−1 ,1:k−1) ’ )
/v (k−1) ;

phi (k , 1 : k−1)=phi (k−1 ,1:k−1)−phi (k , k ) ∗ phi (k−1,k−1:−1:1) ;
v (k )=v(k−1)∗(1−phi (k , k ) ^2) ;

end
pac f ( 2 : end )=diag ( phi ) ; % phi_k , k

The result is shown in Figure 3.1. We see that after removing any deterministic effects on the
earnings, the earnings for a given quarter are most influenced by the earnings at the previous
quarter (lag 1 in Figure 3.1) and of the previous quarter from the previous year (lag 5).

It can be shown that the partial autocorrelation function of a causal AR(p) process is zero for
lags greater than p. Since algebraic computations of the partial autocorrelation function are in
general quite complicated, one should prefer numerical computations in many cases.

One method to choose an appropriate AR(p) model is to look at the sample partial autocor-
relation function α̂. If α̂(h) is significantly different from zero for h = 0, . . . , p and negligible for
h > p, an AR(p) model might be a good choice for the observed data. For sample size n one defines
“negligible” according to the Central Limit Theorem 1.1.8 that around 95% of the sample partial
autocorrelation function values beyond lag p should fall within the bounds ±1.96/

√
n, which is

justified by the fact that the sample partial autocorrelation function values at lags greater than p
are approximately independent N (0, 1/n) distributed random variables.
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Figure 3.1: Sample partial autocorrelation function for the deseasonlized H&M data of Example
2.1.2 and Example 2.5.5.

Example 3.2.16. In Figure 3.2 we plot the ACF and PACF of the causal AR(3) process given
by the equation

Xt −
5
4Xt−1 + 1

2Xt−2 −
1
16Xt−3 = Zt

and of the MA(3) process given by

Xt = Zt + 5
4Zt−1 −

1
2Zt−2 + 1

16Zt−3.

We note that the PACF of the purely autoregressive process is zero for lags greater than 3, as
expected. In the same way, the ACF of the MA(3) process is zero for lags greater than 3, something
that can be seen as an easy consequence of Proposition 3.1.2.

3.2.2 Parameter estimation

Let us assume in this section that the order parameters p and q of an ARMA(p, q) model are
known, which is not true in most cases. We will discuss the order selection in Section 3.2.3. Here
we will give methods to determine the parameters (φj , j = 1, . . . , p) and (θj , j = 1, . . . , q). The
main method is maximum likelihood, but this requires good initial values of (φj , j = 1, . . . , p)
and (θj , j = 1, . . . , q). For this reason we first describe preliminary methods. We start with a
computation method for purely autoregressive, AR(p), models.
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Figure 3.2: The ACFs and PACFs of an AR(3) and an MA(3) process.

So called Yule–Walker estimation can be derived from Method 3.2.12. We observe that the
equations in Method 3.2.12 simplify for an AR(p) model to

γ(k)−
p∑
j=1

φjγ(k − j) =
{

0 k ∈ {1, . . . , p},
σ2 k = 0,

which are called the Yule–Walker equations. These equations can be rewritten as
p∑
j=1

φjγ(k − j) =
{
γ(k) k ∈ {1, . . . , p},
γ(0)− σ2 k = 0,

which leads to the linear system

(γ(i− j))pi,j=1(φ1, . . . , φp)′ = (γ(1), . . . , γ(p))′

and to
(φ1, . . . , φp) · (γ(1), . . . , γ(p))′ = γ(0)− σ2.

Often the Yule–Walker equations are used to determine γ from σ2 and (φj , j = 1, . . . , p). For
estimation we do it the other way around by using the sample autocovariance function γ̂ from the
made observations to get estimates of σ2 and (φj , j = 1, . . . , p). Due to better properties of the
sample autocorrelation function ρ̂ compared to γ̂, we transform the equations by dividing them
by γ̂(0) and obtain the following method.

Method 3.2.17 (Yule–Walker estimation). Compute estimators σ̂2 and (φ̂j , j = 1, . . . , p) from
the equations

(φ̂1, . . . , φ̂p)′ = R̂−1
p (ρ̂(1), . . . , ρ̂(p))′,

and
σ̂2 = γ̂(0)

(
1− (ρ̂(1), . . . , ρ̂(p))R̂−1

p (ρ̂(1), . . . , ρ̂(p))′
)
,

where R̂p := (ρ̂(i− j))pi,j=1 denotes the sample autocorrelation matrix.

For large sample sizes n the vector (φ̂1, . . . , φ̂p) is approximately normally distributed with
mean (φ1, . . . , φp) and covariance matrix n−1σ2Γ−1

p , where Γp := (γ(i− j))pi,j=1. This knowledge
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can be used to compute confidence intervals: since φ̂i ∼ N (φi, n−1σ2Γ−1
p,ii), i = 1, . . . , p, the

interval φ̂i ± Φ1−α/2n
−1/2σ(Γ−1

p,ii)1/2 will contain φi with approximate 1 − α probability. Here
Φ1−α/2 is the 1−α/2 quantile of the standard normal distribution, Γ−1

p,ii is the i:th diagonal entry
of Γ−1

p and n−1/2σ(Γ−1
p,ii)1/2.

Furthermore we remark that the Yule–Walker estimates are special cases of moment estima-
tors. The analogous procedure for ARMA(p, q) models with q > 0 is easily formulated, but the
corresponding equations are nonlinear in the unknown coefficients. This might lead to nonexis-
tence and nonuniqueness of solutions. Instead, we have the following algorithm, which is a variant
of a least square regression.

Method 3.2.18 (Hannan–Rissanen algorithm).

(i) Fit a high-order AR(m) model (with m > max{p, q}) to the data using the Yule–Walker
estimates from Method 3.2.17. For estimated coefficients (φ̂m1, . . . , φ̂mm), compute the es-
timated residuals Ẑt from the equations

Ẑt = Xt −
m∑
j=1

φ̂mjXt−j

for t = m+ 1, . . . , n.

(ii) Estimate the vector of parameters β := (φ1, . . . , φp, θ1, . . . , θq) by a least squares linear
regression of Xt onto (Xt−1, . . . , Xt−p, Ẑt−1, . . . , Ẑt−q), t = m + 1 + q, . . . , n, i.e., minimize
the sum of squares

S(β) =
n∑

t=m+1+q

Xt −
p∑
j=1

φjXt−j −
q∑
i=1

θiẐt−i

2

with respect to β. This gives the Hannan–Rissanen estimator

β̂ = (Z ′Z)−1Z ′(Xm+1+q, . . . , Xn)′,

where

Z =


Xm+q Xm+q−1 · · · Xm+q+1−p Ẑm+q Ẑm+q−1 · · · Ẑm+1
Xm+q+1 Xm+q · · · Xm+q+2−p Ẑm+q+1 Ẑm+q · · · Ẑm+2

...
...

...
...

...
...

...
...

Xn−1 Xn−2 · · · Xn−p Ẑn−1 Ẑn−2 · · · Ẑn−q


(If p = 0, Z contains only the last q columns.) The Hannan–Rissanen estimator of the white
noise variance is

σ̂(HR)2 = S(β̂)
n−m− q

.

Let us finally introduce maximum likelihood estimation in the context of ARMA(p, q) processes.
For brevity, we will write φ := (φ1, . . . , φp) and θ := (θ1, . . . , θq) for the vectors of parameters that
we are interested in. We assume that we are given a Gaussian ARMA(p, q) process (which follows
if we assume that Z ∼ IIDN (0, σ2)). Then for any fixed values φ, θ, and σ2, since the innovations
X1−X̂1, . . . , Xn−X̂n are uncorrelated (see the proof of Method 2.4.14, the innovations algorithm)
and Gaussian, they are independent, where X̂1 := 0 and X̂j := blj((X1, . . . , Xj−1)), j ≥ 2. If we
had observed the innovations instead of the data Xi, the definition of the likelihood would be as
simple as a product of densities. However, as it turns out, the likelihood function for the data set
(X1, . . . , Xn) can be considerably simplified by rewriting it in terms of innovations.
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Let now Γn = Γn(φ1, . . . , φp, θ1, . . . , θq, σ
2) denote the covariance matrix of Xn :=

(X1, . . . , Xn)′, i.e., let (Γn)i,j = γX(i−j), and assume that it is nonsingular. The likelihood L(Γn)
of (X1, . . . , Xn) is given by

L(Γn) = f(Xn|Γn) = (2π)−n/2(det Γn)−1/2 exp
(
−2−1X′nΓ−1

n Xn

)
, (3.8)

i.e., the density function of Xn = (X1, . . . , Xn)′ but written as a function of Γn. We simplify this
equation using the properties of the innovations noted above.

A consequence of Lemma 2.4.13 is that one can write Xn as

Xn = Cn(Xn − X̂n)

where X̂n = (X̂1, . . . , X̂n)′ and Cn is a n × n lower triangular matrix with ones on the diagonal.
Moreover, since (Xn−X̂n) is a vector of independent random variables, it has the covariance matrix
Dn = diag(v0, . . . , vn−1) where, for i = 0, . . . , n, vi = MSE(Xi+1, X̂i+1) = E((Xi+1 − X̂i+1)2). By
linearity of the expectation operator and some matrix algebra, we have

Γn = E(XnX′n) = E(Cn(Xn − X̂n)(Xn − X̂n)′C ′n) = CnDnC
′
n.

Using this observation, along with the fact that C−1
n Xn = (Xn − X̂n), we get that,

X′nΓ−1
n Xn = X′n(CnDnC

′
n)−1Xn = X′n(C ′n)−1D−1

n (Cn)−1Xn = ((Cn)−1Xn)′D−1
n (Cn)−1Xn

= (Xn − X̂n)′D−1
n (Xn − X̂n) =

n∑
j=1

(Xj − X̂j)2/vj−1,

since D−1
n = diag(v−1

0 , . . . , v−1
n−1). We also have, since Dn is diagonal and Cn is lower triangular

with ones on the diagonal,

det(Γn) = det(Cn) det(Dn) det(Cn) = v0v1 · · · vn−1.

Now we have a simple expression for L(Γn). In order to estimate the white noise variance σ2, it
turns out that defining rj := vj/σ

2 = E((Xj+1 − X̂j+1)2)/σ2 for j = 0, . . . , n − 1 simplifies our
algorithm. We leave it as an easy exercise to show that, as a consequence of Proposition 3.1.2 and
Corollary 2.4.6, X̂j+1 and rj do not depend on σ2.

Plugging these equations into the likelihood, we have derived the Gaussian likelihood for an
ARMA(p, q) process

L(φ, θ, σ2) = (2πσ2)−n/2
 n∏
j=1

rj−1

−1/2

exp

−(2σ2)−1
n∑
j=1

r−1
j−1(Xj − X̂j)2


which can be determined by the innovations algorithm 2.4.14. The maximum likelihood estimates
are now obtained by minimizing − ln(L(φ, θ, σ2)) with respect to φ, θ, and σ2, which is equivalent
to maximizing L with respect to these parameters.

Method 3.2.19 (Maximum likelihood estimators). The maximum likelihood estimators of σ2, φ,
and θ are determined from the expressions

σ̂2 = n−1S(φ̂, θ̂),

and
(φ̂, θ̂) = arg min

(φ,θ)
`(φ, θ).

Here
S(φ, θ) =

n∑
j=1

r−1
j−1(Xj − X̂j)2,
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where X̂j and r−1
j−1 can be computed with Method 2.4.14 using the parameters φ, θ, (which shows

that S is a function of φ and θ). ` is the function given by

`(φ, θ) = ln
(
n−1S(φ, θ)

)
+ n−1

n∑
j=1

ln rj−1.

The minimization of ` is typically done numerically. Initial values can computed by the methods
introduced previously in this section.

The derivation of the equations is left as an exercise to the reader. (Hint: Differentiate
− lnL(φ, θ, σ2) with respect to σ2 and remember that X̂j and rj−1, j = 1, . . . , n, do not depend
on σ2.)
Remark 3.2.20. For large sample sizes n, the maximum likelihood estimates
β̂ = (φ̂1, . . . , φ̂p, θ̂1, . . . , θ̂q) is approximately normally distributed with mean β =
(φ1, . . . , φp, θ1, . . . , θq) and covariance matrix 2H−1(β)/n, where H = (δ2`(β)/δβiδβj)p+qi,j=1
is the Hessian matrix of the log-likelihood function of Method 3.2.19. This fact is used to compute
confidence intervals for φ̂1, . . . , φ̂p, θ̂1, . . . , θ̂q, similar to what was done for the Yule–Walker
estimates in Method 3.2.17.
Remark 3.2.21. A common alternative to assuming that Z = (Zt, t ∈ Z) is Gaussian white noise
(and therefore IID) is to assume that it is Z ∼ IID(0, σ2) and that Zt follows a Student t-
distribution for all times t. The maximum likelihood algorithm then takes on a more complicated
form. However, in this case the Gaussian maximum likelihood estimates can still provide good
approximate values of the parameters or at least good initial values.

Having fitted the model, it remains to check that the model was chosen adequately. The
rescaled residuals are defined by

R̂t := (Xt − X̂t)/v1/2
t−1,

where X̂t and vt−1 are computed using, e.g., Method 2.4.14 based on the maximum likelihood
estimates φ̂1, . . . , φ̂p, θ̂1, . . . , θ̂q and σ̂2. If the model describes the data accurately, they should
behave like the standardized driving noise Zt, i.e., looking like white noise with variance 1 and
being approximately normally distributed if a Gaussian maximum likelihood estimation procedure
was used. If instead a maximum likelihood estimation assuming a Student t-distribution for Zt
was used, R̂t should follow a t-distribution instead and be approximately IID with variance 1, and
so on. The motivation for this is the fact that E((R̂t − Zt/σ)2)→ 0 as t→∞.

3.2.3 Order selection

Assume in this section that our data is already transformed, e.g., trend and seasonal components
are removed, such that the remaining series can potentially be fitted by a zero-mean ARMA(p, q)
model. In this section we treat the problem to choose appropriate values for p and q.

Recalling Example 3.2.16, we note that in general a selection for an AR(p) or MA(q) model may
be made using autocorrelation and partial autocorrelation functions. Typically, an autocorrelation
function with “q peaks and then zero” along with a slowly decaying partial autocorrelation function
indicates a MA(q) model. This is clear since the autocovariance function of a MA(q) process is by
Proposition 3.1.2 given by

γ(h) =
{
σ2∑q

j=0 θjθj+|h| |h| ≤ q,
0 |h| > q.

On the other hand side a slowly decaying autocorrelation function and a partial autocorrelation
function with “p peaks and then zero” indicates an AR(p) model, which we discussed in Sec-
tion 3.2.1. After parameter estimation, which can be done with the procedures introduced in
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Section 3.2.2, the model should be checked if the obtained residuals behave like white noise by the
methods introduced in Section 2.2.

There are many ways to do order selection in a more systematic way. We introduce two
methods based on information theory.

It is always possible to fit an ARMA(p, q) model with (too) large p and q, which is not an
advantage from a forecasting point of view. In general it results in a small estimated white noise
variance, but for forecasting the mean squared error of the forecast will additionally depend on
the errors arising from the parameter estimation. Therefore we introduce a “penalty factor” to
discourage the fitting of models with too many parameters.

We first introduce the AICC criterion, where AIC stands for Akaike’s Information Criterion
and the last C for biased-Corrected. The AICC is an estimate of the Kullback–Leibler divergence (a
measure of how one probability distribution is different from another) of the estimated distribution
from the exact distribution of the data. It is based on the assumption that Z ∼ IIDN (0, σ2),
but it seems to be robust against moderate deviations from normality (such as when Zt follows a
t-distribution).

Method 3.2.22 (AICC criterion). Choose p, q, φp, and θq to minimize

−2 lnL(φp, θq, S(φp, θq)/n) + 2n p+ q + 1
n− p− q − 2 ,

where φp = (φ1, . . . , φp) and θq = (θ1, . . . , θq).

To calculate this criterion in practice, we fit a large set of of models with different orders (p, q)
to the data and choose the one that minimizes the negative log-likelihood, modified by the penalty
factor 2n(p+ q + 1)/(n− p− q − 2).

One problem with the AICC criterion that we remark is that the estimators for p and q are not
consistent, i.e., it does not hold that they converge almost surely to p and q. Consistent estimators
are for example obtained by the BIC (Bayesian Information Criterion), which also punishes the
choice of large values for p and q and tries to avoid overfitting.

Method 3.2.23 (BIC criterion). Choose p and q to minimize

(n− p− q) ln
(
nσ̂2/(n− p− q)

)
+ n

(
1 + ln

√
2π
)

+ (p+ q) ln
((

n∑
t=1

X2
t − nσ̂2

)
/(p+ q)

)
,

where σ̂2 denotes the maximum likelihood estimate of the white noise variance.

One negative aspect of the BIC is the efficiency of finding minimizers. While order selection by
minimization of the AICC is asymptotically efficient for causal and invertible ARMA processes, this
does not hold for the BIC. Efficiency in this context means that choosing the model that minimizes
the AICC will asymptotically produce a model with minimum one-step ahead prediction errors,
in a certain sense.

Under constrained maximum likelihood estimation, i.e., when specific coefficients are assumed
to be zero in the maximum likelihood procedure, the value p+ q+ 1 is replaced by m, the number
of non-zero coefficients, in both the AICC and the BIC. For more details and references to the
literature, the reader is referred to [6, Section 5.5].

In general one may say that order selection is a difficult problem and many criteria have been
proposed. Rissanen’s minimum description length (MDL) criterion seems to be rather much used
according to [13].
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3.2.4 Model building for ARMA processes

We take this opportunity to summarize what we have noted about building an ARMA time series
model so far. If the reader have a data set that he or she wants to model with an ARMA model,
one could proceed in the following way (see also [6, Chapter 5.3]).

• Remove trend and seasonality until you believe that the data can be modeled as a stationary
time series, see Section 2.5.

• Identify the order of the ARMAmodel for the time series by either looking at the ACF/PACF
as noted in Sections 3.2.1 and 3.2.3 or (more systematically) by fitting (using maximum
likelihood or Hannan–Rissanen estimation) successively higher order ARMA(p, q) to the data
and choose a number of candidate models with small AICC and/or BIC values, as outlined
in 3.2.3. Try to simplify the models by setting parameters to zero if they are not significant
(i.e., if their confidence interval includes 0), and see if this reduces the AICC/BIC (the
number p+ q in these criteria are then replaced by m, the number of non-zero coefficients).

• Estimate the final candidate models using maximum likelihood, see Section 3.2.19.

• Compute the residuals R̂t for the different models and check that they are consistent with
the specified distribution and temporal covariance structure for Zt, see Section 3.2.19. If
they are, the model is considered to be adequate for the data. The final model is chosen to
be the one with residuals R̂t most like Zt. Another alternative is to reserve some test data in
the form of the end of the time series at the start of this process and then compute forecasts
for this test data using the candidate models. Then one chooses the final model as the one
with the minimum forecast error.

3.2.5 Forecasting of ARMA processes

The innovations algorithm 2.4.14 provides us with a recursive method for forecasting second-order
zero-mean processes that are not necessarily stationary. For the causal ARMA process

φ(B)Xt = θ(B)Zt,

where Z ∼ WN(0, σ2), it is possible to simplify the application drastically. The idea is to apply
the algorithm to the transformed process W = (Wt, t ∈ N) defined by

Wt :=
{
σ−1Xt t = 1, . . . ,m,
σ−1φ(B)Xt t > m,

where m = max{p, q} (cf. [2]).

The autocovariance function γX ofX can easily be computed using any method of Section 3.2.1.
The autocovariances κ(i, j) := E(WiWj) for i, j ≥ 1, are then found from

κ(i, j) =


σ−2γX(i− j) max(i, j) ≤ m,
σ−2 (γX(i− j)−

∑p
r=1 φrγX(r − |i− j|)) min{i, j} ≤ m < max{i, j} ≤ 2m,∑q

r=0 θrθr+|i−j| min{i, j} > m,

0 otherwise.

Applying the innovations algorithm 2.4.14 to the process W we obtain

Ŵn+1 =
{∑n

j=1 θnj(Wn+1−j − Ŵn+1−j) 1 ≤ n < m,∑q
j=1 θnj(Wn+1−j − Ŵn+1−j) n ≥ m,
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where the coefficients (θnj , n ∈ N, j ≤ min{n,m}) and the mean squared errors MSE(Ŵn+1,Wn+1)
are found recursively with κ as defined above. The notable feature of the predictors (Ŵn+1, n ∈ N)
is the vanishing of θnj when both n ≥ m and j > q, which follows from the fact that κ(r, s) = 0
for r > m and |r − s| > q.

Note that Ŵn+1 is the best linear one-step predictor ofWn+1 in terms ofWn := (W1, . . . ,Wn),
i.e.,

Ŵn+1 = bln+1(Wn).
Furthermore one can show that

Ŵt =
{
σ−1X̂t t = 1, . . . ,m,
σ−1

(
X̂t −

∑p
j=1 φjXt−j

)
t > m

using the linearity of the prediction estimator and the fact that W can be expressed as a linear
combination of X and vice versa. This implies that Ŵt −Wt = σ−1(X̂t − Xt) for t ≥ 1, so we
obtain as best linear estimator for Xn+1 with respect to Xn := (X1, . . . , Xn)

bln+1(Xn) = X̂n+1 =
{∑n

j=1 θnj(Xn+1−j − X̂n+1−j) 1 ≤ n < m,∑p
j=1 φjXn+1−j +

∑q
j=1 θnj(Xn+1−j − X̂n+1−j) n ≥ m,

with mean squared error

MSE(X̂n+1, Xn+1) = E((X̂n+1 −Xn+1)2)
= σ2 E((Ŵn+1 −Wn+1)2) = σ2 MSE(Ŵn+1,Wn+1) = σ2vn,

where we recall that the coefficients (θnj , n ∈ N, j ≤ min{n,m}) and the mean squared errors
MSE(Ŵn+1,Wn+1) = vn are found recursively from the innovations algorithm 2.4.14. The best
linear estimators can be computed recursively.

Let us next consider h-step predictors of an ARMA(p, q) process. For this, let us first note
that, using Lemma 2.4.13, we can write

Ŵn+h = bln+h(Wn+h−1) =
n+h−1∑
j=1

θ(n+h−1)j(Wn+h−j − Ŵn+h−j).

We now claim that bln+h(Wn) is obtained by dropping the first h − 1 terms of this sum. This
follows by Proposition 2.4.5: bln+h(Wn) is the unique linear combination ofW1, . . . ,Wn that fulfills
E((Wn+h − bln+h(Wn))Wk) = 0 for k = 1, . . . , n and by linearity of the expectation, we see that
for these k

E

Wn+h −
n+h−1∑
j=h

θ(n+h−1)j(Wn+h−j − Ŵn+h−j)

Wk


= E

Wn+h − Ŵn+h +
h−1∑
j=1

θ(n+h−1)j(Wn+h−j − Ŵn+h−j)

Wk


= E

(
(Wn+h − Ŵn+h)Wk

)
+
h−1∑
j=1

θ(n+h−1)j E
(

(Wn+h−j − Ŵn+h−j)Wk

)
= 0,

where we have used Proposition 2.4.5 for each of the individual terms. Therefore

bln+h(Wn) =
n+h−1∑
j=h

θ(n+h−1)j(Wn+h−j − Ŵn+h−j) = σ−1
n+h−1∑
j=h

θ(n+h−1)j(Xn+h−j − X̂n+h−j).
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Similar to the case that h = 1, one can show that the h-step predictors bln+h(Xn) with Xn :=
(X1, . . . , Xn) satisfy

bln+h(Xn) =
{∑n+h−1

j=h θ(n+h−1)j(Xn+h−j − X̂n+h−j) 1 ≤ h ≤ m− n,∑p
i=1 φib

l
n+h−i(Xn) +

∑n+h−1
j=h θ(n+h−1)j(Xn+h−j − X̂n+h−j) h > m− n.

If, as is almost always the case in practice, n > m := max{p, q}, then for all h ≥ 1

bln+h(Xn) =
p∑
i=1

φi b
l
n+h−i(Xn) +

q−1∑
j=h

θ(n+h−1)j(Xn+h−j − X̂n+h−j).

Once the predictors X̂1, . . . , X̂n have been computed, it is a straightforward calculation (with
fixed n) to determine the best linear predictors bln+h(Xn) recursively.

The mean squared error of bln+h(Xn) is computed from the formula

MSE(bln+h(Xn), Xn+h) =
h−1∑
j=0

(
j∑
r=0

χrθ(n+h−r−1)(j−r)

)2

vn+h−j−1,

where the coefficients χj are computed recursively from the equations χ0 := 1 and

χj =
min{p,j}∑
k=1

φkχj−k

for j ∈ N, and the coefficients (vn+h−j−1, j = 0, . . . , h− 1) denote the mean squared errors of the
one-step predictors as introduced in the methods in Section 2.4.

Finally in this section we remark that in the special case that the ARMA process is driven
by Gaussian white noise, i.e., Z ∼ IIDN (0, σ2), for each h ≥ 1 the prediction error bln+h(Xn) −
Xn+h is normally distributed with mean zero and variance MSE(bln+h(Xn), Xn+h). This allows
to compute confidence intervals. These bounds are called (1 − α) prediction bounds for Xn+h if
the (1 − α/2) quantile of the standard normal distribution is used. If Z is not a Gaussian time
series, one can still construct approximate prediction bounds in the case that h = 1 using the fact
that for an invertible ARMA process,

E((Xt − X̂t − Zt)2)→ 0

as t → ∞. This implies that the distribution of Xt − X̂t will be approximately equal to the
distribution of Zt for large t, so any confidence interval for Zt can be used as a confidence interval
for Xt − X̂t.

3.3 (S)ARIMA models and unit root tests

We have seen in Section 2.5 that one way of transforming a non-stationary time series into a
stationary one is given by the differencing approach. That is, we apply ∇ = 1−B one or several
times to delete the trend component and ∇s = 1 − Bs to delete a seasonal component of period
s ∈ N from the classical decomposition model (2.11). The class of SARIMA models is a way of
mathematically formalizing this approach in the case that the differenced stationary time series is
an ARMA(p, q) process.
Definition 3.3.1. LetX be a stochastic process and let d,D ∈ N0. ThenX is a SARIMA(p, d, q)×
(P,D,Q)s process if the process Y defined by Yt := ∇d∇sXt is a causal ARMA process defined
by

φ(B)Φ(Bs)Yt = θ(B)Θ(Bs)Zt,
where φ(z) = 1− φ1z− . . .− φpzp, Φ(z) = 1−Φ1z− . . .−ΦP zP , θ(z) = 1 + θ1z

1 + . . .+ θqz
q and

Θ(z) = 1 + Θ1z
1 + . . .+ ΘQz

Q for p, q, P,Q ∈ N0.
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Here the abbreviation SARIMA stands for seasonal autoregressive integrated moving average.
Note that X is in general a non-stationary time series, and neither the mean nor the covariance
function are determined by the difference equations above. The process Y in this definition is a
causal ARMA(p+ sP, q + sQ) process since the polynomials φ∗(·) = φ(·)Φ(·) and θ∗(·) = θ(·)Θ(·)
are of degree p + sP and q + sQ. The reason for including the operator Φ(Bs) and Θ(Bs) is to
account for stochastic seasonal effects which can remain after removing the seasonal component
in the classical decomposition model (2.11). It is often found that a high order ARMA process
provides a good fit to the remaining data, provided that most of its coefficients φi and θj are zero
except for at a few indices i, j that are multiples of s, or close to such multiples. One example of
such an ARMA process is given by Y in the definition above. In modelling, an equivalent approach
is to instead let Y be a standard ARMA process and manually specify which coefficients should
be set to zero when estimating the model.

An SARIMA model without any seasonality is called an ARIMA model. These are particularly
important in financial time series analysis, for example when judging whether an asset (St, t ∈ Z) is
best modeled by log-returns X, i.e., Xt := log(St+1)− log(St), or log-prices X, i.e., Xt := log(St).

Definition 3.3.2. Let X be a stochastic process and d a nonnegative integer. Then X is
an ARIMA(p, d, q) process if the process Y defined by Yt := (1 − B)dXt = ∇dXt is a causal
ARMA(p, q) process.

Stated in another way this definition states that X satisfies a difference equation of the form

φ∗(B)Xt := φ(B)∇dXt = θ(B)Zt,

where Z ∼ WN(0, σ2) and φ and θ are polynomials of degree p and q, respectively. Furthermore
φ(z) 6= 0 for |z| ≤ 1, while the polynomial φ∗ has a zero of degree d at z = 1. It is very difficult in
practice to distinguish between an ARIMA(p, 1, q) process and an ARMA(p+ 1, q) process with a
root of φ(z) = 0 near the unit circle.

An ARIMA model is an appropriate choice if the autocorrelation function is very slowly de-
caying. To treat and find ARIMA models one applies the difference operator ∇ to the observed
data until the sample autocorrelation function is no longer slowly decaying with values near 1 at
small lags but rapidly decreasing. The differenced time series can then be modeled by a low-order
ARMA(p, q) process. As noted above, the resulting ARIMA(p, d, q) model for the original data
has then an autoregressive polynomial

φ∗(z) =

1−
p∑
j=1

φjz
j

 (1− z)d

with d roots on the unit circle.

A more systematic approach to decide if the observed data follows a model with roots on the
unit circle is due to Dickey and Fuller (see [8]) and described in what follows. We restrict our
attention to autoregressive processes and start with the case of an AR(1) model. Therefore assume
that (X1, . . . , Xn) are observations of the AR(1) model

Xt − µ = φ1(Xt−1 − µ) + Zt,

where Z ∼WN(0, σ2), |φ1| < 1, and µ := E(Xt). For large sample sizes n the maximum likelihood
estimator of φ1 is approximately normally distributed with mean φ1 and variance (1−φ2

1)/n, which
does not hold if φ1 = 1 and is therefore of no use for testing H0 : φ1 = 1 versus H1 : φ1 < 1. To
construct a hypothesis test, we rewrite the model as

∇Xt = Xt −Xt−1 = φ∗0 + φ∗1Xt−1 + Zt,
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where Z ∼ WN(0, σ2), φ∗0 := µ(1 − φ1), and φ∗1 := φ1 − 1. Let φ̂∗1 be the ordinary least squares
(OLS for short) estimator of φ∗1 found by regressing ∇Xt on 1 and Xt−1, i.e.,

(φ̂∗0, φ̂∗1) = arg min
(φ∗0 ,φ∗1)

n∑
t=2

(∇Xt − φ∗0 − φ∗1Xt−1)2.

Then the estimated standard error of φ̂∗1 can be shown to be

ŜE(φ̂∗1) = S

(
n∑
t=2

(Xt−1 − X̄n−1)2

)−1/2

,

where
S2 := (n− 3)−1

n∑
t=2

(∇Xt − φ̂∗0 − φ̂∗1Xt−1)2

and we recall that X̄n−1 denotes the sample mean of (X1, . . . , Xn−1). Dickey and Fuller derived
the limit distribution for n→ +∞ of the t-ratio

τ̂µ := φ̂∗1

ŜE(φ̂∗1)

under the unit root assumption φ̂∗1 = 0, from which a test of the null hypothesis H0 : φ1 = 1
versus H1 : φ1 < 1 and confidence regions can be constructed. The 0.01, 0.05, and 0.10 quantiles
of the limit distribution of τ̂µ are −3.43, −2.86, and −2.57, respectively, which can be found in
[12, Table 8.5.2]. The augmented Dickey–Fuller test then rejects the null hypothesis of a unit root
at level 0.05 if τ̂µ < −2.86.

Note that the cutoff value for this test statistic is much smaller than the standard cutoff value
of −1.645 obtained from the normal approximation to the t-distribution, so that the unit root
hypothesis is less likely to be rejected using the correct limit distribution.

The above procedure can be extended to the case whereX follows an AR(p) model with mean µ
given by

Xt − µ =
p∑
j=1

φj(Xt−j − µ) + Zt,

where Z ∼WN(0, σ2). Similarly, the model can be rewritten as

∇Xt = φ∗0 + φ∗1Xt−1 +
p∑
j=2

φ∗j∇Xt+1−j + Zt,

where

φ∗0 := µ

(
1−

p∑
i=1

φi

)
,

φ∗1 :=
p∑
i=1

φi − 1,

φ∗j := −
p∑
i=j

φi

for j = 2, . . . , p, which is left to the reader as an exercise.
If the autoregressive polynomial has a unit root at 1, then φ∗1 = 0 and the differenced series is

an AR(p − 1) process. Consequently, we can do a similar procedure as in the AR(1) case, which
can be applied recursively and which is summarized in the following method.
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Method 3.3.3 (Dickey–Fuller test). Estimate φ∗1 as the coefficient of Xt−1 in the OLS regression
of ∇Xt onto 1, Xt−1, ∇Xt−1, . . . , ∇Xt−1+p. For large n the t-ratio

τ̂µ := φ̂∗1

ŜE(φ̂∗1)
,

where ŜE(φ̂∗1) is the estimated standard error of φ̂∗1, has the same limit distribution as for the
AR(1) process with 0.01, 0.05, and 0.10 quantiles −3.43, −2.86, and −2.57, respectively. Test the
null hypothesis H0 : φ∗1 = 0 and reject according to the chosen level. If a root is detected, repeat
the procedure with the differenced process until rejection to determine d.
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CHAPTER 4
ARCH and GARCH processes

In this section we introduce processes that are used to model volatility.

In the famous Black–Scholes framework, volatility is assumed to be constant over time to obtain
the well-known equations. There, it is assumed that the price follows a geometric Brownian motion,
i.e., it is the solution to the stochastic differential equation

dPt = µPt dt+ σPt dBt

with initial condition P0 driven by a Brownian motion B = (Bt, t ∈ R+), also known as Wiener
process. The volatility σ is assumed to be a constant and the stochastic differential equation has
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Figure 4.1: Path of a Brownian motion.

the explicit solution
Pt = P0 exp((µ− 2−1σ2)t+ σBt).

The corresponding log-returns Xt := log(Pt+1) − log(Pt), evaluated at time points t ∈ Z, then
take the form

Xt = log(Pt+1)− log(Pt) = µ− σ2

2 + σ(Bt+1 −Bt).

61
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Figure 4.2: Path of a geometric Brownian motion with P0 = µ = σ = 1

If we assume that the mean has been removed before we model this time series, then, since the
increments Bt+1 −Bt ∼ N (0, 1) and are mutually independent, this means that Xt = σZt, where
Z = (Zt, t ∈ Z) ∼ IIDN (0, 1). However, this simple model does not exhibit the properties we see
in practice when we want Xt to model a time series of log-returns. Specifically, the problems are
the following.

• Since Z is IID in the model, so is X which means that for two time points s and t, Xt and
Xs should be independent. In practice, we only observe that they are uncorrelated, i.e.,
there is some dependence in time but it is not linear.

• The volatility σ is in the model constant over time, but often one sees volatility clustering,
i.e., periods of low and high variance tend to cluster together (see Figure 4.3).

• Xt should be Gaussian, but often one observes "fat tails" (i.e., large positive and negative
jumps occur more frequently than one would expect from a normal distribution). This means
that the kurtosis E(X4

t )
E(X2

t )2 is greater than 3, which is the value under the Gaussian IID model.

In this chapter we will look at models which attempt to solve at least some of these problems.
Most importantly, we will replace the volatility σ in the equation Xt = σZt with a stochastic
process (σt, t ∈ Z).

Definition 4.0.1. A stochastic process X = (Xt, t ∈ Z) is said to follow a random variance model
if

Xt = σtZt (4.1)
for all t ∈ Z, where Z = (Zt, t ∈ Z) is IID(0, 1) and σ = (σt, t ∈ Z) is an unspecified stochastic
process called the volatility. If Xt can be written as a deterministic function of (Zs, s ≤ t) for all
t ∈ Z, then X is said to be causal.

Since the random variables (Zs, s ≤ t) are independent of the random variables (Zs, s > t), any
process that is causal in this sense is independent of the future, if we by this mean any random
variable that can be written as a function of (Zs, s > t). We note that there is no standard
nomenclature for random variance models, we mainly use that of [6]. For example, in [22] a causal
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(b) Observations from the model Xt = σZt, where
Z ∼ IIDN (0, 1) and σ ∈ R.

Figure 4.3: Comparison of 792 observations of simple monthly returns of the S&P500 index (left)
and Gaussian white noise (right). Both time series have the same sample variance.

process is called non-anticipative. All models that we encounter in this chapter will be random
variance models. It should be noted that modeling volatility is a difficult problem and no model
works well in all situations.

One option to estimate the volatility from data is the realized volatility, which is computed by

σ̂2
t := τ−1

t∑
j=t−τ

(xj − x̄t)2

for observed data (x1, . . . , xn), fixed τ < n, and τ < t ≤ n, where

x̄t := (τ + 1)−1
t∑

j=t−τ
xj .

The time frame for τ depends on the availability of data. If intra-day data is available, the time
frame may be one day. For daily data it is typically 30 days.

4.1 Definitions and properties

Let us start by introducing the necessary definitions and the theoretical background of the ARCH
and GARCH models. The main idea behind both processes is to incorporate the possibility of
volatility clustering in the realizations of the model. One possibility would be to let σt be a
function of time, but then we could end up with the variance of Xt being non-constant, so that
we would have a non-stationary model which would be hard to estimate from data. Instead we
allow for non-constant conditional variance, i.e.,

Var(Xt|Xt−1, Xt−2, . . .) = E((Xt − E(Xt))2|Xt−1, Xt−2, . . .) 6= constant

for t ∈ Z. This concept is called conditional heteroscedasticity. This is accomplished by letting σ2
t

in Xt = σtZt be an ARMA-like process.
Note that the simple model Xt = σZt for t ∈ Z, with σ ∈ R, Z ∼ IIDN (0, 1), does not exhibit

conditional heteroscedasticity. This is because since Z ∼ IID(0, 1), Xt = σZt is independent of
the random variables (σZs, s < t) = (Xs, s < t), the conditional variance above coincides with the
usual variance.
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Definition 4.1.1. A stochastic process X = (Xt, t ∈ Z) is called an ARCH(p) process if it is
stationary and if it satisfies the ARCH equations

Xt = σtZt,

where Z ∼ IID(0, 1),

σ2
t = α0 +

p∑
j=1

αjX
2
t−j ,

α0 > 0, αj ≥ 0 for j = 1, . . . , p.

Here the abbreviation ARCH stands for autoregressive conditional heteroscedasticity.
The requirements α0 > 0 and αj ≥ 0, j ≥ 1, guarantee that σt > 0.
Consider now an ARCH(p) process and the polynomial

α(z) := α1z + · · ·+ αpz
p.

Thus we can rewrite the equation of the volatility σt to

σ2
t = α0 + α(B)X2

t ,

where we recall that B denotes the backward shift operator introduced in Chapter 2. If X is
a causal ARCH(p) process, we find from the defining equation for σ2 that σ2

t can be written as
a deterministic function of (Zs, s ≤ t − 1) and is therefore independent of the random variables
(Zs, s ≥ t). We leave it as a simple exercise to show that this implies that E(X2

t ) = E(σ2
t ). This,

in combination with the fact that (by definition) X is causal, yields

E(X2
t ) = E(σ2

t ) = α0 +
p∑
j=1

αj E(X2
t ) = α0 + α(1)E(X2

t ).

This means that we must have 1− α(1) > 0, which in turn yields

E(X2
t ) = α0

1− α(1) .

If E(X4
t ) < ∞, it can be shown that (X2

t , t ∈ Z) is an AR process, a fact that can be useful in
identification of ARCH processes.

Since the order p of an ARCH process has to be rather large to be fitted to the observed data
in practice, we now consider a generalization of ARCH processes, the so-called GARCH processes.
This is one of many extensions of ARCH processes and certainly the most important one, where
GARCH means generalized ARCH.

Definition 4.1.2. A stochastic process X = (Xt, t ∈ Z) is called a GARCH(p, q) process if it is
a stationary solution to the GARCH equations

Xt = σtZt,

where Z ∼ IID(0, 1),

σ2
t = α0 +

p∑
j=1

αjX
2
t−j +

q∑
i=1

βiσ
2
t−i,

with α0 > 0, αj ≥ 0 for j = 1, . . . , p, βi ≥ 0 for i = 1, . . . , q.

Remark 4.1.3. Typical one chooses the distribution of Zt as Zt ∼ N (0, 1) or
√
ν/(ν − 2)Zt ∼ tν

for all t ∈ Z, where the factor
√
ν/(ν − 2) in front of Zt ensures that Var(Zt) = 1. In the latter

case, Z is said to follow a generalized or non-standardized t-distribution, but we usually refer to
it as a t-distribution when there is no risk of confusion.
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In practice, it is commonly found that a GARCH(1, 1) process yields a sufficient model, without
the need for higher orders. In the next proposition, we show a condition for the existence of this
process.
Proposition 4.1.4 (Existence of a GARCH(1, 1) process). If α1+β1 < 1, there exists a stationary
solution X = (Xt, t ∈ Z) to the GARCH(1, 1) equations that is given by the equation

Xt = σtZt,

where Z ∼ IID(0, 1) and

σ2
t = α0

(
1 +

∞∑
i=1

(α1Z
2
t−1 + β1)(α1Z

2
t−2 + β1) · · · (α1Z

2
t−i + β1)

)
. (4.2)

It is unique (P -a.s.), strictly stationary and causal. Conversely, if α1 + β1 ≥ 1, then there is
no non-zero stationary solution to the GARCH(1, 1) equations for which σt can be written as a
deterministic function of (Zs, s < t) for all t ∈ Z.

Proof. First, let us note that due to the monotone convergence theorem, and since Z ∼ IID(0, 1),

E(|σ2
t |) = E(σ2

t ) = α0

1 +
∞∑
j=1

E
(
(α1Z

2
t−1 + β1)(α1Z

2
t−2 + β1) · · · (α1Z

2
t−j + β1)

)
= α0

1 +
∞∑
j=1

(α1 + β1)j
 = α0

1− α1 − β1
<∞,

by assumption, where we used the geometric sum formula. This shows that σ2 is a time series
with finite mean, and hence that P (σ2

t <∞) = 1. To see that X with σ2
t defined by (4.2) satisfies

the GARCH equations, i.e., that

σ2
t = α0 + α1X

2
t−1 + β1σ

2
t−1,

we apply X2
t−1 = σ2

t−1Z
2
t−1 to the right hand side and then use (4.2) directly to see that

α0 + α1X
2
t−1 + β1σ

2
t−1 = α0 + α1σ

2
t−1Z

2
t−1 + β1σ

2
t−1 = α0 + (α1Z

2
t−1 + β1)σ2

t−1

= α0 + α0

(
α1Z

2
t−1 + β1 +

∞∑
i=1

(α1Z
2
t−1 + β1)(α1Z

2
t−2 + β1)(α1Z

2
t−3 + β1) · · · (α1Z

2
t−1−i + β1)

)

= α0

(
1 + α1Z

2
t−1 + β1 +

∞∑
i=2

(α1Z
2
t−1 + β1)(α1Z

2
t−2 + β1) · · · (α1Z

2
t−i + β1)

)

= α0

(
1 +

∞∑
i=1

(α1Z
2
t−1 + β1)(α1Z

2
t−2 + β1) · · · (α1Z

2
t−i + β1)

)
= σ2

t .

For uniqueness and strict stationarity, we refer the reader to [11]. Clearly, X is causal by con-
struction, and weak stationarity follows from strict stationarity and the fact that by the Cauchy–
Schwarz inequality, E(X2

t ) ≤ E(σ2
t ) <∞.

We now show that if α1 +β1 ≥ 1, there is no stationary solution to the GARCH(1, 1) equations
for which σt can be written as a deterministic function of (Zs, s < t). Suppose that there was
such a solution, so that σt were independent of Zt. This would imply that E(Xt) = E(σtZt) =
E(σt)E(Zt) = 0 and, similarly, that E(X2

t ) = E(σ2
t ). Then, since X should be stationary and have

zero mean, E(X2
t ) = γX(0) = E(X2

s ) for all s, t ∈ Z. Combining these facts yield

E(X2
t ) = E(σ2

t ) = α0 + α1 E(X2
t−1) + β1 E(σ2

t−1) = α0 + E(X2
t )(α1 + β1).

Since α0 > 0, this means that α1 + β1 < 1 unless E(X2
t ) = 0 (i.e., unless Xt = 0 P -a.s. for all

t ∈ Z). Therefore we get a contradiction, so no such solution can exist.
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Let us now return to the three properties of log-returns that we noted at the start of this
chapter and see how they relate to the properties of GARCH(1, 1)-processes. First, log-returns
are often uncorrelated in time but not independent. To see that this holds for causal GARCH(1, 1)-
processes with α1 + β1 < 1, note first that since σt only depends on (Zτ , τ < t) (see above), it is
independent of Zt and we get for s < t,

Cov(Xt, Xs) = E(ZtZsσtσs) = E(Zt)E(σtσsZs) = 0,

while Xt and Xs are clearly not independent in general. Next, we noted that log-returns display
volatility clustering. That this also holds for GARCH(1, 1)-processes is obvious from the defining
equation

σ2
t = α0 + α1X

2
t−1 + β1σ

2
t−1.

Finally, log-returns typically have “fat tails”, i.e. kurtosis greather than 3. For the GARCH(1, 1)
model (cf. [22, Section 3.16]) the kurtosis is given by

E(X4
t )

E(X2
t )2 = µ4(1− (α1 + β1)2)

1− β2
1 − 2α1β1 − µ4α2

1
,

where µ4 = E(Z4
t )/E(Z2

t )2 is the kurtosis of Zt, t ∈ Z. In the common case that Zt ∼ N (0, 1),
µ4 = 3 and it is an easy exercise to deduce that in this case the kurtosis of the GARCH(1, 1)
process is indeed greater than 3. Note that this result can also be used to assess uncertainty in
volatility estimation.

For general GARCH(p, q) processes, the situation is more complicated. We no longer have a
simple expression for σ2

t , but if a similar condition to α1 + β1 < 1 holds, we have the following
result. The notation uses the fact that, similar to the ARCH process, we can rewrite the volatility
equation to

σ2
t = α0 + α(B)X2

t + β(B)σ2
t ,

where

α(z) := α1z + · · ·+ αpz
p,

β(z) := β1z + · · ·+ βqz
q.

Proposition 4.1.5 (Existence of a GARCH(p, q) process). If

α(1) + β(1) =
p∑
i=1

αi +
q∑
j=1

βj < 1,

there exists a unique weakly and strictly stationary causal solution X = (Xt, t ∈ Z) to the
GARCH(p, q) equations and a real-valued sequence (ψj)∞j=0 such that

∑∞
j=0 |ψj | < ∞ and σ2

can be expressed by

σ2
t = ψ0 +

∞∑
j=1

ψjX
2
t−j .

Conversely, if

α(1) + β(1) =
p∑
i=1

αi +
q∑
j=1

βj ≥ 1,

then no stationary and causal solution to the GARCH(p, q) equations for which σt can be written
as a deterministic function of (Zs, s < t) for all t ∈ Z exists.

For a proof, the reader is referred to [11].
Under the condition α(1) + β(1) < 1 we get, similar to the ARCH case, E(X2

t ) = E(σ2
t ), and

due to stationarity we get
E(X2

t ) = α0 + (α(1) + β(1))E(X2
t ),
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which implies that
E(X2

t ) = E(σ2
t ) = α0

1− α(1)− β(1) .

Under the assumption that E(σ4
t ) <∞ one can derive that (X2

t , t ∈ Z) is an ARMA(max{p, q}, q)
process with generating polynomials

φ(z) = 1− α(z)− β(z)

and
θ(z) = 1− β(z)

with mean α0(1− α(1)− β(1))−1, i.e., a process that can be represented by

X2
t −

max{p,q}∑
i=1

(αi + βi)X2
t−i = α0 + ηt −

q∑
j=1

βjηt−j , (4.3)

where αi := 0 for i > p, βi := 0 for i > q and ηt := X2
t − σ2

t can be shown to be white noise.

4.2 Parameter estimation and order selection

Let us introduce two methods in this section for estimation of parameters in ARCH and GARCH
models. The first one is a direct maximum likelihood method, while the second one uses the
ARMA representation to estimate the parameters αi and βi. For more methods the reader is
referred to [22].

The most common method for parameter estimation in GARCH models is some variant of
conditional maximum likelihood estimation, which we introduce below. We assume that α(1) +
β(1) < 1 so that a causal stationary solution exists and σ2

t only depends on (Zs, s < t). It is
an approximate maximum likelihood method based on the observation that a joint probability
density function can be written as a product of a conditional density function and a marginal
density function, i.e., fX,Y (x, y) = f(x|y)fY (y). Generalizing this approach to a set of observations
(xj , j = 1, . . . , n) of a GARCH(p, q) process, we get for the density function ofXn := (X1, . . . , Xn)′

fXn
((x1, . . . , xn)′) = f(xn|xn−1, xn−2, . . . , x1) · · · f(xp+1|xp, xp−1, . . . , x1)f(xp, xp−1, . . . , x1)

= f(xp, xp−1, . . . , x1)
n∏

t=p+1
f(xt|xt−1, xt−2, . . . , x1)

Now, since
Xt = σtZt,

and

σ2
t = α0 +

p∑
j=1

αjX
2
t−j +

q∑
i=1

βiσ
2
t−i, (4.4)

the distribution of Xt, t ≥ p + 1, conditioned on X1, X2, . . . , Xt−1 is known if the values
(σ2
p+1−j , j = 1, 2, . . . , q) are assumed to be known. Moreover, when a random variable Y belongs

to the location-scale family, which includes the Gaussian distribution and the (generalized) t-
distribution, and have zero mean, one can show that in terms of its density fY , fσY (x) = 1

σfY ( xσ ),
σ > 0. This means that we can express the density of Xt in terms of Zt if Zt belongs to the
location-scale family. Finally, the term f(xp, xp−1, . . . , x1) in (4.2) is deemed too complicated to
handle, so it is dropped and we end up with the method below.
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Method 4.2.1 (Conditional maximum likelihood estimation). The conditional maximum likeli-
hood estimators (α̂0, . . . , α̂p, β̂1, . . . , β̂q, θ̂Z) are obtained as the values that maximize the condi-
tional likelihood function

L(α0, . . . , αp, β1, . . . , βq, θZ) =
n∏

t=p+1

1
σt
fZ

(
xt
σt

)
(4.5)

where fZ is the density of the IID noise Z and θZ is any other parameter Z depends on (such as the
degrees of freedom if Z is t-distributed). The likelihood function is a function of the parameters
α0, . . . , αp, β1, . . . , βq via σt, which is computed recursively with (4.4), along with supposing for
all t ≤ 0 that

σt =
√
σ̂2,

Xt = 0,

where σ̂2 is the sample variance of {x1, x2, . . . , xn}. Equivalently, one obtains the parameter
estimates (α̂0, . . . , α̂p, β̂1, . . . , β̂q, θ̂Z) as the values that minimize − lnL(α0, . . . , αp, β1, . . . , βq, θZ).

The residuals for this estimation are the numbers (xt/σ̂t, t = p+1, p+2, . . . , n) where σ̂t is the
approximated forecasted conditional variance given (Zs, s < t). These are obtained by recursion
using (4.4) with the true parameters replaced by the maximum likelihood estimates with the same
initial conditions as in the algorithm above. They should approximately resemble the process Z
in distribution. We leave it as an exercise to show that for Z ∼ IIDN (0, 1),

− lnL(α0, . . . , αp, β1, . . . , βq) = 1
2

n∑
t=p+1

(
ln 2π + ln σ2

t + X2
t

σ2
t

)
.

The final method uses the ARMA representation of a GARCH process. It often provides good
approximations in practice but the statistical properties have not been investigated rigorously so
far.

Method 4.2.2 (Two-pass estimation of GARCH). Assume that a zero-mean set of observations
(xj , j = 1, . . . , n) is given. Use the maximum likelihood method 3.2.19 to estimate the parameters
of the ARMA representation (4.3) for (x2

j , j = 1, . . . , n), denoted by φ̂i and θ̂i. Obtain the
parameter estimates of the GARCH coefficients by setting

β̂i := θ̂i and α̂i := φ̂i − θ̂i.

If this final method is used, order selection can be done using the same methods as for ARMA
processes, using information criteria for example. This can be done for the conditional maximum
likelihood method too, but then one should control for the fact that only a subset of observations
are used in the likelihood function (4.5). For example, the AICC becomes

Method 4.2.3 (AICC criterion). Choose p, q, α0, . . . , αp, β1, . . . , βq and θZ to minimize

−2 n

n− p
lnL(α0, . . . , αp, β1, . . . , βq, θZ) + 2n m+ 1

n−m− 2 ,

where n is the sample size and m is the number of non-zero estimated parameters.

4.3 Model building and ARMA−GARCH processes

Sometimes a time series of returns on some asset may display some significant autocorrelations,
which is to say it is unlikely that it is white noise. In this case, an ARMA−GARCH-model may
be appropriate.
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Definition 4.3.1. A time seriesX is said to be an ARMA−GARCH process if it is an ARMA(p, q)
process driven by GARCH(p̃, q̃) noise, i.e., if it is stationary and

Xt −
p∑
j=1

φjXt−j = σtZt +
q∑
j=1

θjσt−jZt−j , (4.6)

where Z ∼ IID(0, 1), the polynomials (1−
∑p
j=1 φjz

j) and (1 +
∑q
j=1 θjz

j) have no common zeros
and

σ2
t = α0 +

p̃∑
j=1

αjσ
2
t−jZ

2
t−j +

q̃∑
i=1

βiσ
2
t−i,

with α0 > 0, αj ≥ 0 for j = 1, . . . , p̃, βi ≥ 0 for i = 1, . . . , q̃. Furthermore, it is called an
ARMA−GARCH process with mean µ if X − µ is an ARMA−GARCH process.

Such a process exists under the same conditions as for a GARCH process, and it is
causal if both the ARMA part and GARCH part are causal. Typically, the parameters
(φ1, . . . , φp, θ1, . . . , θq, α0, α1, . . . , αp̃, β1, . . . , βq̃) are estimated using conditional maximum likeli-
hood, as in the previous section. For example, if Z ∼ IIDN (0, 1) then, if φ(z) 6= 0 and θ(z) 6= 0 for
all z ∈ C such that |z| ≤ 1 and if also α(1) +β(1) < 1, we have that conditioned on (Xt−j , j ∈ N),

Xt|(Xt−j , j ∈ N) ∼ N

 p∑
j=1

φjXt−j +
q∑
j=1

θjσt−jZt−j , α0 +
p̃∑
j=1

αjσ
2
t−jZ

2
t−j +

q̃∑
i=1

βiσ
2
t−i

 ,

for all t ∈ Z, and X is said to be a conditional mean/variance model. The unknown observations
of σ and Z are approximated by recursion with proper initialization, similar to the pure GARCH
case, see [11] for further details.

We summarize the essential steps in a suggested model building procedure for
ARMA−GARCH models below.

• Remove trend and seasonality until you believe that the data can be modeled as a stationary
time series. For the time series of this chapter, this mainly involves removing the sample
mean.

• If one determines that the conditional mean is non-zero, i.e., by performing statistical tests
and inspecting the sample ACFs and PACFs, fit an ARMA process to the data as described
in Chapter 3.

• Determine from the residuals of the ARMA fit if the white noise of the model should be
modeled using a GARCH process, i.e., by inspecting the sample ACFs and PACFs of the
squared residuals.

• Fit several GARCH processes to the residuals and compare them using an information
criterion.

• Estimate the final full model using conditional maximum likelihood.

• Compute the residuals R̂t = (Xt − X̂t)/
√
σ̂t for this fit and check that they are consistent

with the specified distribution and temporal covariance structure for Z. If they are, the
model is considered to be adequate for the data.
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4.4 Extensions

Even though GARCH models are much more flexible than the simple Gaussian model Xt = σZt,
σ ∈ R, there are features of log-returns that GARCH models fail to capture. Extensions have
been developed to account for these failures and we end this chapter by mentioning two of them.
They are both random variance models, i.e., of the form X = (Xt, t ∈ Z) with Xt = σtZt for all
t ∈ Z, where Z ∼ IID(0, 1) and σ = (σt, t ∈ Z) is a stochastic process.

In a causal GARCH model, the value of the volatility σt depends only on the past values of
the squares (X2

t−j , j ∈ N), which is to say that it does not depend on the sign of previous values.
However, the volatility of log-returns typically responds differently to positive/negative values of
(Xt−j , j ∈ N). The market tends to behave more erratically after a big negative return. The
following extension of a GARCH model takes this into account.

Definition 4.4.1. A stochastic process X = (Xt, t ∈ Z) is called an EGARCH(p, q) process if it
is stationary and satisfies the EGARCH equations

Xt = σtZt,

where Z ∼ IID(0, 1) has a symmetric distribution, i.e., Zt and −Zt have the same distribution,
and

ln(σ2
t ) = α0 +

p∑
j=1

αjg(Zt−j) +
q∑
i=1

βi ln(σ2
t−i)

with g(x) = x+ λ(|x| − E(|Zt|)) and α0, α1, . . . αp, β1, . . . , βq, λ being real numbers.

The parameter λ determines how g(Zt) reacts to different signs of Zt. A major difference
between GARCH and EGARCH processes is that the previous volatility values in the latter model
have a multiplicative effect on the current volatility as opposed to an additive one, which can be
seen from

σ2
t = exp(α0) ·

p∏
j=1

exp(αjg(Zt−j)) ·
q∏
i=1

σ2βi
t−i.

This equation also explains why we do not have any positivity constraints on the parameters of
the EGARCH model since the exponential function is always positive.

Similar to the processes above, we can rewrite the volatility equations using polynomials of the
backward shift operator,

ln(σ2
t ) = α0 + α(B)g(Zt) + β(B) ln(σ2

t ),

where

α(z) := α1z + · · ·+ αpz
p,

β(z) := β1z + · · ·+ βqz
q.

Since Zt and −Zt are assumed to follow the same distribution, it holds that E(Zt|Zt|) = E(−Zt|−
Zt|) which implies that E(Zt|Zt|) = −E(Zt|Zt|), i.e., that E(Zt|Zt|) = 0 for all t ∈ Z. From that
point on it is an exercise to show that g(Z) = (g(Zt−1), t ∈ Z) ∼ WN(0, 1 + λ2 Var(|Zt|)) and
hence that ln(σ2)/αp′ := (ln(σ2

t )/αp′ , t ∈ Z) is an ARMA(q, p − p′) (where p′ is the first j ∈ N
such that αj 6= 0) process with mean µ = α0/(αp′(1− β(1))).

If 1− β(z) 6= 0 for all z ∈ C such that |z| = 1, and 1− β(z) and α(z) have no common zeros,
then, one can show that ln(σ2) defined by the equations above is a strictly stationary time series
which implies that the same is true for σ2. If 1 − β(z) 6= 0 for all z ∈ C such that |z| ≤ 1, then
ln(σ2) is also causal and the process X defined by the EGARCH equations is strictly stationary
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and causal, and therefore exists in the weakly stationary sense if it has finite variance. One can
show that this is true if Z ∼ IIDN (0, 1). In fact, then all moments of the process exist, which
indicates that it is hard for an EGARCH model to capture the “fat tails” of log-returns. Therefore,
Z is often assumed to be non-normal. Given the distribution of Z, estimation for EGARCH models
is accomplished via conditional maximum likelihood in the same way as for GARCH models.

The final model we consider tries to capture the fact that volatility can display “long memory”.
This means, for our purposes, that the sample ACF of the squares of the set of log-returns may
decay very slowly. This is bad news for us if we want to model the log-returns as a GARCH
process, since we have noted that, under suitable conditions, the squares of such a process follow
an ARMA process

φ(B)X2
t = α0 + θ(B)ηt,

where φ(z) = 1−α(z)−β(z), θ(z) = 1−β(z) and ηt = X2
t −σ2

t is white noise, and the ACF of an
ARMA process decays rapidly. In the previous chapter we noted that ARIMA processes, on the
other hand, have the property of a very slowly decaying sample ACF. So if we want this property
to hold also for X2 = (X2

t , t ∈ Z), we should require that φ(B) = φ̃(B)(1 − B), where φ̃ is some
polynomial such that φ̃(z) 6= 0 for all z ∈ C with |z| ≤ 1, i.e., that φ has a simple root at 1. This,
then, motivates the definition of the IGARCH process as a kind of integrated GARCH process.

Definition 4.4.2. A stochastic process X = (Xt, t ∈ Z) is called an IGARCH(p, q) process if it
is a strictly stationary solution to the GARCH equations

Xt = σtZt,

where Z ∼ IID(0, 1), and

σ2
t = α0 +

p∑
j=1

αjX
2
t−j +

q∑
i=1

βiσ
2
t−i

with α1, . . . , αp, β1, . . . , βq being non-negative numbers, α0 > 0 and
∑p
i=1 αi +

∑q
j=1 βj = 1.

It has been shown that a causal strictly stationary IGARCH(p, q) process exists if the distribu-
tion of Zt has unbounded support and no atom at zero (true if Z ∼ IIDN (0, 1)), but then it has
infinite variance, which motivates the use of strict instead of weak stationarity in the definition.
Despite this fact, it appears to be useful in practice since GARCH models fitted to empirical data
often display the unit-root property α(1) + β(1) ≈ 1.
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CHAPTER 5
Nonlinear models and nonparametric methods

This chapter is mainly based on [22]. It is important to mention that white noise in [22] is called
iid noise in [6] as well as here. The reader should be aware of this when looking for details in [22]
and comparing it to the presented content of these lecture notes.

5.1 Introduction to nonlinear models

As has been seen in Chapter 3, a zero mean linear model can be expressed by

Xt =
∑
j∈Z

ψjZt−j ,

where Z ∼WN(0, σ2) and (ψj , j ∈ Z) is a sequence of real numbers.
This model might not always be sufficient for observed data. In this chapter we discuss more

general models, how to test them and how to do forecasting, which becomes a lot more involved in
this case than for linear models. Let us therefore consider the more general form of a time series
model

Xt = f(Zs, s ≤ t),
where f is some not necessary linear function. If we denote by Ft the sigma algebra generated by
(Xs, s ≤ t) and (Zs, s ≤ t), i.e., (Ft, t ∈ Z) is the filtration generated by X and Z, the conditional
mean µt of Xt given Ft−1 is given by

µt = E(Xt|Ft−1) =: g(Ft−1)

and the conditional variance σ2
t by

σ2
t = Var(Xt|Ft−1) = E

(
(Xt − E(Xt|Ft−1))2 |Ft−1

)
=: h(Ft−1),

where g and h are well-defined functions and h is additionally positive. Let us restrict in what
follows our class of nonlinear models to those which can be written as

Xt = g(Ft−1) +
√
h(Ft−1)Zt,

where Ft−1 represents the the information available up to time t − 1, generated by X, Z and
possibly some other independent time series. If g is nonlinear, the model is called nonlinear in
mean, while it is called nonlinear in variance if h(Ft−1) is time variant. The models in Chapter 3
are linear. The models introduced in Chapter 4 are nonlinear in variance.

Let us in what follows introduce three examples of nonlinear models, the bilinear model and
two switching models. For more examples the reader is referred to [22].

73
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Example 5.1.1. The basic idea of bilinear models is to extend linear models, which can be seen
as first-order Taylor expansion of nonlinear models, by the second-order Taylor terms. This leads
to

Xt = c+
p∑
i=1

φiXt−i −
q∑
j=1

θjZt−j +
m∑
i=1

s∑
j=1

βijXt−iZt−j + Zt,

where p, q, m, and s are nonnegative integers, the other parameters are real-valued, and Z is
a white noise. This model was introduced by Grander and Andersen [14] and has been widely
investigated.

The next two models are switching models – a process which switches between two or more
simple models (or regimes) depending on a state of an observed or unobserved condition. Such
models are not uncommon in finance. In [22], the author considers a model for the monthly
employment rate, which takes on two different regimes depending on which side of a given threshold
the value of the rate is. This is motivated by regulators being more inclined to take action when
the employment rate is low, thus changing the dynamics of the time series.

Example 5.1.2. A time series X = (Xt, t ∈ Z) follows a k-regime self-exciting threshold autore-
gressive (SETAR) model if it satisfies

Xt = cj +
p∑
i=1

φjiXt−i + Zjt if Xt−d ∈ [γj−1, γj),

where d ∈ N and the parameters cj , φji, γj−1, γj are real valued with i = 1, . . . , p, j = 1, . . . , k and
the series Z1, . . . , Zk with Zj = (Zjt, t ∈ Z) are mutually independent IID(0, σ2

j ) noises.

There are also threshold generalizations of ARMA and GARCH models which are formulated
in the same way. They can have nice qualitative properties when it comes to describing the
dynamics of data, but are numerically hard to estimate with potentially unreliable results. One
possibility is to use conditional least squares, based on minimizing

S(θ) :=
n∑

t=p+1
(Xt − Eθ(Xt|Ft−1))2

,

where the conditional expectation is computed with respect to θ := cj , φji, γj−1, γj .

The third nonlinear model that we want to mention here is the so called Markov switching
autoregressive model. In order to introduce it, we first have to give the definition of a Markov
process.

Definition 5.1.3. A stochastic process X = (Xt, t ∈ T) on some index set T is a Markov process
if its conditional distribution function satisfies

P (Xh|Xs, s ≤ t) = P (Xh|Xt)

for arbitrary h > t. If X is a discrete-time stochastic process, i.e., T = N or Z, then the property
becomes

P (Xh|Xt, Xt−1, . . .) = P (Xh|Xt)

for arbitrary h > t and the process is also known as (first-order) Markov chain.

The model below follows two different AR(p) models depending on what state a given Markov
chain S is in. The chain S could describe the state of “the market” if X is a model for log-returns
of a stock. For example, we could let St = 1 denote the belief that the market is in a “bear state”
and St = 2 that the market is in a “bull state”.
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Example 5.1.4. A time series X = (Xt, t ∈ Z) follows a Markov switching autoregressive model
(MSA for short) with two states if it satisfies

Xt =
{
c1 +

∑p
i=1 φ1iXt−i + Z1t if St = 1,

c2 +
∑p
i=1 φ2iXt−i + Z2t if St = 2,

where S assumes values in {1, 2} and is a Markov chain with transition probabilities

P (St = 2|St−1 = 1) = w1,

P (St = 1|St−1 = 2) = w2

with w1, w2 ∈ [0, 1]. The time series Z1 = (Z1t, t ∈ Z) and Z2 = (Z2t, t ∈ Z) are IID(0, σ2) noises
and independent of each other.

Markov switching models are hard to estimate since they depend on an unobserved state S.
One common approach is to use Markov chain Monte Carlo (MCMC) in a Bayesian framework.

5.2 Nonlinearity tests

The basic idea behind various nonlinearity tests is that the residuals of the fit of
a given linear model should (more or less) fulfill the assumptions that one makes
about the driving noise. The null hypothesis is typically some variant of H0 =
{the linear model with the given assumption is adequate} and the alternative hypothesis vary.
The majority of tests only control the risk of doing type I errors, so that typically
P (make a type I error) = P (reject H0|H0 is true) ≤ 0.05. Therefore, there is no formal prob-
lem with specifying different alternative hypotheses H1 in a test. In fact, alternative hypotheses
were not present in the original formulation of hypothesis tests. Thinking about null and alter-
native hypotheses must be made carefully in a time series context. Since we can formulate the
null hypothesis as H0 = {the data is generated by the assumed (linear model)}, H0 will almost
always be false since all models are a simplification of reality. But a model can still be useful even
if H0 is false. Moreover, it is not clear what to do if the test rejects H0. If we have H1 = ¬H0 all
we can do is give up. But typically, the tests are designed to have good power against a specific
H1 like H1 = {the driving noise follows a GARCH process}, which gives a guideline about what
to do if the test is rejected. The power of a test is defined as P (reject H0|H1 is true). Therefore,
when applying hypothesis tests in this context one has to carefully think about:

• What are the statistical assumptions for the test?

• Does a rejection mean that my model is not useful for the purpose I am working with?

• What aspect of my data leads to the test rejecting the null hypothesis?

• Against what H1 does my test have good power? What does that suggest that I do next?

In this section we discuss both, nonparametric and parametric statistics that have decent power
against some of the models considered in Section 5.1.

5.2.1 Nonparametric tests

The following test has good power for testing ARMA models driven by Z = IIDN (0, 1) versus
ARMA models driven by a GARCH process as the noise term Z. It is based on the assumption
that if the residuals are IID, the ACF of all powers of them should not be significantly different
from zero.
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Method 5.2.1 (Q-statistic of squared residuals). This method by McLeod and Li applies the
Ljung–Box statistics 2.3.5 to the squared residuals of an ARMA(p, q) model to check for model
inadequacy. The test statistic is

Q(m) := n(n+ 2)
m∑
i=1

ρ̂2
i (Z2

t )
n− i

,

where n is the number of observations, m is a properly chosen number of autocorrelations used
in the test, (Zt, t = 1, . . . , n) denotes the residual series, and ρ̂i(Z2

t ) is the lag i autocorrelation
function of Z2

t . If the entertained linear model is adequate, Q(m) is asymptotically χ2
m−p−q-

distributed.
The null hypothesis of the test can be formulated as

H0 : β1 = · · · = βm = 0,
where the parameter βi is the coefficient of Z2

t−i in the linear regression

Z2
t = β0 +

m∑
i=1

βiZ
2
t−i + et

for t = m+ 1, . . . , n with innovations (et, t = m+ 1, . . . , n).
Method 5.2.2 (Bispectral test). This test can be used to test for linearity and Gaussianity. It
depends on the result that a properly normalized bispectrum of a linear time series is constant
over all frequencies and that the constant is equal to zero under normality. Here, the bispectrum
of a time series is the Fourier transform of its third-order moments, but let us treat this in detail
in what follows. For a causal ARMA(p, q) process

Xt = µ+
∞∑
i=0

ψiZt−i,

where µ is a constant, Z ∼ IID(0, σ2) and (ψj , j ∈ Z) is a sequence of real numbers with ψ0 := 1
and ψk := 0 for k < 0, the centered third-order moment is defined as

c(u, v) := E ((Xt − µ)(Xt+u − µ)(Xt+v − µ)) = E(Z3
t )

∞∑
k=−∞

ψkψk+uψk+v

for u, v ∈ Z and arbitrary t ∈ Z due to stationary. For frequencies w1 and w2 the Fourier transform
of c is then given by

b3(w1, w2) :== E(Z3
t )

4π2 Γ(−(w1 + w2))Γ(w1)Γ(w2),

where Γ is defined by

Γ(w) :=
∞∑
u=0

ψu exp(−iwu)

and i =
√
−1. Since the spectral density of X is given by

p(w) = σ2

2π |Γ(w)|2,

one obtains that the bispectrum

b(w1, w2) := |b3(w1, w2)|2
p(w1)p(w2)p(w1 + w2)

is constant for all (w1, w2). The bispectral test estimates b over a suitably chosen grid of points and
applies a test statistic similar to Hotelling’s T 2 statistic to check the constancy. It can be shown
that for a linear Gaussian time series, the white noise sequence (Zt, t ∈ Z) is Gaussian. Since the
third moment of a standard normal random variable is zero, E(Z3

t ) = 0 and the bispectrum is zero
for all frequencies.
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5.2.2 Parametric tests

To conclude the section about nonlinearity tests we introduce one parametric method and remark
at the end how this can be extended. A parametric test assumes that the residuals are generated
from a specific model.

Method 5.2.3 (RESET test). Ramsey [19] proposes a specification test for linear least-squares
regression analysis referred to as a RESET test, which is readily applicable to linear AR models
and which stands for Regression Equation Specification Error Test. Therefore consider the linear
AR(p) model

Xt = φ0 +
p∑
j=1

φjXt−j + Zt.

The first step of the RESET test is to obtain the least-squares estimate (φ̂0, φ̂1, . . . , φ̂p), e.g., by
Method 3.2.18, and compute the fit

X̂t := φ̂0 +
p∑
j=1

φ̂jXt−j ,

the residuals Ẑt := Xt − X̂t, and the sum of squared residuals

SSR0 :=
n∑

t=p+1
Ẑ2
t ,

where n is as usual the sample size.

In the second step, consider the linear regression

Ẑt = α10 +
p∑
j=1

α1jXt−j +
s∑
i=1

α2iX̂
1+i
t + Vt

for some s ≥ 1 and innovations (Vt, t = 1, . . . , n) and compute the least-squares residuals

V̂t = Ẑt −

α̂10 +
p∑
j=1

α̂1jXt−j +
s∑
i=1

α̂2iX̂
1+i
t


and the sum of squared residuals

SSR1 :=
n∑

t=p+1
V̂ 2
t

of the regression. The idea of the RESET test is that if the linear AR(p) model is adequate, then
all α1i and α2j should be zero. This can be tested by using the F statistic given by

F := (SSR0 − SSR1)(n− p− g)
SSR1g

,

where g := s+ p+ 1, which under linearity and normality assumption has an F distribution with
degrees of freedom g and n− p− g.

We remark that there exist several improvements of the RESET test. We here mention only
the modification of the second step of the RESET test by Keenan and a different choice of the
regressor by Tsay. For details the reader is referred to the literature.
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5.3 Nonparametric methods for model fitting

Nonparametric methods are highly data dependent and can easily result in overfitting. They are
used if there is not sufficient knowledge about the nonlinear structure between random variables.
We will discuss nonparametric methods in a simple autoregressive context where we have a time
series X = (Xt, t ∈ Z) that can be modeled by

Xt = m(Xt−r) + Zt, (5.1)

where Z ∼ IID(0, σ2). However, the method we discuss do not directly use the property that Xt

and Xt−r are observations from the same time series. Therefore, we generalize and assume that
we are given two time series X and Y that are related by

Yt = m(Xt) + Zt, (5.2)

where m is an arbitrary, smooth, but unknown function and Z ∼ IID(0, σ2). Our goal is to
estimate the nonlinear function m from the data. Assuming that Zt and Xt are independent, we
can view this as attempting to estimate E(Yt|Xt). To start, letX = x be constant and independent
of Z. Then the problem simplifies to

yt = m(x) + Zt,

and taking the sample average yields

n−1
n∑
t=1

yt = m(x) + n−1
n∑
t=1

Zt.

By the properties of the iid noise and the law of large numbers, the averaged noise converges to
zero for large n. Therefore

ȳ := n−1
n∑
t=1

yt

is a consistent estimator for m(x), i.e., ȳ ≈ m(x).

As long as m is sufficiently smooth and Xt ≈ x still almost constant, the method continues to
work fine. In other cases one possibility is to use a weighted average of y instead of the simple
one, which we denote by

m̂(x) :=
n∑
t=1

wt(x)yt, (5.3)

where the weights wt(x) are larger for those yt with xt close to x and smaller for those far away.
The weights sum up to one.

We introduce two methods to determine the weights in what follows.

Method 5.3.1 (Kernel regression). This method determines the weights by a kernel, which is
typically a probability density function denoted by K : R → R+ and which satisfies that it is
nonnegative and ∫

K(z) dz = 1.

To increase the flexibility in distance measure, the kernel is often rescaled by the bandwidth h > 0
and becomes

Kh(x) = h−1K(xh−1)

and ∫
Kh(z) dz = 1.



5.3. NONPARAMETRIC METHODS FOR MODEL FITTING 79

Define the weight function by
wt(x) := Kh(x− xt)∑n

s=1Kh(x− xs)
.

Plugging this into Equation (5.3), the Nadaraya–Watson kernel estimator

m̂(x) =
n∑
t=1

wt(x)yt =
∑n
t=1Kh(x− xt)yt∑n
t=1Kh(x− xt)

is obtained (see [16, 23]). Possible choices of the kernel include the Gaussian kernel

Kh(x) := (2πh2)−1/2 exp(−(2h2)−1x2)

and the Epanechnikov kernel [9]

Kh(x) := 0.75h−1(1− (x/h)2)I(|x/h| ≤ 1),

where I denotes the indicator function, i.e., I(A) = 1 if A holds and I(A) = 0 else.

To understand the role of the bandwidth h one observes that, for the Epanechikov kernel,
m̂(xt) → yt for h → 0 and m̂(xt) → ȳ for h → +∞. Therefore one could regard h as the
parameter that chooses the size of the neighborhood that is used for smoothing. In general
bandwidth selection is a well-known problem in kernel regression. In what follows we introduce
two methods to determine a “good” choice for h. For an overview to bandwidth selection, the
reader is referred to Härdle [15] as well as Fan and Yao [10].

Method 5.3.2 (Bandwidth selection with MISE). This method is based on the asymptotic ex-
pansion of the mean integrated squared error (MISE for short) for kernel smoothers

MISE := E
(∫ ∞
−∞

(m̂(x)−m(x))2 dx
)
,

where m is the true function and m̂ the estimator which depends on h. Under some regularity con-
ditions on m, one can derive the optimal bandwidth that minimizes the MISE. This will typically
depend on several unknown quantities that must be estimated from the data with preliminary
smoothing, i.e., computing m̂ with a reference bandwith selector. A normal reference bandwidth
selector is given by Fan and Yao by

ĥopt =
{

1.06 s n−1/5 for the Gaussian kernel,
2.34 s n−1/5 for the Epanechnikov kernel,

where s is the sample standard error of the independent variable, which is assumed to be stationary.
One way of choosing s is to take the sample standard deviation of the data. This works well if
the data is normally distributed but might else lead to oversmoothing. For details the reader is
referred to [21, Section 3.4.2].

Method 5.3.3 (Bandwidth selection with cross validation). The leave-one-out cross validation
starts with omitting one observation (xj , yj). The remaining n− 1 data points are used to obtain
the following smoother at xj :

m̂h,j(xj) :=
∑
t 6=j

wt(xj)yt,

which is an estimate of yj where the weights wt(xj) sum to 1. Afterwards the same is performed
for all remaining n− 1 observations and

CV(h) :=
n∑
j=1

(yj − m̂h,j(xj))2W (xj)
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is defined, where W is a nonnegative weight function satisfying
∑n
j=1W (xj) = 1 that can be

used to down-weight the boundary points if necessary. This might be the case since points at
the boundary have often fewer neighboring observations. The function CV is called the cross-
validation function because it validates the ability of the smoother to predict y. The bandwidth h
is chosen such that CV is minimized.

Having presented two methods to choose the bandwidth in kernel regression, we note that
m̂(x) can equally be defined as the value â that minimizes

L(a) :=
n∑
t=1

(yt − a)2Kh(x− xt).

This leads a more general method for the estimation of m in Equation (5.2).
Method 5.3.4 (Local linear regression method). Denote the available observations by ((xt, yt), t =
1, . . . , n). The local linear regression method to nonparametric regression is to find a and b that
minimize

L(a, b) :=
n∑
t=1

(yt − a− b(x− xt))2Kh(x− xt),

where Kh is a kernel with bandwidth h as in Method 5.3.2. Denote the minimum of a by â, which
is the estimate of m(x), while the minimum of b denoted by b̂ can be used as an estimate of m′(x).
The least-squares problem has a closed-form solution, which is given by

â =
∑n
t=1 wt(x)yt∑n
t=1 wt(x)

and
b̂ =

∑n
t=1 w̃t(x)yt∑n
t=1 wt(x) ,

where
wt(x) := Kh(x− xt)(sn,2(x)− (x− xt)sn,1(x)),
w̃t(x) := Kh(x− xt)((x− xt)sn,0(x)− sn,1(x)),

and
sn,j(x) :=

n∑
t=1

Kh(x− xt)(x− xt)j

for j = 0, 1, 2. We leave the derivation as an exercise to the interested reader.
In practice, to avoid that the denominator becomes zero,

m̂(x) :=
∑n
t=1 wt(x)yt∑n

t=1 wt(x) + n−2

is used as an estimate for m(x).

One can show that if m in Equation (5.2) is twice continuously differentiable, using local linear
regression results in smaller mean squared prediction errors than kernel regression. Let us finally
note that more complex autoregressive models like

Xt = m1(Xt−1) +m2(Xt−2) + . . .+mk(Xt−k) + Zt,

where (mi)ki=1 is a sequence of smooth functions, or

Xt = m(Xt−1, . . . , Xt−k) + Zt,

where m : Rk → R is a smooth function, can be handled by multivariate kernels, such as the
multivariate Gaussian density Kh : Rk → R

Kh(x) = (2πh2)−k/2(det Σ)−1/2 exp(−(2h2)−1x′Σ−1x).
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5.4 Forecasting and evaluation

We have seen in Section 2.4 that forecasting of linear time series can be done with closed-form
formulas. This does not hold for most nonlinear models when the forecast horizon is greater
than 1. In what follows we introduce parametric bootstrapping to compute nonlinear forecasts.

Method 5.4.1 (Parametric bootstrap). Given data (X1, X2, . . . , Xn), we want to forecast Xn+h
for some h > 0. We denote this forecast by Xn(h). The parametric bootstrap computes forecasts
of Xn+1, . . . , Xn+h sequentially in the following way. For i = 1, . . . , h repeat:

(i) Generate a random sample of the driving noise at time n + i according to the underlying
model.

(ii) Compute X̃n+i using the generated sample, the model, the data, and the previous forecasts
X̃n+1, . . . , X̃n+i−1.

(iii) Repeat the previous two steps K times to get K realizations (X̃(k)
n+i, k = 1, . . . ,K). A point

forecast for Xn+h is then obtained via the sample average Xn(h) = K−1∑K
k=1 X̃

(k)
n+h.

This procedure is also known as Monte Carlo simulation. If the model is adequate, Xn(h) ≈
E(Xn+h|Xn, Xn−1, . . . , X1). The samples that make up the average could also be used to obtain
an empirical distribution function which might be of use in the following methods when forecasting
evaluation is done.

In what follows we introduce different methods to evaluate the performance of an h-step ahead
forecast. Therefore let us do the following: Given a data set (X1, X2, . . . , XN ), we subdivide it
into two subsamples: (X1, X2, . . . , Xn), which we refer to as training subsample (or estimation
subsample), and (Xn+h, Xn+h+2, . . . , XN ), referred to as the test subsample (or forecasting sub-
sample). We will use the first one to build a nonlinear model. We derive the performance then
by comparing the obtained forecasts computed by the model with the data of the test subsample.
It is usually appropriate to use a rolling forecasting procedure, so that (X1, X2, . . . , Xn) is used to
compute Xn(h), (X1, X2, X3, . . . , Xn+1) is used to compute Xn+1(h) and so on.

In what follows three measures are used to get an idea of the performance which are commonly
used in the literature. Nevertheless, we should mention that there exists no widely accepted
measure to compare models. We denote by m = N − n − h + 1 the size of the test subsample.
Stationarity (strict or weak) is implicitly assumed.

Method 5.4.2 (Directional measure). A typical measure for the evaluation of the performance
of forecasts is to use a 2× 2 contingency table that summarizes the number of “hits” and “misses”
of the model in predicting ups and downs up of Xn+h in the test subsample. Let the table be
given by

Actual
Predicted Up Down

Up m11 m12 m10
Down m21 m22 m20

m01 m02 m

where m = N − n = m01 +m02 = m10 +m20 is the total number of h-step-ahead forecasts in the
test subsample, m11 is the number of “hits” in predicting upward movements, m21 is the number of
“misses” in predicting downward movements of the market, and so on. The entries in the rightmost
column and bottom row are calculated by mi0 = mi1 + mi2 and m0i = m1i + m2i respectively,
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where i ∈ {1, 2}. It is clear that larger values in m11 and m22 indicate better forecasts. The test
statistic

χ2 :=
2∑

i,j=1

(mij −mi0m0j/m)2

mi0m0j/m

can be used to evaluate the performance of the model, where a large χ2 signifies that the model
outperforms the chance of random choice. Under mild assumptions, χ2 has an asymptotic χ2

distribution with one degree of freedom. Therefore we say that our forecasts are better than
random choice at level α if χ2 ≥ χ2

1−α, where χ2
1−α is the 1 − α-percentile of the χ2-distribution

with 1 degree of freedom. For example, the forecasts are better than random choice at the 5% level
if χ2 ≥ χ2

0.95 = 3.841, which is to be understood in the sense that if we were to predict upward
and downward movements in the data using random choice, there would be less than 5% chance
of observing χ2 ≥ 3.841. For more details the reader is referred to the literature, especially to [7].

Method 5.4.3 (Magnitude measure). Three statistics that are commonly used to measure per-
formance of point forecasts are

• the mean squared error

MSE(h) := m−1
m−1∑
j=0

(Xn+h+j −Xn+j(h))2,

• the mean absolute deviation

MAD(h) := m−1
m−1∑
j=0
|Xn+h+j −Xn+j(h))|,

• the mean absolute percentage error

MAPE(h) := m−1
m−1∑
j=0

∣∣∣∣Xn+j(h)
Xn+h+j

− 1
∣∣∣∣ ,

where m is the number of h-step-ahead data points available in the test subsample. Note that
the error computation is done between the data from the test subsample and the h-step-ahead
forecasts computed from the model that was derived from the training subsample.

In applications one often chooses one of the above measures and then the model with the
smallest magnitude on that measure. This is regarded as the best h-step-ahead forecasting model.
Be aware that it might happen that different models are chosen for different forecast horizons h. For
limitations in model comparison of the different measures, the reader is referred to the literature.

The following measure is based on the observation that if X is a continuous random variable
with cumulative distribution function FX , then the distribution of the random variable Y =
FX(X) ∼ U([0, 1]). This follows by the calculation P (Y ≤ y) = P (FX(X) ≤ y) = P (X ≤
F−1(y)) = F (F−1(y)) = y for y ∈ [0, 1]. The inverse exists since for continuous random variables
X, FX is strictly increasing.

The measure is different from the ones above in that it does not only measure the forecasting
performance of the considered model but also the goodness of fit.

Method 5.4.4 (Distributional measure). For each data point Xn+h+j , j = 0, . . . ,m − 1, in the
test subsample, compute the empirical distribution function F̂

F̂j(y) = 1
K

K∑
k=1

I(X̃(k)
n+h+j ≤ y)
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out of the sample obtained by the parametric bootstrap method 5.4.1 for the h-step-ahead forecast
Xn+h+j(h). Use the test subsample to compute

un+j(h) := F̂j(Xn+h+j)

for all j = 0, . . . ,m − 1, where m denotes the total number of h-step-ahead forecasts in the test
subsample. If the model is adequate, then (un+j(h), j = 0, . . . ,m − 1) will behave like a random
sample from the uniform distribution on [0, 1]. For sufficiently large m, the Kolmogorov–Smirnov
statistic

D = sup
x∈[0,1]

∣∣∣∣∣∣ 1
m

m−1∑
j=0

I(un+j(h) ≤ x)− x

∣∣∣∣∣∣
can be used to test the sample with respect to the uniform distribution. The (asymptotic) dis-
tribution for this statistic is complicated but if the model is adequate the statistic D should be
small. This fact can be used to choose between several models.
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