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Recall: Statistical Learning (1)

Regression
» Theoretically best regression function for squared error loss

F®) = Eypmy]

» Can be solved data-driven (1) or by making model-assumptions (2)
1. k-nearest neighbour regression
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X; €Ny ()

tanl e

Epyx)[¥] &

2. linear regression (with implied constant 8, and x, = 1)

Epyioly] # X8
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Learning in Statistical Learning

Learn a model from data by minimizing expected prediction error determined
by a loss function.

Expected prediction error

J(f) = [Ep(x,y) [L(y, f(X))] = [Ep(x) [[Ep(y|x) [L(y, f(X))]]
How is this solved in practice, given a training sample (y;,x;) forl =1, ...,n?

1. Approximate E, ,) [L(y, f(x))] from the training sample,

n
ie. J(f)~ %ZL(yl,f(xl)) — minimize w.rt. f
I=1
2. Find optimal theoretical solution (e.g. Ep(,x)[y]) and approximate it instead,

1
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A third alternative

» Theoretically best regression function for squared error loss

f(X) = [Ep(y|x) [y]

if we allow all functions!

» Instead of approximating the overall optimal solution, we can restrict the
class of allowed functions.

» Example: Restrict to class of linear functions, i.e.

fexrmx'g: g eRrRP

» Combined with squared error loss, the function minimizing (empirical)
expected prediction error for the class of linear functions uses the standard
least squares estimates g
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Recall: Statistical Learning (11)

Classification

» Theoretically best classification rule for 0-1 loss and K possible classes

¢(x) = arg max p(i|x)
1<i<K

» Can be solved data-driven (1) or by making model-assumptions (2)
1. k-nearest neighbour classification

> A =)

X ENk(X)

==

p(ilx) ~

2. Instead of approximating p(i|x) from data, can we make sensible model
assumptions instead?
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Model-based classification




A model for binary classification

Consider binary classification withi =0 ori = 1.

We want to model p(i|x) and since p(0|x) + p(1|x) = 1, it is enough to model one
of the probabilities.

Bernoulli model:

» Let p(1|x) = 6 € (0, 1), then p(0|x) =1 — 6.
» Given responses i; forl =1,...,n we can estimate the maximum likelihood
estimate of 6
» Specifies a model approximation for Bayes' rule
1

c(x) = arg max p(i|x) = s
i€{0,1} 1 otherwise

: : 5
How can we include predictors x;? 5/25



Logistic function and Normal Distribution CDF
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Type Logistic Function Standard Normal CDF

Logistic (sigmoid) function Standard Normal CDF
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Logistic/probit models

Include a linear predictor after transformation, i.e.
logistic model

p(1x) = o(x"B)
probit model

p(1x) = @(x"B)

with corresponding Bayes' rule

0 x'B<0

o(x) = ,
1 otherwise

since o(x"B) < 1/2 for x" B < 0 and analogous for the probit model.

7/25



How are the regression coefficients determined?

The maximum likelihood estimates of g in the logistic regression model can be
determined from the log-likelihood (with i} = 2i; — 1)

I(B) = Y iylog(o(x] B)) + (1 — i log(1 — o(x/ B))
=1

n

= Z i7x B —log (1 + exp(ifx] B))
The gradient is (with o(—x) = —a(x))
Vgl(B) = Z irx; — o(ifx] Bifx; = Z x,(if — o(x] B))

which can be used in gradient ascent or leads to a iteratively reweighted least
squares problem via the Newton-Raphson algorithm. (Details in ESL Ch. 4.4.1)
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Example: Logistic regression

Decision boundary
(black line)

Bo+x'B=0
° S Xx; = (=B — B1x1)/B2

=24 0.0 2.5 5.0
x_1

How can logistic regression be extended to K > 2 classes?
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Multi-class logistic regression (1)

» Assume there are K > 2 classes.
» Requirement: Probabilities need to be modelled, i.e. p(i|x) € (0,1) for each

class and )}, p(i|x) = 1, and dependence on predictors x; should be included

» Use a categorical/multinomial model with
px) = 6y,..., p(K — 1x) = 61, p(K[x) = 6k

where 6; € (0,1) and Zj 0, =1
» Softmax function: o : RK —» [0,1]K forj=1,...,K—1

() er er—ZK (K) 1
[o(2)]” = B = = , [e@)] = T ,
D € 1+ ) errTIK 1+, ek

Note that K — 1 inputs are enough to determine the softmax function and
zg = 0 could be imposed without loss of generality.
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Multi-class logistic regression (II)

» Use that only K — 1 parameters are necessary and modelfori=1,...,K —1

XT'

er Fi 1
plix) = ——x— PEIX)=——F3
I 1+ Y exThr

» This method has many names: multi-class logistic regression, softmax
regression, multinomial logistic regression, maximum entropy classifier, ...
» Note that foranyie{l,...,K—1}

p(ilx)
log Ry = X Fi

the log-odds of class i vs K. Class K is called the reference class.
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Multi-class logistic regression (l11)

Model fori=1,...,K—1

(ilx) S — (K[%) = ————
pUx) = = , DPK|x)= —
LD o LT o

» Bayes rule

_ ifx'g; <oforalli=1,..,K—1
c(x) = argmax p(i|x) = ]
i=1,...K argmax; X' §; otherwise
> Decision boundaries are found through x"g; = x"g; and x"8; = 0 for all

i,j=1,..,K—1.

Multi-class logistic regression models can be estimated with a Newton-Raphson
algorithm, coordinate descent, neural networks, ... (see ESL Ch. 4.4 for some

pointers) 12/25



The most over-used dataset in the world

Iris flower data set
Measurements on iris flowers' collected by Edgar Anderson (published 1936)
» Three species: iris setosa, iris virginica, and iris versicolor

» 150 samples (50 for each species)

» Four features: Length and width of the sepals and petals in centimeters

Thttps://en.wikipedia.org/wiki/Iris_flower_data_set#/media/File:Iris_versicolor_3.jpg
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Multi-class logistic regression: An example
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Notes on Logistic Regression

A warning: Problematic situation in two-class case (occurs seldom in practice)

» Assume two classes can be separated perfectly by a line/hyperplane in
predictor space. The classes are then called linearly separable.

» In this situation, logistic regression tries to fit a step-like function, which
forces the intercept to —co and the corresponding predictor coefficient to
+00.

» Over-dispersion - more variance than model assumed - careful with
p-values etc.

Big Data concerns:

» High-dimensional settings — non-identifiability of coefficients
» Interpretability in multiclass setting - different xs for different class models?

» Can use regularization techniques for these problems - more later. 15/25



Classification with focus on the
feature/predictor space




Motivation for a different viewpoint: Nearest centroids

Sepal Width

N

w

Species

Sepal Length

setosa

versicolor

virginica

Determine mean predictor
vector per class

ﬁiZ%ZXl

Lip=i

where
n
ny =y 13 =)
1=1

and classify points to the class
whose mean is closest.
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A change of scenery

So far

Classification problems can be solved by approximating p(i|x) and applying
Bayes' rule

» in a data-driven way, such as kNN,

» by a transformed regression model, as in logistic/probit regression

Observation: Good predictors group by class in feature space

Change of focus: Let's model the density of x conditionally on i instead!

How? Bayes' law
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The setting of Discriminant Analysis

Apply Bayes’ law
px[i)p(i)

¥ P&l )p()

Instead of specifying p(i|x) we can specify

p(ilx) =

p(x[i) and p(i)
The main assumption of Discriminant Analysis (DA) is
p(x[i) ~ N(p;, Z;)

where u; € RP is the mean vector for class i and X; € RP*P the corresponding
covariance matrix.
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Finding the parameters of DA

» Notation: Write p(i) = 7; and consider them as unknown parameters
» Given data (ij, x;) the likelihood maximization problem is

n K
arg maXHN(XlWipZil)”il subject to Z ;= 1.
wET =1 i=1

» Can be solved using a Lagrange multiplier (try it!) and leads to

n
~ n; . . .
7T = #’ with n; = ;]1(11 =1i)

~ 1
Mi=— 2, X
=i
Py 1 s AN
%= D — ) — )"

i iy=i
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Performing classification in DA

Bayes’ rule implies the classification rule

c(x) = arg max N(X|u;, Z;)7;
1<i<K

Note that since log is strictly increasing this is equivalent to

c(x) = arg max §;(X)
1<i<K

where
8;i(x) = log N(x|u;, Z;) + log 7;

1 _ 1
= logm; — 5(x — ) =7 (x — ) — S log|Zi|  (+C)
This is a quadratic function in x.
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Different levels of complexity

» This method is called Quadratic Discriminant Analysis (QDA)
» Problem: Many parameters that grow quickly with dimension

» K —1forall z;
» p-K forall u;
» p(p+1)/2-K for all ; (most costly)

» Solution: Replace covariance matrices ; by a pooled estimate

K
R KZZ(xl 20y~ )T

i=1i=

» Simpler correlation and variance structure: All classes are assumed to have
the same correlation structure between features
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Performing classification in the simplified case

As before, consider

c(x) = argmax §;(x)
1<i<K

where 1
8i(x) = logm; + X =7 p; — E#iTz_lﬂi (+C)

This is a linear function in x. The method is therefore called Linear Discriminant
Analysis (LDA).
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Even more simplifications

Other simplifications of the correlation structure are possible

» Ignore all correlations between features but allow different variances, i.e.
%, = A, for a diagonal matrix A; (Diagonal QDA or Naive Bayes’ Classifier)

» Ignore all correlations and make feature variances equal, i.e. ; = A for a
diagonal matrix A (Diagonal LDA)

» Ignore correlations and variances, i.e. X; = 0°I,«, (Nearest Centroids
adjusted for class frequencies 7; )
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Examples of LDA and QDA

Nearest Centroids LDA QDA
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Decision boundaries can be found with

NX|p, Z)m; = Nx|pj, Zj)m; for i#j

and ; = = for LDA and X; = o°L,4, for Nearest Centroids.
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Summary and Big Data concerns

» Parametric classification - logistic regression.
» Old friend - regression
» Lots of tools, feature selection techniques, extensions to richer models
» Penalized estimation for high-dimensional settings
» Aggregation of estimates for large-sample settings
» Modelling the conditional densities of features instead of classes leads to
Discriminant Analysis (DA)
» There is a range of assumptions in DA about the correlation structure in
feature space — trade-off between numerical stability and flexibility
» High-dimensional case: simplify, simplify, ...
» or.. regularize: diagonal inflation - RDA. Lots of methods e.g. block-diagonal
etc.
» Flexible: don't need just one Gaussian shape for each class, can use a mixture
of Gaussian shapes - FDA
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