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a b s t r a c t 

Cross-validation (CV) is often used to estimate the generalization capability of a learning model. The 

variance of CV error has a considerable impact on the accuracy of CV estimator and the adequacy of the 

learning model, so it is very important to analyze CV variance. The aim of this paper is to investigate how 

to improve the accuracy of the error estimation based on variance analysis. We first describe the quanti- 

tative relationship between CV variance and its accuracy, which can provide guidance for improving the 

accuracy by reducing the variance. We then study the relationships between variance and relevant vari- 

ables including the sample size, the number of folds, and the number of repetitions. These form the basis 

of theoretical strategies of regulating CV variance. Our classification results can theoretically explain the 

empirical results of Rodríguez and Kohavi. Finally, we propose a uniform normalized variance which not 

only measures model accuracy but also is irrelative to fold number. Therefore, it simplifies the selection 

of fold number in k -fold CV and normalized variance can serve as a stable error measurement for model 

comparison and selection. We report the results of experiments using 5 supervised learning models and 

20 datasets. The results indicate that it is reliable to determine which variance is less before k -fold CV by 

the proposed theorems, and thus the accuracy of error estimation can be promoted by reducing variance. 

In so doing, we are more likely to select the best parameter or model. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Modeling approaches that use supervised learning typically de-

termine the optimal parameter or model by its generalization abil-

ity, which usually measured by the prediction error [1,2] . How-

ever, in various real problems, the prediction error cannot be cal-

culated accurately because the underlying probability distribution

is unknown. There are several estimators of prediction error, such

as resubstitution [3] , hold-out [4] , k -fold cross-validation (CV) [5] ,

repeated k -fold cross-validation [6,7] , the simple bootstrap and

0.632 bootstrap estimators [8] . The results in Refs. [9,10] indicate

that k -fold CV and repeated k -fold CV generally produce better per-

formance in model selection. 

It is important to measure the uncertainty of prediction error

estimators because the accuracy of the model selection is limited

by the variance of error estimates [11,12] . A model error estima-

tion can be considered as a random variable as the variability in

training or test set [13,14] , and its quality is usually measured by

means of its bias and variance. The ideal estimator should be an

efficient estimator which is unbiased and has the lowest variance.

It is known that CV provides an unbiased estimate of the predic-
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ion error on the training set [1] . The variance is crucial for the

ccuracy of CV estimator. As well as being an important indicator

or assessing estimators of prediction error, error estimators with

ow variance are quite interesting in model selection if we assume

hat the bias term is independent of the considered model [5] . 

Recent research on the variance of k -fold CV has mainly focused

n estimation, decomposition, and some empirical studies of the

ariance. 

Variance was estimated in different ways. Dietterich [15] and

lpaydin [16] employed the classical sample variance estimator to

omplete hypothesis tests for comparing classifiers, although this

stimator is biased because of the overlap among training sets or

est sets [1,17] . Moreover, Bengio and Grandvalet [1] showed that

he bias could not be ignored, otherwise the variance would be

rossly underestimated. The approximate variance estimator pre-

ented by Markatou [18] identifies all first-order terms in the re-

iprocal of the size of the training set. An improved estimator de-

ending on the correlation among different group means was de-

eloped by Nadeau and Bengio [19] , although the correlation is dif-

cult to estimate. Bengio and Grandvalet [1] showed that there is

o unbiased and universal estimator of the variance of k -fold CV

hat is valid under all distributions. 

Variance decomposition can provide a better understanding

f the sources and nature of variance. Bengio and Grandvalet

1] found that the variance of k -fold CV is a linear combination

http://dx.doi.org/10.1016/j.patcog.2017.03.025
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f three moments, namely the variance of errors, within-fold co-

ariance, and between-folds covariance. Rodriguez [20] proposed a

ovel theoretical decomposition of the variance that considers the

ensitivity to changes in the training set and sensitivity to changes

n the folds. Moreno-Torres [21] found the difference of variance

nder different cross-validation schemes, and empirical evidences

upport the conclusion that 2 × 5 (2-folds iterated five times) ex-

eriments converge significantly faster than 5 × 2 (5-folds iterated

wo times) and 10 × 1 (10-folds iterated once). 

Some empirical results about the variance of k -fold CV have

een summarized. It is assumed that repeated k -fold CV stabilizes

he error estimation and, therefore, reduces the variance of the

 -fold CV estimator, especially for small samples [22] . Rodriguez

20] found that the variance decreases with the sample size in all

ases. Moreover, repeated k -fold CV results in lower variance than

he non-repeated version. We can infer that the variance may be

elated to relevant variables such as the sample size, the number

f folds, and the number of repetitions (in the repeated version). 

Although there have been some brilliant achievements in k -fold

V variance analysis, there are some problems and difficulties. For

xample, there is no clear relation between the CV variance and

rediction error, so it is hard to improve the accuracy of error es-

imator. Additionally, there are difficulties in providing a universal

ariance estimation, partly because we cannot theoretically explain

he effects of some related variables on the variance. Many studies

n CV variance [1,18,23] take a statistical perspective, but have no

ignificant connection with machine learning models. 

This paper focuses on variance analysis of k -fold CV for error

stimation in supervised learning. We explain the effect of CV vari-

nce on the accuracy of error estimator by examining the distribu-

ion of the true error and estimated error. The relationships be-

ween CV variance and relevant variables are deduced from the CV

rocedure. A novel indicator is proposed to integrate the variances

n classification and regression. 

The remainder of this paper is organized as follows. In

ection 2 , we prove the relationship between the accuracy of er-

or estimator and its variance, and it is validated by two exam-

les. In Section 3 , the relationships between the variance of k -fold

V and relevant variables are derived, and we introduce a new

efinition called normalized variance which measures model error

nd is independent of fold number. In Section 4 , we present the

esults of numerical experiments in classification and regression.

ection 5 concludes. 

. Expected absolute deviation and variance of cross-validation 

.1. Notations 

k -fold CV is usually advocated to measure the prediction error

f a learner. The dataset D = { (x i , y i ) } (i = 1 , 2 , · · · , n ) is partitioned

nto k groups or folds F 1 , F 2 , ���, F k , such that F i 
⋂ 

F j = ∅ for any

 � = j. x i and y i denote input feature(s) and output variable of i -

h sample, respectively. F −t = D − F t , t = 1 , 2 , · · · , k . For the sake of

larity and without loss of generality, we suppose that n is a mul-

iple of k , where n denotes the size of the dataset. The size of each

roup is m = n/k, and r is the number of repetitions in repeated

 -fold CV. 

e A ( D, T ) denotes the error of a model A which is trained

n dataset D and tested on dataset T . ˆ e k 
A 
(D, T ) is the es-

imated error by k -fold CV, i.e. ˆ e k 
A 
(D, T ) = 

1 
k 

∑ k 
t=1 e A (F −t , F t ) =

1 
n 

∑ n 
i =1 e A (F −t ∗ , { (x i , y i ) } ) , where t ∗ = arg t (x i , y i ) ∈ F t . As an estima-

ion of e A ( D, T ), ˆ e k 
A 
(D, T ) is independent of T from above equations.

ere e A (F −t ∗ , { (x i , y i ) } ) is the error on the i -th sample with the

odel trained on all folds except the one including the sample.

nd e (F −t ∗ , { (x , y ) } ) can be simply written as e (i = 1 , 2 , . . . , n )
A i i i 
hich is calculated as the following way. 

 i = 

{
I( ̂  y i � = y i ) in classification 

| ̂  y i − y i | in regression 

here y i denotes the real label in classification or real value in re-

ression, and ˆ y i denotes predicted label or value given by a learner

n the test set. I ( ·) is the indicator function. 

Let the true prediction error e true = e A (D, D p ) and estimated

CV) error e est = ˆ e k 
A 
(D, D p ) , where D p is usually an unknown pop-

lation in reality. The true error can be seen as a random variable

ith respect to the training set or model. The estimated error also

an be seen as a random variable with respect to data partition for

 given model and training set. 

If CV works well, e est should approximate to e true . Thus a new

efinition is given to measure the accuracy of prediction error es-

imator. Let 

AD = E(| e est − e true | ) (1)

here EAD is the expected absolute deviation of k -fold CV with

espect to data set partition and E ( ·) is the expectation function.

ote that the prediction error measures the accuracy of a model,

hereas EAD measures the accuracy of CV. 

Fig. 1 shows the deviation and variance of k -fold CV. Fig. 1 (a)

s the joint probability density distribution ( PDF ) of estimated and

rue prediction error f ( e est , e true ), and Fig. 1 (b) is the shadow slice

n Fig. 1 (a). The dash dot line on the floor of Fig. 1 (a) denotes the

deal situation, which means e est is exactly equal to e true . A dash

ine and a solid line appear in both sub-figures. The former denotes

he situation when e true = e est = 0 . 3 , whereas the latter denotes

he center of the conditional distribution of e est for a fixed e true .

he conditional PDF in Fig. 1 (b) is identical to f (e est , e true = 0 . 3)

xcept for a normalization factor [24] . Thus, the deviation is the

istance between the solid line and the dash line. The distance be-

ween the solid line and the dot line 
√ 

V ariance denotes the square

oot of the variance of e est . 

.2. Expected absolute deviation and CV variance 

For a given learning problem, more than one true error value

ay exist due to the variety of model (modeling mechanism or

arameter) and data set (size or samples). For a given data set and

 training model, also there are kinds of estimated errors with dif-

erent CV partitions (including partition number and sample attri-

ution). There is a significant correlation between true error and

stimated error because they are from the same model and most

raining samples ( n (k − 1) /k ). Considering the large quantity and

orrelation of true error and estimated error, we suppose that they

re from a bivariate normal distribution. 

emma 1 [25] . Let X 1 and X 2 follow the bivariate normal distribution

hose PDF is f (x 1 , x 2 ) = 

1 

2 πσ1 σ2 

√ 

1 −ρ2 
· exp{− 1 

2(1 −ρ2 ) 
[ 
(x 1 −μ1 ) 

2 

σ 2 
1 

−

 ρ (x 1 −μ1 )(x 2 −μ2 ) 
σ1 σ2 

+ 

(x 2 −μ2 ) 
2 

σ 2 
2 

] } . The conditional distribution of X 1 

iven that X 2 = x 2 is the normal distribution with mean and variance

iven by 

E(X 1 | X 2 = x 2 ) = μ1 + 

ρσ1 
σ2 

(x 2 − μ2 ) , V ar(X 1 | X 2 = x 2 ) = 

2 
1 (1 − ρ2 ) . 

heorem 1. Suppose that the estimated error e est and true er-

or e true follow the bivariate normal distribution, (e est , e true ) ∼
(μ1 , μ2 , σ

2 
1 
, σ 2 

2 
, ρ) . For each fixed e true , if E(e est ) = e true , the vari-

nce of estimated error V ar(e est ) = 

π
2(1 −ρ2 ) 

· EAD 

2 and d(EAD ) 
d(Var(e est )) 

>

 , where d(·) 
d(·) denotes derivative operation. 

roof. From Lemma 1 , e est | e true ∼ N(μ0 , σ
2 
0 ) , where μ0 = μ1 +

ρσ1 
σ2 

(e true − μ2 ) and V ar(e est | e true ) = σ 2 
0 

= σ 2 
1 
(1 − ρ2 ) . 
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Fig. 1. Deviation and variance of prediction error estimator. 
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As E(e est ) = e true , e est | e true ∼ N(e true , σ 2 
0 
) . 

Let X = 

e est −e true 
σ0 

, such that X ∼ N (0, 1). Note that E(| X| ) = 

√ 

2 
π ,

EAD = E(| e est − e true | ) = σ0 · E(| X | ) = 

√ 

2(1 − ρ2 ) 

π
· σ1 (2)

or 

 ar(e est ) = σ 2 
1 = 

π

2(1 − ρ2 ) 
· EAD 

2 . (3)

For EAD > 0, we have d(EAD ) 
d(Var(e est )) 

= 

√ 

1 −ρ2 

2 πVar(e est ) 
> 0 . �

The assumptions and conclusion of Theorem 1 are validated by

two traditional supervised learning examples. 

Support vector machines (SVMs) and feedforward neural net-

works (NNs) are trained with k -fold CV on two UCI datasets, EEG

Eye State ( EEG , 14,980 instances and 15 features) and Online News

Popularity ( ONP , 39,644 instances and 60 features) [26] for clas-

sification and regression, respectively. The original sets are as-

sumed to be the population D p . Samples in D 

pc 
p are randomly

selected from D p and pc is the proportion of sample size ( pc =
Fig. 2. Distribution o
% , 10% , 15% , · · · , 50% ). The true error of model A trained on D 

pc 
p 

an be expressed as e true = e A (D 

pc 
p , D p ) . For selected D 

pc 
p and

odel, e true is estimated by CVs with different fold numbers ( k =
 , 5 , 10 , 20 , 30 , 50 ). Var ( e est ) are estimated by repeating the CV pro-

edure 10 times for each pc and each k . Then E ( e est ) can be ap-

roximated by e est , the average of 60 estimations with different

 values and different partitions. EAD is obtained by averaging

 e est − e true | with respect to partition for each pc and each k . 

(1) Validations of normality and unbiasedness 

e est and e true are assumed to follow the bivariate normal distri-

ution in Theorem 1 . Now the normality assumption is examined

n data sets EEG and ONP. e est and e true can be calculated from the

revious paragraph. 120 scatters (6 k values, 10 pc values, 2 data

ets) representing e est and e true are plotted in Fig. 2 . In each sub-

gure, two dashed lines intersect at the center of a distribution. It

an be observed that the contours of distributions are almost el-

ipses. Moreover, the correlation coefficients of scatters in the two

ub-figures are 0.78 and 0.93, respectively. And thus e est and e true 

re intuitively from normal distribution with positive correlation

or both classification and regression. 
f e true and e est . 
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Fig. 3. Distribution of e true and e est . 
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Unbiasedness of e est which is expressed as E(e est ) = e true is as-

umed in Theorem 1 . Considering that E ( e est ) is usually approxi-

ated by e est in real problems, the relationship between e est and

 true is tested here. Fig. 3 shows 20 scatters (10 pc values, 2 data

ets) representing e true and e est . In each sub-figure, the solid line

s diagonal, and dashed lines are biased positively or negatively

t 5%. It can be observed that scatters are around the diagonal,

nd all deviations between e est and e true are within 5% of e true ex-

ept for one outlier in classification. So E ( e est ) should be very close

o e true , too. Moreover, the frequencies of e est > e true and e est <

 true are 27/60 and 33/60 (6 k values, 10 pc values) in classifica-

ion, respectively. Both of them are 30/60 in regression. Thus it

s reasonable to assume the unbiasedness of e est on the two data

ets. 

It is known that CV error is unbiased for the error learned from

 (k − 1) /k samples but not n samples. When n and k are large

nough, information of n (k − 1) /k samples will be very close to

hat of n samples. Then the error estimator of k -fold CV can be

hought to be unbiased and Theorem 1 is applicable. 

(2) Validation of the conclusion (the relation of EAD and CV

ariance) 

The quadratic relation of EAD and CV variance described in

heorem 1 is also examined on the two data sets. The distribu-

ions of EAD and Var ( e est ) in classification and regression are dis-

layed in Figs. 4 and 5 , respectively. Scatters representing EAD

nd Var ( e est ) are denoted as ′ ∗′ . Considering the type of Eq. (3) in

heorem 1 , scatters are fitted to a specific quadratic equation

 ar(e est ) = c · EAD 

2 ( c is an undetermined coefficient). The good-

ess of fit R 2 describes how well the quadratic equation fits the

catters. 

As shown in Figs. 4 and 5 , R 2 increases with k on each data set.

t means that the larger k is, the better the fit is. In other words,

he larger k is, the more evident the quadratic relation of EAD and

ar ( e est ) is. The reason may be that the model trained on k − 1

olds containing n (k − 1) /k samples is close to that on the whole

et ( n samples) when k is large enough. So the assumption of un-

iasedness is suitable for large fold number, and the experimental

esults are also closer to the theoretical result of Theorem 1 for

arge k . 

Above experiment results indicate that, CV estimator can be

een as unbiased and EAD and Var ( e est ) are from the quadratic re-

ation when both the size of data set and the number of folds are

arge enough. 

a

. Variance analysis of k -fold CV 

.1. Variances 

We define three kinds of CV estimators for the prediction error

f learners. 

• The group mean estimates the prediction error with the mean

of the errors in a group or fold, 

ˆ e (t) = 

1 

m 

∑ 

(x i ,y i ) ∈ F t 
e i , t = 1 , 2 , . . . , k. (4)

• The total mean estimates the prediction error with the mean

of the errors in all groups or folds, 

ˆ e (k ) = 

1 

k 

k ∑ 

t=1 

ˆ e (t) = 

1 

k 

k ∑ 

t=1 

( 

1 

m 

∑ 

(x i ,y i ) ∈ F t 
e i 

) 

= 

1 

mk 

n ∑ 

i =1 

e i = 

1 

n 

n ∑ 

i =1 

e i . 

(5) 

• The repeated mean estimates the prediction error with the

mean of the errors in all repeated groups or folds, 

ˆ e (k,r) = 

1 

r 

r ∑ 

j=1 

ˆ e (k j ) , (6) 

where k is the number of folds and r is the number of repeti-

tions. 

As the partition in CV is not fixed (except for leave-one-out CV),

V estimation is not a determinate value. There are three kinds of

V variances of the above estimators from the variability of data

artition. 

• The group variance (variance from different groups): G v ar =
V ar( ̂  e (t) ) ; 

• The total variance (normal variance of k -fold CV from different

partitions): T v ar = V ar( ̂  e (k ) ) ; 
• The repeated variance (variance of repeated k -fold CV from dif-

ferent partitions): R v ar = V ar( ̂  e (k,r) ) , where Var ( ·) is the vari-

ance function. 

.2. Variance analysis of k -fold CV 

This subsection mainly describes two theorems about CV vari-

nces in classification and regression. 
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Fig. 4. EAD and Var ( e est ) on EEG . 
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Theorem 2. Let p (0 < p < 1) be the accuracy (the probability of

right prediction) of a classification model on someone data set. Sup-

pose the classifier is stable under the perturbations caused by data

partition in /repeated k-fold CV [9] . If group means ˆ e (t) (t = 1,2,...,k) in

/repeated k-fold CV are mutually independent [13] , then we have the

following approximations: 

T v ar = 

p(1 − p) 

n 

, (7)

G v ar = 

kp(1 − p) 

n 

, (8)

R v ar = 

p(1 − p) 

nr 
. (9)
roof. 

(1) Ref. [13] showed that if the numbers of correct and wrong

predictions are both not less than five, the total accuracy

(frequency of right prediction on the whole data set, 1 −
ˆ e (k ) ) can be approximated by a normal distribution with

mean p and variance p(1 − p) /n according to central limit

theorem. 

Thus the total mean has the approximate distribution: ˆ e (k ) ∼
N(1 − p, p(1 − p) /n ) , and T v ar = 

p(1 −p) 
n . 

(2) The group means are identically distributed due to the

stability of classifier. By the independence of group mean,

T v ar = V ar( ̂  e (k ) ) = V ar( 1 
k 

∑ k 
t=1 ̂  e (t) ) = 

k ·Var( ̂ e (t) ) 

k 2 
= 

1 
n p(1 − p) . 

Thus G v ar = V ar( ̂  e (t) ) = 

kp(1 −p) . 
n 
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Fig. 5. EAD and Var ( e est ) on ONP . 
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(3) By the property of the variance function, R v ar = V ar( ̂  e (k,r) ) =
V ar( 1 r 

∑ r 
j=1 ̂  e (k j ) ) = 

1 
r 2 

V ar( 
∑ r 

j=1 ̂  e (k j ) ) . 

As the k -fold partitions in repeated k -fold CV

are not dependent on both random and strati-

fied partition, the r total means ( ̂ e (k j ) ) can be

considered as independent variables. So we have
1 
r 2 

V ar( 
∑ r 

j=1 ̂  e (k j ) ) = 

1 
r 2 

∑ r 
j=1 V ar( ̂  e (k j ) ) = 

1 
r 2 

∑ r 
j=1 T v ar = 

1 
r 2 

· r · 1 
n p(1 − p) = 

1 
nr p(1 − p) . And thus R v ar = 

1 
nr p(1 −

p) . �

Note that the above approximations hold under the condition

hat the numbers of correct and wrong predictions are both not

ess than five. If the classifier is not too bad or the data is not se-
iously imbalanced, this condition could be satisfied and variances

an be approximated by Eqs. (7) –(9) . 

heorem 3. Let e 0 be the error (the average absolute deviation be-

ween predicted value and actual value) of a regression model on

omeone data set, and its variance with respect to different test sam-

les is σ 2 . Suppose the model is stable under the perturbations caused

y data partition in /repeated k-fold CV [9] . If group means ˆ e (t) 

t = 1,2,...,k) in /repeated k-fold CV are mutually independent [13] , then

e have the following approximations: 

 v ar = 

σ 2 

n 

, (10)
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G v ar = 

kσ 2 

n 

, (11)

R v ar = 

σ 2 

nr 
. (12)

Proof. 

(1) In many practical cases, if the number of random variables is

larger than 30, the normal approximation will be satisfactory

regardless of the shape of the population. If not, the central

limit theorem will work if the distribution of the population

is not severely nonnormal [27] . The group mean can be seen

as a random variable with regard to different folds. We can

conclude that if the fold number k is over 30 or the distri-

bution of group mean is not severely nonnormal, the distri-

bution of total mean can be approximated by a normal dis-

tribution, i.e. ˆ e (k ) ∼ N(e 0 , σ
2 /n ) , and T v ar = 

σ 2 

n . 

(2) The group means are identically distributed due to the sta-

bility of regression model. By the independence of group

mean, T v ar = V ar( ̂  e (k ) ) = V ar( 1 
k 

∑ k 
t=1 ̂  e (t) ) = 

k ·Var( ̂ e (t) ) 

k 2 
= 

σ 2 

n .

Thus G v ar = V ar( ̂  e (t) ) = 

kσ 2 

n . 

(3) As the k -fold partitions in repeated k -fold CV are not de-

pendent on both random and stratified partition, the r total

means can be considered as independent variables. So we

have 

R v ar = V ar( ̂  e (k,r) ) = V ar( 1 r 

∑ r 
j=1 ̂  e (k j ) ) = 

1 
r 2 

∑ r 
j=1 V ar( ̂  e (k j ) ) = 

1 
r 2 

· r · 1 
n σ

2 = 

1 
nr σ

2 . �

As a special case of k -fold CV, leave-one-out CV (LOOCV) has

the lowest bias in estimating regression error and is used in model

selection [28,29] . Its variances can also be approximated by Eqs.

(10) –(12) on data set whose size is larger than 30. Based on this,

interval estimation is available for error estimation. 

3.3. Normalized variance 

Obviously, p(1 − p) or σ 2 appear in all of the classification or

regression equations, respectively. A new variance can be defined

as follows. 

Definition 1. The normalized variance ( Nvar ) of k -fold CV is de-

fined as: 

Nv ar = 

G v ar 

k/n 

= 

T v ar 

1 /n 

= 

R v ar 

1 /nr 
(13)

or 

Nv ar = 

{
p(1 − p) in classification 

σ 2 in regression 

Theoretically speaking, Nvar integrates the variances of classi-

fication and regression, and is only inversely proportional to the

true accuracy of the model. 

(1) In real classification problems, Nvar can be estimated by

Gvar, Tvar or Rvar . Then, the accuracy of the classification model

has the estimation ˆ p = 

1 
2 ± 1 

2 

√ 

1 − 4 Nv ar . Note that the accuracy of

most two-class classifiers is higher than that of a random model ( p

> 0.5), and thus ˆ p = 

1 
2 + 

1 
2 

√ 

1 − 4 Nv ar . 

Another common estimate of the accuracy is the average ˆ p ′ =
1 − 1 

n 

∑ n 
i =1 e i . Ideally, therefore, 1 

2 + 

1 
2 

√ 

1 − 4 Nv ar ≈ 1 − 1 
n 

∑ n 
i =1 e i 

or 

Nv ar ≈ ˆ p ′ (1 − ˆ p ′ ) = (1 − 1 

n 

n ∑ 

i =1 

e i ) ·
1 

n 

n ∑ 

i =1 

e i . (14)

(2) In real regression problems, σ 2 can be estimated by Nvar . 
The sample variance 1 
n −1 

∑ n 
i =1 e i 

2 is a general estimate of σ 2 , so

t should have 

v ar ≈ 1 

n − 1 

n ∑ 

i =1 

e i 
2 ≈ 1 

n 

n ∑ 

i =1 

e i 
2 = MSE (15)

hen n is sufficiently large. MSE denotes mean square error of re-

ression models. Eqs. (14) and (15) will be validated in our exper-

ments ( Section 4.3 ). 

.4. Explanation of some empirical results 

Rodriguez [20] found that 

(1) In all (classification) cases, the variance of the CV estimator

decreases with the sample size ( n ). 

(2) The variance of the estimator is lower for repeated k -fold CV

than for the non-repeated version. 

The above results can be proved by the proposed theorems. 

(1) This is clear from Eq. (7) in Theorem 2 . 

(2) By Eqs. (7) and (9) , we have R v ar = 

1 
nr p(1 − p) < 

1 
n p(1 −

p) = T v ar as the number of repetitions r > 1. 

It is assumed that the repeated CV stabilizes the error estima-

ion and, therefore, reduces the variance of the k -fold CV estimator,

specially for small samples [22] . 

This can be proved by Theorem 2 . 

(1) For R v ar = 

1 
nr p(1 − p) < 

1 
n p(1 − p) = T v ar, repeated k -fold

CV reduces the variance of the k -fold CV. 

(2) By Eqs. (7) and (9) , the decrement T v ar − R v ar = 

1 
n p(1 −

p) − 1 
nr p(1 − p) = 

r−1 
nr p(1 − p) . It is obvious that this decre-

ment becomes notable when the sample size is small. 

. Experiments and analysis 

In this section, we empirically check the above conclusions, in-

luding Theorems 2 and 3 and Eqs. (14) and (15) . We present our

xperimental framework, empirical results, and analysis. 

.1. Experimental framework 

To achieve broad coverage, 20 data sets were employed for

earning five kinds of models [26,30] . The first ten binary-class

r multi-class problems have 5–60 inputs and 270–4898 exam-

les. The other data sets for regression have 6–68 inputs and 308–

875 examples (see Table 1 ). Each data set was used to train

wo NNs with 20 and 10 + 10 hidden nodes (NN20, NN10+10)

nd three SVMs with linear, polynomial, and Gaussian kernels

SVM_L, SVM_P, SVM_G). The CV variances were examined for

 = 2 , 5 , 10 , 20 . The sample scales were 100%, 50%, and 25% of the

hole dataset, and the number of repetitions was taken as either

, 10, or 15. The samples were partitioned in random or stratified

ay. Gvar, Tvar , and Rvar were obtained by computing the mean of

en sample variance estimations. More specifically, each Tvar was

stimated by ten CV errors, and ten Tvar values were averaged as

 result. It means CV was repeated 100 times to calculate a Tvar

alue. Three kinds of Nvar values were then obtained from the def-

nition in Eq. (13) . The corresponding ˆ p ′ (1 − ˆ p ′ ) and MSE were also

alculated by e i in Eqs. (14) and (15) . Altogether, 2400 sets of test

esults were obtained for the comparison of variances and valida-

ion of the above conclusions. 
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Table 1 

Dataset information. 

Learning task No. Dataset Instances Features Classes 

1 Heart 270 13 2 

2 Breast cancer 683 10 2 

3 Blood transfusion 748 5 2 

4 Vehicle 846 18 4 

Classification 5 Splice 10 0 0 60 2 

6 Diabetes 1151 20 2 

7 Wine quality (red) 1599 12 6 

8 Segment 2310 19 7 

9 Abalone 4177 8 29 

10 Wine quality (white) 4898 12 7 

11 Yacht Hydrodynamics 308 7 –

12 Housing 506 14 –

13 Energy efficiency 768 8 –

14 Concrete 1030 9 –

Regression 15 Geographical origin of music 1059 68 –

16 MG 1385 6 –

17 Airfoil self-noise 1503 6 –

18 Space_ga 3107 6 –

19 Skill craft master table 3395 20 –

20 Parkinson’s telemonitoring 5875 26 –
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Table 2 

Average of frequencies on 5 models. 

Dateset Gk Gn Tn Rr Rn 

1 1 1 0.94 0.94 0.85 

2 0.94 0.88 0.79 0.94 0.73 

3 0.96 0.81 0.69 0.93 0.76 

4 1 0.98 0.94 0.95 0.85 

5 1 1 0.99 0.91 0.90 

6 1 0.98 0.95 0.92 0.87 

7 1 1 0.98 0.94 0.93 

8 1 0.90 0.78 0.92 0.93 

9 0.76 1 0.97 0.96 0.97 

10 1 0.98 0.98 0.94 0.93 

11 0.87 0.92 0.91 0.96 0.96 

12 0.89 0.91 0.91 0.94 0.90 

13 0.79 0.85 0.80 0.94 0.91 

14 0.96 0.89 0.88 0.94 0.94 

15 0.88 0.84 0.93 0.94 0.96 

16 0.89 1 0.90 0.96 0.94 

17 0.99 0.91 0.87 0.95 0.91 

18 0.91 0.93 0.93 0.96 0.96 

19 0.88 0.96 0.96 0.95 0.94 

20 0.93 0.94 0.95 0.94 0.97 

Average 0.93 0.93 0.90 0.94 0.91 

Table 3 

Average of five frequencies. 

Dataset NN20 NN10 + 10 SVM_L SVM_P SVM_G Average 

1 0.94 0.96 0.96 0.98 0.91 0.95 

2 0.71 0.76 0.96 0.93 0.92 0.86 

3 0.74 0.83 0.93 0.70 0.96 0.83 

4 0.90 0.93 0.96 0.96 0.97 0.95 

5 0.94 0.96 0.98 0.96 0.97 0.96 

6 0.91 0.94 0.96 0.93 0.97 0.94 

7 0.91 0.98 0.99 0.98 0.98 0.97 

8 0.88 0.93 0.88 0.88 0.95 0.90 

9 0.92 0.99 0.95 0.88 0.91 0.93 

10 0.94 0.96 0.99 0.97 0.97 0.96 

11 0.87 0.89 0.92 0.94 0.99 0.92 

12 0.85 0.80 0.92 1 0.98 0.91 

13 0.74 0.81 0.85 0.92 0.97 0.86 

14 0.89 0.89 0.90 0.94 0.98 0.92 

15 0.87 0.82 0.91 0.97 0.99 0.91 

16 0.84 0.92 0.96 0.98 1 0.94 

17 0.84 0.89 0.94 0.98 0.98 0.93 

18 0.84 0.87 0.98 1 0.99 0.94 

19 0.87 0.88 0.99 0.96 0.99 0.94 

20 0.88 0.89 0.98 0.98 0.99 0.95 

Average 0.86 0.89 0.95 0.94 0.97 0.92 
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.2. Results and analysis for Theorems 2 and 3 

As Theorems 2 and 3 provide six equations Eqs. (7) –(12) about

V variances and other variables, we test them by examining the

rder relationship of each theoretical result. To quantify the order

elationships or order consistency of experimental results with our

quations, some conditional frequencies are defined as follows. 

k = 

ˆ P (G v ar i > G v ar j | k i > k j , n i = n j ) 

n = 

ˆ P (G v ar i > G v ar j | n i < n j , k i = k j ) 

 n = 

ˆ P (T v ar i > T v ar j | n i < n j , k i = k j ) 

r = 

ˆ P (R v ar i > R v ar j | r i < r j , n i = n j , k i = k j ) 

n = 

ˆ P (R v ar i > R v ar j | n i < n j , r i = r j , k i = k j ) 

By Eqs. (8) and (11) , it is obvious that Gvar increases with k .

eanwhile, the definition of the first frequency shows that Gk

easures the probability of the situation that Gvar increases with

 when n is fixed. So Gk can quantify the order relationship be-

ween Gvar and k implied by Eqs. (8) and (11) . Similarly, the other

our frequencies correspond to the relationships between Gvar and

 in Eqs. (8) and (11) , Tvar and n in Eqs. (7) and (10) , Rvar and r

n Eqs. (9) and (12) , Rvar and n in Eqs. (9) and (12) , respectively.

ll of frequencies should be 1 if Eqs. (7) –(12) in the two theorems

old. 

CVs have been completed under various settings including data

ets (20), models (5), n (3), k (6), r (3) and the ways of partitions

2). Then frequencies can be counted by data sets and models, and

hey are plotted in Fig. 6 consisting of 5 sub-figures (5 kinds of

requencies). In each sub-figure, frequencies are denoted as a circle

ith different sized wedges on 20 data sets (20 circles). The radius

f each wedge in the circle indicates the frequency of a model. The

adius in the legend is 1. It can be seen that all Rr values (sub-

gure (d)) are equal or close to 1. A few values of other four fre-

uencies are obviously less than 1. To examine these values violat-

ng order relationships, Table 2 lists frequencies on each data set.

ach value is calculated by averaging one kind of frequencies of

 models, i.e., it represents the average radius of five wedges in a

ircle of Fig. 6 . 
In Table 2 , there are 76 values not less than 0.9 in all 100 val-

es, 17 values between 0.8 and 0.9, and 7 values less than 0.8. The

6 values consist of 13 Gk values, 15 Gn values, 14 Tn values, 20 Rr

alues and 14 Rn values. All average frequencies (the last row) on

0 data sets are over 0.9. 

There are 39 and 37 values greater than 0.9 in classification (the

ormer 10 data sets) and regression (the latter 10 data sets), re-

pectively. The averages are 0.93 and 0.92 in two kinds of prob-

ems. So the frequencies are unrelated to the learning task (clas-

ification or regression). However, different situations appear for

everal data sets and learning models. Frequencies are counted by

ata sets and learning models in Table 3 , i.e., each value is calcu-

ated by averaging five kinds of frequencies of a model on a data

et. Bold font highlights the average results less than 0.9. 

In Table 3 , the average values by data sets (the last column) in

old font indicate that inconsistent order relationships are more

ikely to occur in datasets 2, 3, and 13. This may be related to the

uality of these datasets, such as the presence of outliers or too

ew samples (less than 800) for CV with large values of k . They

ay enhance the perturbation of ˆ e (t) and lead to unstable perfor-

ance of models. From the view of learning model, the results of



102 G. Jiang, W. Wang / Pattern Recognition 69 (2017) 94–106 

Fig. 6. Star plot of each frequency for 5 models on 20 data sets. 
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Fig. 6. Continued 
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Table 4 

Pearson correlation coefficient of Nvar and error. 

Nvar ˆ e (classification) ˆ p ′ (1 − ˆ p ′ ) ˆ e (regression) MSE 

Gvar · n / k 0.41 0.69 0.76 0.82 

Tvar · n 0.14 0.36 0.32 0.37 

Rvar · n · r 0.12 0.33 0.33 0.37 

v  

w

4

 

a  

s  

a  

i

 

Ns are less than 0.9, while those of SVMs are over 0.9. In other

ords, NNs are more likely to have low frequencies than SVMs in

ur experiments. This may be because one of the most important

N parameters, the number of hidden nodes, has not been op-

imized, and the two NNs may not be suited for some datasets.

hereas the parameters in LIBSVM have been optimized prior to

he validation [30] . The experiment results support that consis-

ent order relationships are more likely to appear in well-specified

odels. 

Three kinds of variances on classification dataset Splice and re-

ression dataset Parkinson ′ s Telemonitoring are plotted in Figs. 7

nd 8 to show the relations in Theorems 2 and 3 intuitively. From

hese figures, it can be seen that Gvar increases with k and de-

reases with n . In each model, Tvar decreases with n. Rvar de-

reases with n and r . All order relationships are consistent with

he theorems. 

Generally speaking, although they are affected by small-scale

ata set or mismatching model, five average frequencies in

able 2 are over 0.9. It indicates that our equations in the pro-

osed theorems usually hold in terms of the order in real super-

t  
ised learning problems. Thus, it is reliable to determine or predict

hich variance is less by our theorems before applying k -fold CV. 

.3. Results and analysis for normalized variance 

In Eq. (13) , Nvar is defined in three ways, Gvar · n / k, Tvar · n ,

nd Rvar · n · r . Eqs. (14) and (15) show the theoretical relation-

hips between Nvar and ˆ p ′ (1 − ˆ p ′ ) or MSE . The empirical relations

re examined by Pearson correlation coefficients of Nvar values and

ndicators about model error listed in Table 4 . 

From Table 4 , the coefficients of Gvar · n / k are obviously larger

han those of Tvar · n and Rvar · n · r . Coefficients of Nvar and
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Fig. 7. Classification variances on Splice . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Regression variances on Parkinson ′ s Telemonitoring . 

Fig. 9. Misclassification rate on different models. 
ˆ p ′ (1 − ˆ p ′ ) or MSE are larger than those of Nvar and ˆ e both for clas-

sification and regression. That is because the former relation is lin-

ear and the latter relation is quadratic in theory. More importantly,

the coefficients of Gvar · n / k and ˆ p ′ (1 − ˆ p ′ ) or MSE is considerable.

Thus generalization error of a model can be reflected by Nvar in

the form of Gvar · n / k to some extent. 

The definition of Nvar indicates that model error is the only fac-

tor which is relevant to Nvar . Theoretically, Nvar is independent of

fold number k . Here, one-way analysis of variance (ANOVA) is em-

ployed to check whether Nvar ( Gvar · n / k ) is sensitive to k in real

problems. And the results are listed in Table 5 . 

In Table 5 , p -value < 0.05 indicates that Nvar values with dif-

ferent k values have significant difference. 49 p -values in 50 re-

gression problems (11th–20th datasets) and 56 p -values in 60 SVM

models (3rd–5th columns) are more than 0.05. Values less than

0.05 mainly appear on classification data sets with NNs. 

The misclassification rates of each model on ten classification

sets are plotted in Fig. 9 . It can be seen that the misclassifica-

tion rates are around 0.2 for SVMs. While they are about 0.45 for
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Table 5 

p -values of ANOVA. 

Dataset NN20 NN10 + 10 SVM_L SVM_P SVM_G 

1 0.001 a 0.0 0 0 a 0.353 0.217 0.115 

2 0.0 0 0 a 0.0 0 0 a 0.277 0.100 0.898 

3 0.062 0.003 a 0.997 0.102 0.077 

4 0.0 0 0 a 0.0 0 0 a 0.959 0.025 a 0.633 

5 0.0 0 0 a 0.0 0 0 a 0.691 0.574 0.304 

6 0.0 0 0 a 0.0 0 0 a 0.539 0.049 a 0.677 

7 0.0 0 0 a 0.0 0 0 a 0.659 0.200 0.998 

8 0.0 0 0 a 0.0 0 0 a 0.101 0.179 0.254 

9 0.0 0 0 a 0.0 0 0 a 0.018 a 0.246 0.124 

10 0.0 0 0 a 0.0 0 0 a 0.425 0.388 0.259 

11 0.269 0.602 0.770 0.442 0.845 

12 0.180 0.439 0.905 0.632 0.613 

13 0.514 0.452 0.988 0.949 0.993 

14 0.102 0.357 0.543 0.333 0.729 

15 0.188 0.245 0.724 0.625 0.809 

16 0.250 0.239 0.908 0.037 a 0.974 

17 0.065 0.240 0.429 0.922 0.707 

18 0.054 0.126 0.079 0.074 0.220 

19 0.610 0.239 0.721 0.889 0.918 

20 0.058 0.105 0.999 0.999 0.962 

a p -value < 0.05 
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Ns. The reason why p -value < 0.05 mainly appears on classifica-

ion data sets with NNs may be that NNs models are badly speci-

ed in classification experiments. 

On one hand, Nvar is relevant to model error and indepen-

ent of k from its definition. On the other hand, Nvar ( Gvar · n / k )

s significantly correlated with error indicator ( ̂  p ′ (1 − ˆ p ′ ) or MSE ),

nd Nvar values have no significant difference among different fold

umbers when models are not badly specified. Therefore, Nvar is a

seful error indicator in model evaluation by k -fold CV. 

. Conclusions 

Classification and regression are two of the most important

asks in machine learning. Although there are kinds of good mod-

ls, the parameters or model settings have a strong impact on per-

ormance when solving real problems. Models are usually selected

r evaluated by the prediction error. Thus, error estimation has

een promoted using variance analysis of k -fold CV, which can also

rovide a novel way for guiding model selection. The contributions

f this paper are as follows: (1) When the numbers of samples and

olds are both large enough, we proved that CV variance and its ac-

uracy ( EAD ) have the quadratic relationship, allowing the accuracy

o be improved quantitatively by reducing the variance. (2) The in-

erent relationships between CV variance and its key factors have

een derived, thereby it is feasible and reliable to predict which

ariance is less before applying k -fold CV. Theoretical explanations

ave been given for some empirical evidence of Rodriguez and Ko-

avi from the respect of variance analysis. (3) The bias of CV error

s generally related to k , while the proposed normalized variance

as significant correlation with the error and is unrelated to k so

hat it can serve as a stable error measurement in classification

nd regression. Moreover, our theorems support the fact that large

ata size and repetition are effective ways for k -fold CV to improve

he accuracy of error estimation from the perspective of variance

nalysis. 

Although the two ways are helpful for error estimation, we can-

ot ignore the issue of computational efficiency, especially for big

ata. Finding effective data partitions or sampling methods during

he CV procedure might be a means of reducing the computational

ost, and will therefore be a focus of our future work. Moreover,

he robustness of the proposed approaches and how to promote

he accuracy of error estimation when the distribution of the group

ean is severely nonnormal are worth further exploration. 
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