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Classification and Partitions

A classification algorithm constructs a partition of feature space and assigns a
class to each.

» kNN creates local neighbourhoods in feature space and assigns a class in
each

» Logistic regression divides feature space implicitly by modelling p(i|x) and
determines decision boundaries through Bayes' rule

» Discriminant analysis creates an explicit model of the feature space
conditional on the class. It models p(x,i) by assuming that p(x|i) is a normal
distribution and either estimates p(i) from data or through prior knowledge.
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New point-of-view: Partitioning

Idea: Create an explicit partition by dividing feature space into
non-overlapping regions and assign a constant conditional mean (regression)
or constant conditional class probability (classification) to each region.

Given regions R,,, for m =1, ..., M, a classification rule for classesi € {1,...,K} is

M
é(x) = arg max Z 1I(x e Rm)(| | Z 1(i; = l))

1<isK m=1 1€Rm

and a regression function is given by

a L2 1
f® = (R— >, y;)n(xeRm).

m=1 | ml X|ERm

Note that |R,,| denotes the number of elements in R, or its size.
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Classification and Regression Trees (CART)

Complexity of partitioning:

Arbitrary S Rectangular o Partition from a
Partition Partition sequence of binary splits

Classification and Regression Trees (CART)

» Create a sequence of binary axis-parallel splits

» in order to reduce variability of values/classes in each region
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Example of classification with CART
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CART: Tree building/growing

1. Start with all data in a root node
2. Binary splitting
2.1 Consider each feature x.; for j =1,..., p. Choose a threshold ¢; (for continuous

features) or a partition of the feature categories (for categorical features) that
results in the greatest improvement in node purity:

{ii x>t and {ip @ x5 <t}

2.2 Choose the feature j that led to the best splitting of the data and create a new
child node for each subset

3. Repeat Step 2 on all child nodes until the tree reaches a stopping criterion

All nodes without descendents are called leaf nodes. The sequence of splits
preceding them defines the regions R,,. 5/30



Measures of node purity

Define .
Zim = D> 13 =10)

| ml XIERm

» Three common measures to determine impurity in a region R,,, are (for
classification trees)
Misclassification error: 1 — max; 7T;,,
Gini impurity: Y #,(1 — Rip)
Entropy/deviance: — Zfil
» All criteria are zero when only one class is present and maximal when all
classes are equally common.

Tim log Tim

» For regression trees the decrease in mean squared error after a split can be

used as an impurity measure.
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Node impurity in two class case

Example for a two-class problem (i = 0 or 1). 7, is the empirical frequency of
class 0in a region R,,.
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Stopping criteria

Examples

» Minimum size of leaf nodes (e.g. 5 samples per leaf node)
» Minimum decrease in impurity (e.g. cutoff at 1%)

» Maximum tree depth, i.e. number of splits (e.g. maximum of 30 splits from
root node)

» Maximum number of leaf nodes

Running CART until one of these criteria is fulfilled generates a max tree.
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Observations about CART

Pro: Outcome is easily interpretable
Pro: Can easily handle missing data
Neutral: Only suitable for axis-parallel decision boundaries

vV vV Vv Vv

Con: Features with more potential splits have a higher chance of being
picked

» Con: Prone to overfitting/unstable (only the best feature is used for splitting
and which is best might change with small changes of the data)
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CART and overfitting

How can overfitting be avoided?

Tuning of stopping criteria
Beware: This can lead to early stopping since a weak early split might lead to a
strong split later

Pruning

» Build a max tree first.

» Then reduce its size by collapsing internal nodes.
Principle: ‘The silly certainty of hindsight’

Ensemble methods
Examples are bagging, boosting, stacking, ...
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Pruning

A common strategy is cost-complexity pruning.

» For a given a > 0, the cost-complexity of a tree T is defined as

C.m= Y (uﬁ D n(il;éé(x»)+ 7|

Rm€ET €R,,

Cost Comny

where (i}, x;) is the training data, ¢ the CART classification rule and |T| is the
number of leaf nodes/regions defined by the tree.

» It can be shown that successive subtrees Ty (i.e. T C Ti_;) of the max tree
Ty = Tyax €an be found such that each tree T minimizes C,, (T) where
Ay =0<o0; < - <ay.

» Note that for oy = 0 the cost is minimized for T,,,, and the subtree
minimizing cost-complexity with a; consists of only the root node.
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Pruning: Choosing the best subtree

To choose the best subtree, one either needs

» to have access to a test set, or

» perform cross-validation
1. Determine the max tree on the full training data and perform cost-complexity
pruning to get a sequence of «.
2. Split the data into folds and for each fixed test fold build a max tree on all
remaining folds and perform cost-complexity pruning on these max trees.
3. For each «; from Step 1 compute the test error on each fold.
4. Choose subtree built in Step 1 with minimal test error in Step 3

Note: Full dataset is only used before CV to create candidates for a;.
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Recap of the bootstrap




The Bootstrap - A short recap (1)

Given a sample x;,i = 1, ...,n from an underlying population estimate a statistic
6 by 6 = 6(xy, ..., x,). A
What is the uncertainty of 6?

Solution: Find confidence intervals (Cls) quantifying the variability of 6.
Computation:

» Through theoretical results (e.g. linear models) if distributional assumptions
fulfilled

» Linearisation for more complex models (e.g. nonlinear or generalized linear
models)

» Nonparametric approaches using the data (e.g. bootstrap)

All of these approaches require fairly large sample sizes.
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The Bootstrap - A short recap (11)

Nonparametric bootstrap
Given a sample x, ..., x,, bootstrapping performsforb=1,...,B

1. Sample %, ..., %, with replacement from original sample

2. Calculate 8,(%y, ..., X))

» B should be large (in the 100-1000s)
» The distribution of 8, approximates the sampling distribution of 8

» The bootstrap makes exactly one strong assumption:
The data is discrete and values not seen in the data are impossible.’

Check out this blog post!
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http://www.sumsar.net/blog/2015/04/the-non-parametric-bootstrap-as-a-bayesian-model/

Cl for statistics of an exponential random variable
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Data (n =200) simulated from x ~ Exp(1/3), i.e. Eyx[x] =3
> histogram shows original sample
> line is the true density

» Black outlined histogram shows a bootstrapped sample

» Vertical lines are the mean of x (dashed) and the 99% quantile (dotted) [red = -
empirical, = theoretical]



Cl calculation: Normal approximation and percentile method

1. Normal approximation: Set 6 =

|

B
> 6, and estimate the standard error of 8
(o=l

—
N D CE;
%=\ " po1

Assume the distribution of 8 is approximately N(, &,,) giving Cl

as

0 £ 21_q/205e

2. Percentile/quantile method: Take the a and a/2 quantiles of the bootstrap
estimates 8, as boundaries of Cl
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Cl calculation: Applied to example
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Modifications to nonparametric bootstrap

» Different sampling strategies. Some examples:
» m-out-of-n bootstrap: Draw m < n samples without replacement
» Draw from a smooth density estimate of the data
» Draw from a parametric distribution fitted to the original data

» Normal approximation doesn’t always apply and percentile method is
unstable for complicated statistics. Example of alternative

» Bootstrap-t: Instead of normal quantiles, estimate quantiles from
6, — 6

Obp

where &, is an estimate of the standard error
» Many other alternatives exist ...

18/30



Limitations of the bootstrap

» Number of samples needs to be quite large

» Extreme values (minimum, maximum very small or large quantiles) can be
hard to estimate since they might not even appear in data

» Many basic Cl estimation algorithms assume that the bootstrap distribution
is approximately normal (often not the case in reality)
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Bootstrap aggregation




Bootstrap aggregation (bagging)

1. Given a training sample (y;, x;) or (ij, x;), we want to fit a predictive model
fx

2. Forb=1,...,B, form bootstrap samples of the training data and fit the
model, resulting in f}(x)

3. Define

|~

B
Foag® == > f®)
b=1

where f,(x) is a continuous value for a regression problem or a vector of
class probabilities for a classification problem

Majority vote can be used for classification problems instead of averaging
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Bagging and variance reduction

» Bagging using averages approximates

Fag®) = Epry [ )]

» If a squared error loss is used, the following relation holds

Epr il — F®)?] 2 Epryl(y — Fag®))]

which implies that total prediction error for the averaged estimator is lower.
» Some notes:

» Remember the graphs of kNN from last lecture: Noisy individually, more stable
(less variable) on average
» Bagging shows no effect on linear models
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Correlation and bagged variance

For identically distributed (i.d.) random variables x;,i = 1, ...,n

Var(lixi)z 1_p02+p02
ni:l &

where p € [0,1) is the (positive) pairwise correlation coefficient and o2 is the
variance of each x;.

» Bootstrap samples, and therefore the resulting estimators fb(x), are

correlated
» By letting B — oo we can bring the first term towards zero, but the second

term remains
» Decreasing correlation between bootstrap samples would decrease the

variance of a bagging estimate
ssing 22/30



Random Forests




Random Forests

1. Given a training sample with p features, doforb=1,...,B

1.1 Draw a bootstrap sample of size n from training data (with replacement)
1.2 Grow a tree T, until each node reaches minimal node size n;,

1.21 Randomly select m variables from the p available
1.2.2 Find best splitting variable among these m
1.2.3 Split the node

2. For a new x predict

Regression: [, (x) = % Z];:l Tp(x)
Classification: Majority vote at x across trees

Note: Step 1.2.1 leads to less correlation between trees built on bootstrapped
data.
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Comparison of RF, Bagging and CART

Toy example
y=x3+¢ where &~ N(0,1)
x~N(0,2), xR’ I;=1,%; =098,1l#k
Training and test data were sampled from the true model. Results for RF, bagged CART
and a single CART, using x,, ..., x5 as predictor variables. (n;, = 50, n;, = 100)
24 —
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Variable importance

1. Impurity index: Splitting on a feature leads to a reduction of node impurity.
Summing all improvements over all trees per feature gives a measure for

variable importance
2. Out-of-bag error

» During bootstrapping for large enough n, each sample has a chance of about
63% to be selected

» For bagging the remaining samples are out-of-bag.

» These out-of-bag samples for tree T, can be used as a test set for that
particular tree, since they were not used during training. Call the resulting test
error E,

» Permute variable j in the out-of-bag samples and calculate test error again Efj)

» The increase in error

EY —E, >0

serves as an importance measure for variable j 25/30



Monica dataset

Monica dataset? Data from the WHO project ‘Multinational MONItoring of trends
and determinants in CArdiovascular disease’

» Observations on whether or not patients survive a 10 year period given a
number of cardiovascular risk factors

» Collected from the 1970s to the 1990s
» n = 6367 samples (3525 alive, 2842 dead)

» p =11 features

> e.g. sex, age at onset, year of onset, hospitalisation status, cholesterol, blood
pressure, ...

2http://thl.fi/monica
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http://thl.fi/monica

RF applied to cardiovascular dataset

Out-of-bag error
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South African coronary heart disease (SAheart) dataset

South African coronary heart disease (SAheart) dataset A retrospective sample
of males in a heart-disease high-risk region of the Western Cape, South Africa.

» Meant as a classification data set with response whether or not coronary
heart disease was diagnosed

» n =462 samples (160 diagnosed, 302 not diagnosed)

» p =9 features

» e.g. cumulative tobacco consumption (in kg), low density lipoprotein
cholesterol (1d1), adiposity, family history, ...

To demonstrate random forests for regression, we will try to predict 1d1 from
the other features and response.
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RF applied to heart disease dataset
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Take-home message

» Direct partitioning of feature space is a complex task
» Binary splits resulting in simple tree models
» CART is highly interpretability, but very instable/variable

» Random Forests introduce variance reduction to bagging and allow to
measure variable importance
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