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ANALYZING BAGGING

BY PETER BÜHLMANN AND BIN YU1

ETH Zürich and University of California, Berkeley

Bagging is one of the most effective computationally intensive proce-
dures to improve on unstable estimators or classifiers, useful especially for
high dimensional data set problems. Here we formalize the notion of insta-
bility and derive theoretical results to analyze the variance reduction effect of
bagging (or variants thereof) in mainly hard decision problems, which include
estimation after testing in regression and decision trees for regression func-
tions and classifiers. Hard decisions create instability, and bagging is shown
to smooth such hard decisions, yielding smaller variance and mean squared
error. With theoretical explanations, we motivate subagging based on sub-
sampling as an alternative aggregation scheme. It is computationally cheaper
but still shows approximately the same accuracy as bagging. Moreover, our
theory reveals improvements in first order and in line with simulation studies.

In particular, we obtain an asymptotic limiting distribution at the cube-root
rate for the split point when fitting piecewise constant functions. Denoting
sample size by n, it follows that in a cylindric neighborhood of diameter
n−1/3 of the theoretically optimal split point, the variance and mean squared
error reduction of subagging can be characterized analytically. Because of the
slow rate, our reasoning also provides an explanation on the global scale for
the whole covariate space in a decision tree with finitely many splits.

1. Introduction. Advances in data collection and computing technologies
have led to the proliferation of large data sets. Bagging is one of the recent and
successful computationally intensive methods for improving unstable estimation
or classification schemes. It is extremely useful for large, high dimensional
data set problems where finding a good model or classifier in one step is
impossible because of the complexity and scale of the problem. Bagging (bootstrap
aggregating) was introduced by Breiman (1996a) to reduce the variance of a
predictor. It has attracted much attention and is frequently applied, although
deep theoretical insight has been lacking. Here we take a substantial step
towards a better understanding of bagging and its variant subagging (subsample
aggregating).

Consider the regression set-up. The data is denoted by Li = (Yi,Xi) (i =
1, . . . , n) with Yi the real-valued response and Xi a p-dimensional explanatory
variable for the ith instance. Given a new explanatory feature or covariate x,
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a predictor for E[Y |X = x] = f (x) (or of the response variable corresponding
to x) is denoted by

θ̂n(x) = hn(L1, . . . ,Ln)(x).

This estimator could involve a complex model or learning algorithm, for example,
linear regression with variable selection via testing, regression trees such as CART
[Breiman et al. (1984)] or MARS [Friedman (1991)].

DEFINITION 1.1 (Bagging). Theoretically, bagging is defined as follows.

(I) Construct a bootstrap sample L∗
i = (Y ∗

i ,X
∗
i ) (i = 1, . . . , n) according to the

empirical distribution of the pairs Li = (Yi,Xi) (i = 1, . . . , n).
(II) Compute the bootstrapped predictor θ̂∗

n (x) by the plug-in principle; that is,
θ̂∗
n (x) = hn(L

∗
1, . . . ,L

∗
n)(x), where θ̂n(x) = hn(L1, . . . ,Ln)(x).

(III) The bagged predictor is θ̂n;B(x) = E
∗[θ̂∗

n (x)].

In practice, the bootstrap expectation in (III) is implemented by Monte Carlo:
for every bootstrap simulation j ∈ {1, . . . , J } from (I), we compute θ̂∗

n;(j )(x) (j =
1, . . . , J ) as in (II) to approximate θ̂n;B(x) ≈ J−1 ∑J

j=1 θ̂
∗
n;(j )(x). J is often

chosen in the range of 50, depending on sample size and on the computational
cost to evaluate the predictor, see Breiman (1996a), Section 6.2.

Breiman (1996a) describes heuristically the performance of bagging as follows.
The variance of the bagged estimator θ̂n;B(x) is equal to or smaller than that
of the original estimator θ̂n(x). There can be a drastic variance reduction if the
original predictor is “unstable.” On the other hand, the magnitudes of the bias
are roughly the same for the bagged and the original procedure. It implies that
bagging improves the mean squared error a lot for “unstable” predictors whereas
it remains roughly the same for “stable” schemes. This has been observed in
empirical studies, cf. Breiman (1996a). We add here deeper insight based on
theoretical results and correct some previous beliefs about bagging.

Breiman (1996b) gives a heuristic definition of instability: a predictor is
“unstable” if small changes in the data can cause large changes in the predicted
value(s). We formalize here a precise definition that is not inconsistent with
Breiman’s.

DEFINITION 1.2 (Stability of a predictor). A statistic θ̂n(x) = hn(L1, . . . ,

Ln)(x) is called stable at x if θ̂n(x) = θ(x) + oP (1) (n → ∞) for some fixed
value θ(x).

Although this definition resembles very much the one for consistency, it is
very different since the value θ here is only a stable limit and not necessarily
the parameter of interest. Instability thus takes place whenever the procedure θ̂n
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is not converging to a fixed value: another (even infinitely long) realization from
the data generating distribution would produce a different value of the procedure,
with positive probability. Much of our coverage of bagging will be on unstable
predictors as defined above. They arise mainly when hard decisions with indicators
are involved as in decision trees (see Sections 2 and 3).

Theoretical investigations on why bagging works have been given by Friedman
and Hall (2000) and Buja and Stuetzle (2000a, b). Friedman and Hall (2000) de-
compose a smooth estimator into linear and higher orders. They argue heuristically
that bagging reduces variance for the higher order terms, and the linear term re-
mains unaffected. Buja and Stuetzle (2000a) concentrate on U -statistics to give
a clear and rigorous answer about bagging: the leading effects of bagging on vari-
ance, squared bias and mean squared error are of second order n−2. Thus, bagging
potentially improves mean squared error in the second (and higher) order asymp-
totic term only, but doesn’t affect the leading first order term. Moreover, Buja and
Stuetzle show that bagging sometimes even increases the second order MSE terms
inducing a damaging effect. Despite the fact that these previous works are nonlin-
ear, they do not cover the prominent case of decision trees.

For nonsmooth and unstable predictors, we demonstrate in this paper that
bagging does improve the first order dominant variance and mean squared error
asymptotic terms, as much as by a factor of 3. Such prediction schemes include
decision trees like CART and subset model selection techniques via testing, where
indicators play a prominent role. We pay special attention to decision trees with
one or finitely many binary splits, a so-called stump or best-first induced binary
tree (without pruning), respectively. The asymptotics are nonstandard: the splitting
variable turns out to have a convergence rate n−1/3 and the limiting distribution
can only be characterized in terms of Airy functions [see Groeneboom (1989)]
not leading to a closed (or at least “simpler”) expression. In such nonstandard
problems, the bootstrap in the bagging procedure described above does not work
in the conventional sense and is hard to analyze, at least from a theoretical point
of view. As a promising variant of bagging, more accessible for analysis, we
study subagging (subsample aggregating) in Section 3.2. But unlike more standard
approaches to subsampling without replacement, we choose the subsample size
m = [an] with 0 < a < 1. This has also appeared in Friedman and Hall (2000)
and Buja and Stuetzle (2000a, b). Based on rigorous results for subagged stumps
and best-first induced decision trees with finitely many splits, we show that
subagging improves upon variance and mean squared error. Besides theoretical
arguments, subagging also has substantial computational advantages since the
original predictor is only evaluated many times for m instead of n data points.
Our results also illuminate why bagging combined with boosting [cf. Bühlmann
and Yu (2000)] can be a very effective method achieving both variance and bias
reduction for decision trees.

Unlike previously suggested, the success of bagging is not exclusively restricted
to high-dimensional schemes, since it works well also for stumps which involve
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only three parameters (when the coordinate axis to split is assumed fixed). Only
Buja and Stuetzle (2000b) also make this point that the properties of bagging are
not primarily depending on dimensionality. When the original predictor involves
a hardthresholding indicator decision, our results show that bagging (and variants
thereof) can be interpreted as some data-driven softthresholding schemes, which
are characterized analytically. In order to compare with hard decision tree schemes
like CART, we give a rigorous asymptotic result for the basic element in MARS
[Friedman (1991)], as a prime example for a predictor involving a continuous,
but nonsmooth decision. There bagging, or variants thereof, do not increase
(substantially) the prediction performance.

The rest of the paper is organized as follows. Section 2 contains results for
predictors, discontinuous and continuous, involving the conventional n−1/2-con-
vergence rate. Section 3 introduces subagging, gives the nonstandard n−1/3-rate
result for the split in a binary tree, and explains the variance reduction effect
of subagging for such trees. The theoretical arguments and interpretations are
supported by some numerical experiments in Section 4. Conclusions are given
in Section 5 and the more involved proofs are collected in Section 6.

2. Bagging with indicators: the standard case. A linear predictor remains
the same under bagging. The simplest example is

θ̂n(x) ≡ Yn = n−1
n∑

i=1

Yi

with no explanatory variable x. Then

Yn;B(x) = E
∗[Y ∗

1 ] = Yn.

Thus, the interesting case has predictors θ̂n(x) that are nonlinear functions of the
data. For θ̂n(x) being a U -statistic, Buja and Stuetzle (2000a) show that under
some “ideal” circumstances, bagging reduces the variance of the higher order
but not of the leading first order asymptotic term; they also show that bagging
U -statistics may increase mean squared error, depending on the data-generating
probability distribution.

A very different type of estimator is studied here: we consider nondifferentiable,
and even discontinuous predictors θ̂n(x) which cannot be easily expanded. The
classical smooth function theory used by Friedman and Hall (2000) and Buja and
Stuetzle (2000a, b) does not apply. We particularly consider predictors involving
indicator functions. They arise whenever a hard decision is made. Examples
include CART as a decision tree or variable selection in regression models, for
which most of the empirical success of bagging has been reported; cf. Breiman
(1996a), Bauer and Kohavi (1999).
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2.1. Plug-in applied to an indicator. One of the main ideas behind why
bagging works can be demonstrated with a simple toy example. Consider the
predictor

θ̂n(x) = 1[Y n≤x], x ∈ R,

where Yn = n−1 ∑n
i=1 Yi is the mean of the data. For a fixed x, θ̂n(x) is the result

of thresholding Yn at the threshold x; for a fixed Yn, it is as a thresholding function
of x at the threshold Yn.

Heuristically, bagging averages here over indicators (as functions of x) with
thresholds varying around Yn (since the bootstrapped Y

∗
n fluctuates around Yn),

resulting in a smoothed or soft indicator.
If we take the view of fixed x, after a proper scaling of x, a simple yet precise

analysis below shows that bagging is a smoothing operation for thresholding Yn

at x. Due to the central limit theorem we have

n1/2(Y n −µ) →D N (0, σ 2)(2.1)

with µ = E[Y1] and σ 2 = Var(Y1). Then for an x in the n−1/2-neighborhood of the
parameter µ

x = xn(c) = µ+ cσn−1/2,(2.2)

we have the distributional approximation

θ̂n(xn(c))
D≈ 1[Z≤c], Z ∼ N (0,1).(2.3)

Obviously, for a fixed c, this is a hard decision function of Z, the limiting random
quantity from the asymptotic distribution of Yn. Denoting by �(·) the c.d.f. of
a standard normal distribution, it follows that

E
[
θ̂n(xn(c))

] → P[Z ≤ c] = �(c) (n → ∞),
(2.4)

Var
(
θ̂n(xn(c))

) → �(c)(1 −�(c)) (n → ∞).

Since the variance does not converge to zero, θ̂n(xn(c)) is unstable in the sense of
Definition 1.2: the predictor assumes the values 0 and 1 with a positive probability,
even as n tends to infinity. On the other hand, averaging for the bagged predictor
looks as follows:

θ̂n;B(xn(c)) = E
∗[

1[Y ∗
n≤xn(c)]

] = E
∗[

1[n1/2(Y
∗
n−Yn)/σ≤n1/2(xn(c)−Y n)/σ ]

]

= �
(
n1/2(xn(c) − Yn

)) + oP (1)(2.5)

D≈ �(c −Z), Z ∼ N (0,1),

where the first approximation (second line) follows because the bootstrap works
for the arithmetic mean Yn [see (A1) below] and the second because of (2.1) and
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FIG. 1. Indicator predictor from (2.6) at x = xn(0) as in (2.2) or Proposition 2.1. Function
g(z) = 1[z≤0] (solid line) and gB(z) (dotted line) define the asymptotics of the predictor and its
bagged version (see Proposition 2.1).

the definition of xn(c) in (2.2). Comparing with (2.3), bagging produces a soft
decision function of Z: it is a shifted inverse probit, similar to a sigmoid-type
function; see also Figure 1.

Bagging reduces variance due to the smoothing or soft- instead of hardthresh-
olding operation. An instructive case is with x = xn(0) = µ; that is, x is exactly at
the most unstable location, where Var(θ̂n(x)) is maximal. Formula (2.5) gives

θ̂n;B(xn(0)) →D �(−Z) = U, U ∼ Uniform([0,1]).
Thus,

E
[
θ̂n;B(xn(0))

] → E[U ] = 1/2 (n → ∞),

Var
(
θ̂n;B(xn(0))

) → Var(U) = 1/12 (n → ∞).

Comparing with (2.4), bagging is asymptotically unbiased [the asymptotic
parameter to be estimated is limn→∞ E[θ̂n(xn(0))] = �(0) = 1/2], but the
asymptotic variance is reduced by a factor 3! We will see later that for a whole
range where c �= 0 in (2.2) (i.e., x �= µ), bagging still reduces variance while
adding only little to the bias.

We now look at a more general indicator predictor of similar form

θ̂n(x) = 1[d̂n≤x], x ∈ R,(2.6)

where the threshold d̂n satisfies the following assumption:
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For some increasing sequence (bn)n∈N and the bootstrapped estimator d̂∗
n ,

we have

bn(d̂n − d0) →D N (0, σ 2∞),

sup
v∈R

∣∣P∗[
bn(d̂

∗
n − d̂n) ≤ v

] −�(v/σ∞)
∣∣ = oP (1),

with 0 < σ 2∞ < ∞.

(A1)

Our example with d̂n = Yn satisfies this assumption with bn = n1/2. (A1)
generally requires asymptotic normality of the estimator with any rate and that
the bootstrap works. Due to the results in Giné and Zinn (1990), this essentially
holds by assuming i.i.d. observations and d̂n being a smooth functional evaluated
at the empirical distribution.

PROPOSITION 2.1. Assume (A1). For the predictor in (2.6) with x = xn(c) =
d0 + cσ∞b−1

n ,

θ̂n(xn(c)) →D g(Z) = 1[Z≤c],

θ̂n;B(xn(c)) →D gB(Z) = �(c −Z),

where Z ∼ N (0,1).

PROOF. The distributional limits follow in exact analogy to (2.3) and (2.5).
�

Figure 1 illustrates the two functions g(·) and gB(·) from Proposition 2.1.
Bagging reduces variance due to the smoothing or soft- instead of hardthresholding
operation. We compute the first two asymptotic moments in the unstable region
with x = xn(c). Denote the convolution of f and g by f ∗ g(·) = ∫

R
f (· − y)

× g(y) dy, and the standard normal density by ϕ(·).
COROLLARY 2.1. Assume (A1). For the predictor in (2.6) with x = xn(c) as

in Proposition 2.1,

(i) limn→∞ E[θ̂n(xn(c))] = �(c), limn→∞ Var(θ̂n(xn(c))) = �(c)(1 −�(c)).
(ii) limn→∞ E[θ̂n;B(xn(c))] = �∗ϕ(c), limn→∞ Var(θ̂n;B(xn(c))) = �2 ∗ϕ(c)

− (� ∗ ϕ(c))2.

PROOF. Assertion (i) is straightforward. Assertion (ii) follows by Proposi-
tion 2.1 together with the boundedness of the function gB(·) therein. �

Numerical evaluations of these first two asymptotic moments and mean squared
error (MSE) are given in Figure 2. We see that for |c| ≤ 2.3, bagging improves
the mean squared error. The biggest gain is at the most unstable point x = d0,
corresponding to c = 0. The squared bias with bagging has only a negligible effect
on the MSE (note the different scales in Figure 2).
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FIG. 2. Indicator predictor from (2.6) at x = xn(c) as in (2.2) or Proposition 2.1. Asymptotic
variance, squared bias and mean squared error (AMSE ) for the predictor θ̂n(xn(c)) from (2.6) (solid
line) and for the bagged predictor θ̂n;B(xn(c)) (dotted line) as a function of c.

2.2. Variable selection via testing in linear models. In this section, we show
that since estimation after testing in linear regression is a hardthresholding
operation, bagging also acts as smoothing or softening and leads to a reduced
variance without much sacrifice on the bias.

Consider the linear model

Yi = (Xβ)i + εi (i = 1, . . . , n),

where X is the n × p random design matrix (Xij ), β is a p × 1 parameter vector
and ε1, . . . , εn are i.i.d. with expectation zero and variance σ 2. Assume that the
columns in X are orthogonal (in expectation): this simplifies the mathematical
problem, although the results are expected to be relevant by weakening this
requirement. The least squares estimate β̂n is then asymptotically normally
distributed at rate n−1/2 (assuming finiteness of the second moment of the
covariate vector) with independent components; testing individual hypotheses
H0,j :βj = 0 (j = 1, . . . , p) is thus a reasonable model selection procedure.
A predictor of interest is then

θ̂n(x) =
p∑

j=1

β̂j1[|β̂j |>un,j ]x
(j)

with x(j) the j th component of x. For example, the thresholds could be un,j =
Cjn

−1/2: the choice Cj = t1−α/2;n−1σ̂ /
√
n−1 ∑n

i=1 X
2
ij would correspond to the

(conditional) t-test on significance level α. Due to the asymptotic independence of
the components of β̂ , the MSE is asymptotically additive with p individual MSEs.
We thus consider without loss of generality the predictor

θ̂n(x) = β̂1[|β̂|>un]x, x ∈ R
1,(2.7)

where β̂ is the least squares estimator in the model

Yi = βXi + εi, X1, . . . ,Xn R-valued and i.i.d. with E|Xi |2 = 1,
(2.8) {εi}i i.i.d. and independent from {Xi}i , E[εi] = 0, Var(εi) = σ 2 < ∞.
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The threshold is assumed to be of the form

un = un(c) = cσn−1/2.(2.9)

This choice leads to a stable predictor θ̂n(x) according to Definition 1.2.
But instability arises when scaling the predictor with n1/2 which becomes an
interesting case for bagging.

PROPOSITION 2.2. Assume model (2.8) with β = βn(b) = bσn−1/2 and
E|εi |4 < ∞, E|Xi |4 < ∞. For the predictor in (2.7) with un = un(c) as in (2.9),

n1/2σ−1θ̂n(x) →D g(Zb) = (Zb −Zb1[|Zb|≤c])x,

n1/2σ−1θ̂n;B(x) →D gB(Zb),

where Zb = b +Z, Z ∼ N (0,1), and

gB(z) = (
z − {

z�(c − z)− ϕ(c − z)− z�(−c − z)+ ϕ(−c − z)
})
x.

A proof is given in Section 6. The interpretation is similar to the one in
Section 2.1: the original predictor is approximated by g(·) which involves
a hardthreshold indicator, whereas the bagged predictor by gB(·) which is a
softthreshold function. The functions g(·) and gB(·) are displayed in Figure 3.

From Proposition 2.2 we can numerically compute the asymptotic bias, variance
and MSE of θ̂n(x) and θ̂n;B(x) as a function of b where β = βn(b) as in

FIG. 3. Predictor from (2.7), with x = 1 and un as in (2.9) with c = 1.96, in linear model (2.8).
Function g(z) (solid line) and gB(z) (dotted line) from Proposition 2.2, defining the asymptotics of
θ̂n(1) and its bagged version, respectively.



936 P. BÜHLMANN AND B. YU

FIG. 4. Predictor from (2.7), with x = 1 and un as in (2.9) with c = 1.96, in linear model (2.8)
with β = βn(b) as in Proposition 2.2. Asymptotic variance, squared bias and mean squared error
(AMSE ), standardized by the factor nσ−2, for the predictor θ̂n(1) (solid line) and for the bagged
predictor θ̂n;B(1) (dotted line), as a function of b.

Proposition 2.2 (similarly as in Corollary 2.1 and using uniform integrability).
The results are displayed in Figure 4 using the threshold c = �−1(0.975) = 1.96
in (2.9) which arises for n large under two-sided t-testing on significance level
5%. The gain with bagging is quite substantial in the range 1 ≤ b ≤ 3; for the
point b = 0 with small amount of instability, bagging decreases performance a bit.
The bias and mean squared error are here defined for estimating the true quantity
βx = βn(b)x = bσn−1/2x; this is different from the centering in Section 2.1 where
the original predictor is assumed to be asymptotically unbiased. In this particular
setting, bagging even has smaller asymptotic bias, for most values of b; but the
bias effect plays again a negligible role in terms of MSE.

2.3. MARS: a soft decision algorithm. In this section, we analyze the bagging
effect on the basic ingredient in MARS [Friedman (1991)], a piecewise linear
spline function. This will turn out to be a soft rather than a hard decision operation.
Bagging continues to act as smoothing making the decision even softer, but this
smoothing effect only brings in a marginal reduction in variance and renders
bagging unnecessary for MARS.

For a one-dimensional predictor, the basis function in MARS is a piecewise
linear spline function [x − d]+ = (x − d)1[d≤x]. The estimated predictor takes the
form

θ̂n(x) = β̂n[x − d̂n]+,(2.10)

with the least squares estimates

(β̂n, d̂n) = arg min
β,d

n∑
i=1

(Yi − β[Xi − d]+)2(2.11)

for the best projected values

(β0, d0) = arg min
β,d

E
[
(Y − β[X − d]+)2]

.(2.12)
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These estimators behave differently from the hard decision algorithms in a crucial
way so that bagging turns out to be noneffective. We illustrate it in the regression
model:

Yi = f (Xi) + εi, supp(Xi) = D ⊆ R
1 an open set,

(2.13)
supp(εi) = R (i = 1, . . . , n),

where {Xi} and {εi}i are i.i.d. sequences, independent of each other. Moreover,
E[εi] = 0, Var(εi) = σ 2 < ∞.

PROPOSITION 2.3. Consider the regression model (2.13) with E|Yi |2 < ∞,
E|Xi |2 < ∞. Assume the density function for Xi is positive everywhere and
bounded over a neighborhood of the best projected parameter d0. Then, the
estimators in (2.11) are asymptotically independent and

√
n(β̂n − β0) →D N (0, σ 2

β),

√
n(d̂n − d0) →D N (0, σ 2

d ),

where β0, d0 are as in (2.12).

PROOF. The argument is essentially the same as that in Chan and Tsay (1998),
noting that finite second moments are sufficient for independent data. �

Following Proposition 2.3, the MARS predictor (2.10) in the simplest case is
stable in the sense of Definition 1.2, even for x in an n−1/2-neighborhood of d0.
Note that this is not true for the indicator case in Section 2.1, but it does hold for
the predictor in the variable selection problem from (2.7). Due to the hard decision
in the latter case, bagging brought about a substantial improvement in terms of the
leading MSE of order O(n−1) (see Proposition 2.2 and Figure 4).

Consider now explanatory variables which are in a region around the nondiffer-
entiable point (the “kink”) of the MARS predictor,

x = xn(c) = d0 + cσdn
−1/2.(2.14)

The smoothing effect of bagging with MARS can be described now.

PROPOSITION 2.4. Under the conditions of Proposition 2.3,

n1/2σ−1
d θ̂n(xn(c)) →D g(Z) = β0(c −Z)1[Z≤c],

n1/2σ−1
d θ̂n;B(xn(c)) →D gB(Z) = β0{(c −Z)�(c −Z) + ϕ(c −Z)},

where Z ∼ N (0,1).



938 P. BÜHLMANN AND B. YU

FIG. 5. MARS basis function from (2.10) at x = xn(0) = d0 as in (2.14). Function g(z) (solid line)
and gB(z) (dotted line) from Proposition 2.4, defining the asymptotics of θ̂n(xn(0)) and its bagged
version, respectively.

A proof is given in Section 6. The functions g(·) and gB(·) are displayed
in Figure 5, and the MSEs displayed in Figure 6 are obtained by integrating
the limiting quantities from Proposition 2.4 (assuming moment conditions).
In contrast, for the continuous MARS decision (see Figure 5), the bagging
improvement is almost negligible.

The results for the basic MARS predictor (2.10) are also found to be relevant for
more complex predictions with MARS in Section 4. In summary, our theoretical
analysis does indeed explain ( partially) when bagging works: it improves
comparatively little in the case of the continuous-decision MARS procedure, but
very much upon procedures involving hard, discontinuous decisions.

FIG. 6. MARS predictor θ̂n(xn(c)) from (2.10) with xn(c) from (2.14). Asymptotic variance,
squared bias and mean squared error (AMSE ), standardized by the factor nσ−2

d , for the predictor

θ̂n(xn(c)) (solid line) and for the bagged predictor θ̂n;B(xn(c)) (dotted line), as a function of c.
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3. Subagging decision trees. In this section, we address the effect of bagging
in the case of decision trees, which is the most commonly used procedure for
bagging in empirical studies. Decision trees consist of piecewise constant fitted
functions sitting on products of indicator functions as in (2.6). Hence we expect
bagging to bring significant variance reduction as in Section 2.1. To make the
case rigorous, we have to derive in Section 3.1 a new result on the asymptotic
distribution of the split point in decision trees. The rate is n−1/3, however, and the
bootstrap doesn’t work for the split point. A rigorous analysis of bagging is thus
very difficult. But subagging, a computationally more efficient alternative, turns
out to be more tractable and we develop an upper bound on the mean squared error
of the subagged predictor based on trees. Section 3.3 contains a small simulation
study to show that the asymptotic result in Section 3.2 is relevant for small sample
sizes. Section 3.4 makes the argument that the local smoothing effects around the
split points come together to give rise to a global scale variance reduction. This
is because there are a large number of split points and hence a large number of
unstable regions where bagging improves over the original decision tree.

3.1. Cube-root asymptotics for the one-split stumps. For a one-dimensional
predictor space, a nonnormal limiting distribution is derived for the split point in
stumps, that is, a binary tree with two terminal nodes. It is the basis for our rigorous
analysis of aggregation with stumps and its implications for large binary trees. In
model (2.13), consider now the decision tree predictor with stumps,

θ̂n(x) = β̂/1[x<d̂n] + β̂u1[x≥d̂n],(3.1)

where the estimates are obtained by least squares as

(β̂/, β̂u, d̂n) = arg min
β/,βu,d

n∑
i=1

(Yi − β/1[Xi<d] − βu1[Xi≥d])2.(3.2)

The best projected values are defined by

(β0
/ , β

0
u, d

0) = arg min
β/,βu,d

E
[
(Y − β/1[X<d] − βu1[X≥d])2]

.(3.3)

Solving the normal equations of (3.3) gives

β0
/ = E[Y |X < d0], β0

u = E[Y |X ≥ d0], f (d0) = β0
/ + β0

u

2

with f (·) from (2.13). To proceed, we make the following assumptions for
model (2.13).
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(i) (smoothness condition on f ) f (·) is continuous; and its first
and second derivatives f ′, f ′′ exist and are uniformly bounded in a
neighborhood of d0 and f ′(d0) �= 0.

(ii) (smoothness condition on the density functions of X and ε) Xi and εi
have density functions pX and pε respectively; the first derivative p′

X exists
and is uniformly bounded in a neighborhood of d0, and pX(d0) �= 0.

(iii) (moment condition) E[εi ] = 0, E|εi |2 = σ 2 < ∞.
(iv) (tail condition) the marginal density pY of Y satisfies pY (y) =

o(|y|−(4+δ)) as |y| → ∞, for some δ > 0.

(A2)

Condition (iv) is satisfied, for example, when the same tail condition holds for
pε , as in the case of Gaussian noise, and f is bounded on its domain D .

THEOREM 3.1. Suppose assumption (A2) holds, β0
/ �= β0

u , and the best
projected values (β0

/ , β
0
u, d

0) are unique. Then as n → ∞,

n1/3(d̂n − d0) →D W := arg max
t

[
Q(t) sign(β0

/ − β0
u)

]
,

where the limiting process Q is a scaled, two-sided Brownian motion, originating
from zero, with a quadratic drift:

Q(t) = σ0B(t) − 1
2V t2,

where σ 2
0 = pX(d0)σ 2, B(t) is a two-sided Brownian motion, originating from

zero, and V = −pX(d0)f ′(d0) �= 0.

A proof is given in Section 6.

REMARK 3.1. Theorem 3.1 generalizes to the case where X in (2.13) is
p-dimensional with p > 1. All that is required is that the theoretically optimal
component γ 0 ∈ {1, . . . , p} to split is unique.

REMARK 3.2. The analysis for best-first induced binary trees with finitely
many splits (i.e., without pruning) is similar to Theorem 3.1. More details are
given by Fact 3.1 in Section 3.4.

Groeneboom (1989), Corollary 3.1, studies the distribution of the maximizer
of the process B(t) − ct2 (c > 0) and gives its density function. Unfortunately,
this density is not normal and involves functions whose Fourier transforms are
characterized by Airy functions. Since it is in no sense simple and does not give
any insight into the distribution of W, we refer interested readers to Groeneboom
(1989). Thus, the asymptotic normality assumption (A1) for d̂n in Section 2 does
not hold! Moreover, the bootstrapped estimator d̂∗

n , when centered around d̂n,
does not converge to the same limiting distribution as that of W . The proof of
Theorem 3.1 offers some insight. The n−1/3-asymptotics holds largely due to the
smoothness conditions in (A2) on the population density and conditional density
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functions. These conditions are violated for the bootstrapped samples, for which
the underlying distribution is discrete.

It is worth noting that (A1) about bootstrap consistency is not necessary for
bagging to work as long as the resulting bagged estimator is sensible itself.
Conditional on the original sample, d̂∗

n spreads around d0 by taking one of
the discrete values between original sample points. The resulting bagged stump
estimator is a weighted average of the stump estimators with split points between
the original sample values. Thus, bagging is still a smoothing operation, similar
to the assertion in Proposition 2.1, although exact analysis seems difficult and
we leave it as an open research problem. As a computationally more efficient
alternative which is also accessible for analysis, we study next a variant of the
bagging procedure.

3.2. Subagging. Subagging is a sobriquet for “subsample aggregating” where
subsampling is used instead of the bootstrap resampling. A predictor θ̂n(x) =
hn(L1, . . . ,Ln)(x) is aggregated as follows:

θ̂n;SB(m) =
(
n

m

)−1 ∑
(i1,...,im)∈I

hm(Li1, . . . ,Lim),(3.4)

where I is the set of m-tuples whose elements in {1, . . . , n} are all distinct. This
aggregation can be approximated by a stochastic computation: random sampling m

times of the data L1, . . . ,Ln without replacement and averaging over the predictors
based on random subsamples; cf. Bickel, Götze and van Zwet (1997).

We first consider an arbitrary predictor and then specialize to the examples
in (2.6) and (3.1).

PROPOSITION 3.1. Let θ̂n(·) = hn(L1, . . . ,Ln)(·) be any predictor which is
symmetric in the data L1, . . . ,Ln. Assume that m ≤ n and E|hm(L1, . . . ,Lm)(x)|2
< ∞ for all x. Then, for any x,

E
[
θ̂n;SB(m)(x)

] = E[hm(L1, . . . ,Lm)(x)],
Var

(
θ̂n;SB(m)(x)

) ≤ m

n
Var

(
hm(L1, . . . ,Lm)(x)

)
.

PROOF. The subagged predictor θ̂n;SB(m)(x) is a U -statistic with kernel of
order m. The result then follows from a well-known formula for the variance of
a U -statistic; cf. Serfling (1980). �

3.2.1. Fraction and half subagging. An interesting case is subagging with
m = [an] with 0 < a < 1 (i.e., m a fraction of n) and often a = 1/2 (half
subagging); and not with m of smaller order than n which will be discussed in
Section 3.2.2. The choice a = 1/2 is also suggested by Friedman and Hall (2000),
mainly by simulations.
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We assume now the following very mild condition for the predictor in (2.6)
or (3.1):

For some sequence bn = Cnγ (C > 0, γ > 0),

P
[
bn(d̂n − d0) ≤ x

] → G(x)

where G(·) is the c.d.f. of a nondegenerate distribution.

(A3)

By Theorem 3.1, Assumption (A3) holds for the split point in stumps with

bn = n1/3σ−1∞ , σ 2∞ = lim
n→∞n2/3 Var(d̂n) = Var(W),(3.5)

where W is as in Theorem 3.1. We evaluate expectation and variance of subagged
estimators for the predictors in (2.6) and (3.1) at unstable locations. In the case of
stumps (3.1), the explanatory variable x is in an n−1/3-neighborhood of d0,

x = xn(c) = d0 + cσ∞n−1/3,(3.6)

with σ 2∞ from (3.5).

THEOREM 3.2 (Fraction subagging for indicators and stumps). Consider
predictors as in (2.6) or (3.1) with x = xn(c) as in Proposition 2.1 or (3.6),
respectively. Assume that (A3) holds for some γ > 0. Suppose m = [an] with
0 < a < 1. Then,

lim
n→∞ E

[
θ̂n;SB(m)(xn(c))

] = β0
/ + (β0

u − β0
/ )G(caγ ),

lim sup
n→∞

Var
(
θ̂n;SB(m)(xn(c))

) ≤ (β0
u − β0

/ )
2aG(caγ )

(
1 −G(caγ )

)
,

lim sup
n→∞

E

[(
θ̂n;SB(m)(xn(c))− E

[
θ̂n(x(c))

])2
]

≤ (β0
u − β0

/ )
2((

G(caγ ) −G(c)
)2+aG(caγ )

(
1 −G(caγ )

))
,

where β0
/ = 0, β0

u = 1 for the predictor in (2.6).

A proof is given in Section 6. The evaluation of the asymptotic MSE (AMSE)
bounds in Theorem 3.2 depends on the normalizing constants bn and the limiting
distribution G(·) in (A3). If bn = C

√
n (C a constant), that is, γ = 1/2, and

G(·) = �(·) the standard Gaussian c.d.f., the evaluation is straightforward and
the result is displayed in the left panel of Figure 7. In the case of the stumps
predictor, we know that bn = Cn1/3 (C a constant), that is, γ = 1/3, and G(·)
can be characterized in terms of Airy functions: a more explicit form for G(·)
is not possible. We thus rely on simulating the asymptotic distribution G(·) and
display the result in the right panel of Figure 7. The description of subagging with
larger decision trees is postponed to Section 3.4.
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FIG. 7. Asymptotic mean squared error (AMSE ) of original predictor and a bound for the subagged
version. Left: indicator predictor θ̂n(xn(c)) in (2.6) (solid line) and θ̂n;SB(m)(xn(c)), with xn(c)

as in Proposition 2.1. The situation corresponds to Theorems 3.2 and 3.3, assuming (A3) with
bn = n1/2σ−1∞ and G(·) = �(·) the standard normal distribution. Right: θ̂n(xn(c)) in (3.1) (solid
line) and θ̂n;SB(m)(xn(c)), with xn(c) as in (3.6). The situation corresponds to Theorems 3.2 and 3.3,

assuming (A3) with bn = n1/3σ−1∞ and G(·) from Theorem 3.1. In both cases: subsample size
m = [an] or m → ∞, m = o(n). Everything scaled to β0

/ = 0, β0
u = 1.

3.2.2. Small order subagging. We refer to small order subagging when using a
subsample size m = m(n) so that m → ∞, m = o(n). This is a classical approach
with subsampling for distribution estimation; cf. Bickel, Götze and van Zwet
(1997). However, such a choice is not very appropriate for subagging, as explained
in the next theorem.

THEOREM 3.3 (Small order subagging for indicators and stumps). Assume
the same conditions as in Theorem 3.2 but with m → ∞, m = o(n). Then,

lim
n→∞ E

[
θ̂n;SB(m)(xn(c))

] = β0
/ + (β0

u − β0
/ )G(0),

lim
n→∞ Var

(
θ̂n;SB(m)(xn(c))

) = 0,

lim
n→∞E

[(
θ̂n;SB(m)(xn(c))− E

[
θ̂n(x(c))

])2
]
= (β0

u − β0
/ )

2(
G(0)−G(c)

)2
,

where β0
/ = 0, β0

u = 1 for the predictor in (2.6).
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PROOF. The results follow as for Theorem 3.2 by noting that m/n = o(1)
(which plays the role of a in Theorem 3.2) and bm/bn = o(1) since bn = Cn1/3.

�

Numerical evaluation for small order subagging is also displayed in Figure 7. In
the very regular case corresponding to the left panel in Figure 7, fraction subagging
with a = 1/5 can already become quite bad for “weak unstable regions” where
1.5 ≤ |c| ≤ 4.5. The situation is contrasted somewhat with stumps displayed in the
right panel of Figure 7: fraction subagging with a = 1/5 is not behaving poorly
at “weak unstable regions” but improves very much at “strong unstable regions”
with |c| small (the latter is also true in the left panel of Figure 7). Small order
subagging with m = o(n) can be very bad at “weak unstable regions,” in both
cases corresponding to Figure 7. All this should be cautiously interpreted because
we give only an upper bound for the AMSE in fraction subagging and actual
performance may be better than this bound. Generally, the subsample size m can
be interpreted as a “smoothing” parameter: m large corresponds to small bias but
large variance, and vice versa. From this view, small order subagging oversmooths
and hence magnifies the bias.

3.3. Discussion. All the quantifications in the previous sections hold in the
limit. But Table 1 and Figure 8 show finite-sample situations for stumps θ̂n(x) with
n = 100 and n = 10 in the model (2.13) with f (x) = 2+3x, Xi ∼ Uniform([0,1])
and εi ∼ N (0,1); similarly as before, the centering for bias and mean squared
error is always around θn(x) = E[θ̂n(x)]. Bagging and half subagging are almost
identical; a fact which we rediscover again in more complex situations in Section 4.
The reduction in MSE with (su-)bagging is larger for n = 100 than for n = 10, but
still substantial for the small sample size. The result with n = 10 is quite important
because with a deep split in a decision tree such as CART, only such a small
number of observations may belong to the partition cell to be refined. Figure 8
with n = 100 is qualitatively like the asymptotic situation in Figure 7 (right panel).
There is a quantitative difference due to the fact that Figure 7 only shows bounds
for the asymptotic mean squared error which might be too conservative. For the
case here, we get a bound of about 50% on the MSE reduction around the most
unstable point c = 0 while the actual reduction is 59%.

TABLE 1
Overall mean squared error E[(θ̂n(X)− θn(X))2] (with X independent of the training data) for

stumps θ̂n(·) in (3.1) and its bagged and subagged (m = n/2) version. Reduction with (su-)bagging
is given in parentheses. Based on 100 simulations from model (2.13)

n unbagged (MSE) bagging (MSE) half subagging (MSE)

100 0.076 0.033 (56%) 0.031 (59%)
10 0.244 0.172 (30%) 0.170 (30%)
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FIG. 8. Mean squared error of stumps θ̂n(x) in (3.1) (solid line) and its (su-)bagged version
θ̂n;SB(m)(x) for x ∈ [0,1]. Sample size n = 100 and subsampling size m = [an]. Everything

multiplied by the factor 1/(β0
u − β0

/ )
2 = 1/2.25 to obtain (asymptotically) the scale from Figure 7.

Our theoretical analysis and its numerical illustrations have only been dealing
with a somewhat limited notion of bias. We have usually given an a priori
advantage to the unbagged predictor and considered performance for estimating
θ(x) = limn→∞ E[θ̂n(x)]. (Su-)bagging adds a small bias from this view. With
subagging, the bias decreases as m ≤ n increases. More finite sample results about
bias are given in Section 4.

As an alternative to subagging, we briefly point to moon-bagging, standing for
“m out of n bootstrap aggregating.” The idea is to replace the bootstrap step
by the m out of n bootstrap [Bickel, Götze and van Zwet (1997)]: sample with
replacement

L∗
1, . . . ,L

∗
m i.i.d. ∼ F̂n,(3.7)

where F̂n is the empirical distribution of the data L1, . . . ,Ln and m is an integer
smaller than sample size n. Then, calculate

θ̂∗
m(x) = hm(L

∗
1, . . . ,L

∗
m)(x)

where θ̂n(x) = hn(L1, . . . ,Ln)(x). The moon-bagged predictor with resampling
size m is then

θ̂n;MB(m)(x) = E
∗[
θ̂∗
m(x)

]
.
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The difference between moon-bagging and subagging essentially disappears for m
small (with respect to n); particularly, Theorem 3.3 also applies for moon-bagging
[if hn(·)(x) is not greatly affected by ties]; cf. Bickel, Götze and van Zwet (1997).

3.4. Global mean squared error and trees with many terminal nodes. This
section discusses the relevance of our results about (su-)bagging with stumps to
a general binary decision tree with many terminal nodes and predictor space R

p

with p > 1.
3.4.1. Stumps with one split. First we use Theorem 3.1 to assess the effect

of subagging on the global mean squared error for the one-split stumps. Recall
that θ(x) = limn E[θ̂n(x)] has been defined as the asymptotic value of the original
predictor which is a reasonable target when comparing the original with the
(su-)bagged procedure, because

E
[(
θ̂n(x) − f (x)

)2] ∼ E
[(
θ̂n(x) − θ(x)

)2] + (
θ(x) − f (x)

)2
,

where the last term will not be affected by the (su-)bagging aggregation. Denote
by

MSEn = E
[(
θ̂n(X) − θ(X)

)2]
for a new test observation X ∈ R (notationally simpler than R

p) which is
independent of the data, having the same distribution as one predictor in the data.
Denoting by pX(·) the density for X, we rewrite

MSEn =
∫

MSEn(x)pX(x) dx,

where MSEn(x) = E[(θ̂n(x) − θ(x))2] for fixed x. With one split (stumps), the
instability region is in a n−1/3-neighborhood of the best projected value d0.
Rewrite by setting x = d0 + vn−1/3,

MSEn = n−1/3
∫

MSEn(d
0 + vn−1/3)pX(d0 + vn−1/3) dv.

Assuming that pX(·) is continuous in a neighborhood of d0 we have pX(d0 +
vn−1/3) → pX(d0). Moreover, Theorem 3.1 indicates that MSEn(d

0 +vn−1/3) →
m(v) for some function m(·) : R → R

+. Assuming regularity conditions to inter-
change the integration with the limiting operation (e.g., for applying Lebesgue’s
dominated convergence theorem), we get

MSEn ∼ n−1/3pX(d0)

∫ ∞
−∞

m(v)dv.

Analogously, we obtain for the (su-)bagged predictor, but now with a different
function mSB(·),

MSEn;SB ∼ n−1/3pX(d0)

∫ ∞
−∞

mSB(v) dv.
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Our rigorous analysis in Section 3.2 has shown that mSB(v) � m(v) for v close
to zero, and mSB(v) < m(v) for most v ∈ R with m(v), mSB(v) not very close to
zero. We thus conclude that the gain with (su-)bagging for stumps is asymptotically
given by

MSEn;SB/MSEn ∼
∫

mSB(v) dv

/∫
m(v)dv,(3.8)

which is usually much smaller than one. Using Remark 3.1 and the same arguments
from above, this easily generalizes to stumps with p-dimensional covariate space.

3.4.2. General binary decision trees. Let us first consider a two split (three
terminal node) decision tree in the case of a one-dimensional predictor space as a
generalization to the stumps result in Theorem 3.1. The first split d̂1 is estimated
as with stumps in (3.2), leading to two partition cells R/ = {x :x < d̂1} and
Ru = {x :x ≥ d̂1}. Without loss of generality assume that asymptotically, the lower
partition cell R/ will be refined with a second split d̂2, defined as

(β̂2;/, β̂2;u, d̂2)

= arg min
β2;/,β2;u,d2<d̂1

n∑
i=1

(
Yi − (β2;/1[Xi<d2] + β2;u1[Xi≥d2])

)2
1[Xi<d̂1],

where β̂1;u is the estimated location for the upper partition cell Ru from the first
split. The following can then be shown.

FACT 3.1. Under similar conditions as in Theorem 3.1, but now for the
conditional densities of Y |X < d0

1 and X|X < d0
1 [where d0

1 is the best projected
value for the first split as in (3.3)],

n1/3(d̂2 − d0
2 ) →D W2,

where W2 is a maximizer of a two-sided Brownian motion with quadratic drift,
similar to Theorem 3.1, and d0

2 the best projected second split.

A sketch of a proof is given in Section 6. Note that the second split has the
same convergence rate n−1/3 but the limiting distribution of W2 might have a
different scale (variance) from the one from the first split described in Theorem 3.1.
Nevertheless, (su-)bagging has about the same relative variance reduction effect on
the second as on the first split.

Consider now the global MSE with two splits and optimal projected values for
the first and second split d0

1 and d0
2 , respectively (without loss of generality assume

d0
1 > d0

2 ). Then, we write

MSEn =
∫ d0

2+κ

−∞
MSEn(x)pX(x) dx +

∫ ∞
d0

2 +κ
MSEn(x

′)pX(x′) dx′,
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where κ > 0 is arbitrarily small. Now use the substitutions x = d0
2 + vn−1/3 and

x′ = d0
1 + v′n−1/3. Due to Theorem 3.1 and Fact 3.1, MSEn(x) and MSEn(x

′)
converge to m2(v) and m1(v

′), respectively. Assume that regularity conditions to
interchange integration with the limiting operation hold, as in the case with stumps.
Then, for a two split tree,

MSEn ∼ n−1/3
[
pX(d0

1 )

∫
m1(v) dv + pX(d0

2 )

∫
m2(v) dv

]
.

Using the same arguments for (su-)bagging suggests

MSEn;SB ∼ n−1/3
[
pX(d0

1 )

∫
m1;SB(v) dv + pX(d0

2 )

∫
m2;SB(v) dv

]
.

Now, Theorem 3.2 (use also Fact 3.1 for the second split) suggests a reduction so
that both ∫

mi;SB(v) dv
/∫

mi(v) dv � 1, i = 1,2.(3.9)

For a two split tree, elementary algebra then leads to

lim sup
n→∞

(MSEn;SB/MSEn) ≤ max
i=1,2

(∫
mi;SB(v) dv

/∫
mi(v) dv

)
,

which is substantially smaller than that due to (3.9). The relative gain with
(su-)bagging is thus at least as big as the one for stumps in (3.8).

Fact 3.1 and the arguments about the MSE easily extend to a finite number of
splits and even to the case where the number of splits grows slowly. Moreover, the
argument carries over to high-dimensional covariate space (with fixed dimension
1 ≤ p < ∞) and thus to the case where decision trees are most popular; see also
Remark 3.1.

Since every split in a decision tree induces a whole region in the covariate space
of volume O(n−1/3) where the predictor becomes unstable, a large tree is more
unstable than a small one. Instability of hard threshold decision trees has been
exploited from a different view also by Loh and Shih (1997).

3.5. Subagging in classification. Aggregation in classification is often empir-
ically found to improve similarly as in regression; see also Section 4.

Consider the J -class problem: the data consists of the pairs Li = (Yi,Xi) (i =
1, . . . , n) but now with categorical responses Yi ∈ {0, . . . , J − 1} and explanatory
variables Xi ∈ R

p . The task is to classify a new test variable Y based on its
corresponding explanatory X: (Y,X) is independent of the data and has the same
distribution as one data pair. We wish to minimize the following misclassification
risk for a classifier C(·),

MCR = P[C(X) �= Y ],
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assuming equal misclassification costs. The classifier is chosen to be of the form
(as an estimated version of the optimal Bayes classifier),

Ĉn(x) = arg max
j

P̂n(j |x)(3.10)

where P̂n(j |x) is an estimate of P (j |x) = P[Y = j |X = x]. (Su-)bagging of the
classifier can be constructed by voting [Breiman (1996a)] or as another version [cf.
Amit and Geman (1997)]

Ĉn;SB(m)(x) = arg max
j

P̂n;SB(m)(j |x)

with P̂n;SB(m)(j |·) the average of subsample-estimates, as in the regression case;
and analogously for bagging instead of subagging.

A rigorous analysis comparing Ĉn;SB(m)(·) with Ĉn(·) when P̂n(·) is from a
classification or decision tree is more difficult than showing the improvement with
subagging in terms of MSE as given in Sections 3.2–3.4. The reason is that the
misclassification rate MCR(·) involves the distribution of P̂n(·) and P̂n;SB(m)(·)
and not just the first two moments.

4. Numerical examples. We reconsider the two examples from Breiman
(1996a) by reporting here additionally on bias and variance. Subagging as
a variant of bagging is also investigated. The original predictors are either
decision trees as implemented in S-Plus with the function tree, or MARS as
implemented with the function mars from the library MDA in S-Plus, available
at http://lib.stat.cmu.edu/S/mda.

4.1. Regression setting. We consider a simulation model, called Friedman #1
[Friedman (1991)]:

Yi = f (Xi) + εi (i = 1, . . . , n),

X1, . . . ,Xn i.i.d. ∼ Uniform10([0,1]10), ε1, . . . , εn i.i.d. ∼ N (0,1),

where {Xi}i , {εi}i are independent of each other, and Uniformp([0,1]p) is given
by p i.i.d. univariate Uniform([0,1]) random variables. The regression function
is

f (x) = 10 sin(πx(1)x(2)) + 20(x(3) − 1/2)2 + 10x(4) + 5x(5),

so that the other coordinates 6 to 10 of x are not contributing to f (·). Sample
size is chosen as n = 500. Our analysis is based on 100 simulation runs over the
model; aggregation is computed using 50 replicates (for each model realization).
Figure 9 displays the results: the bias is here defined in the usual sense, namely for
the true quantity f (·) (instead of θ(·) = limn E[θ̂ (·)]). Note the different scales for
decision trees and MARS. (Su-)bagging works well for trees, whereas the original
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FIG. 9. Performance for a large regression tree and MARS and their (su-)bagged versions in the
simulated model Friedman #1. Subsample size m for subagging on x-axis.

MARS is already close to optimal (noise variance is 1) and (su-)bagging doesn’t
really improve, being consistent with the analysis of bagging in Section 2.3.

We consider next the ozone data set [Breiman (1996a)]: it consists of
330 measurements of maximum daily ozone in the Los Angeles area, and
8 meteorological predictor variables. Aggregation is here computed using 25
replicates; and the mean squared error is estimated as in Breiman (1996a): random
division in 90% training and 10% test set, then calculating the L2 test set error
and finally averaging those over 50 training-test-set random divisions. Figure 10
displays the results. (Su-)bagging works well for decision trees, whereas it yields
no improvements for MARS; the (su-)bagged tree is about as good as the original
[or (su-)bagged] MARS predictor.

4.2. Classification. We consider here also the classification problem for the
real data example about glass types [Breiman (1996a)]: there are 6 classes and
9 chemical measurements as predictor variables. Sample size is n = 214. The
misclassification rate P[C(X) �= Y ] (equal misclassification costs) is estimated
with random division into training- and test-sets, analogously as for the MSE with
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FIG. 10. Cross-validated mean squared error performance for a large regression tree and MARS
and their (su-)bagged versions for the ozone data. Subsample size m for subagging on x-axis.

the ozone data set in the previous section. Figure 11 displays the results. Bagging
is slightly better than half subagging. This is one of the examples showing among
the worst (but still small) magnitude of loss with subagging compared to bagging:
relatively large subsample sizes are needed for good performance, maybe due to
the relatively small training sample size 189 for trees with many splits.

5. Conclusions. We have given new theoretical arguments to explain why
bagging and its variant subagging work asymptotically: they rely on the fact that
the predictor is unstable in the sense of Definition 1.2. Generally, (su-)bagging
doesn’t make the predictor stable, but it stabilizes to a certain extent. In cases
where instability comes in through hard decision indicators, arising often in many
modeling techniques, (su-)bagging smoothes out the hardthresholds yielding a soft
decision scheme which lowers variance and mean squared error. Our analysis
also gives more insights to the combined procedure with bagging and boosting
[Bühlmann and Yu (2000)] which is very competitive. In particular, nonstandard
asymptotic results about stumps are given upon which we build our explanation on
how (su-)bagging works for and improves upon decision trees with many terminal
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FIG. 11. Cross-validated misclassification rate (MCR) for the classifier in (3.10) with P̂n(·) a
large tree and its (su-)bagged version. Subsample size m for subagging on x-axis.

nodes. The theoretical results are augmented by a small simulation study with finite
sample sizes to show that asymptotics kicks in rather quickly.

Moreover, we establish the fact that (su-)bagging also works for low-dimen-
sional predictors such as stumps. This has not been greatly recognized before:
for example, Breiman (1996a) and Dietterich (1996) (in his second implication)
exclusively mention high dimensional schemes. Only Buja and Stuetzle (2000b)
also point out that bagging is a smoothing operation, also in low-dimensional set-
tings. We show that half subagging is as accurate as bagging but computationally
cheaper. The latter is interesting for very large data sets, where fraction subagging
with m = [an], a > 0, requires much less computation but still maintains good
performance (due to the fact that m has still reasonable size). In addition, we dis-
cuss why (su-)bagging can be less effective for predictors such as MARS involv-
ing continuous decisions. This provides a partial answer to the fifth implication in
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Dietterich (1996), which poses the question about “the degree of instability,” or in
other words the degree of improvement with (su-)bagging.

Lastly, Freund and Schapire (1998), Section 1, raise the issue about randomness
for aggregation in bagging in contrast to boosting (by deterministic reweighting).
(Su-)bagging, at least as defined theoretically, doesn’t use extra randomness in the
procedure. The aggregates, namely the bootstrap expectation E

∗[ · ] for bagging,
or summing over the set I in (3.4) in subagging are just fixed functions of the data:
but the practical computation is implemented by Monte Carlo. We believe that this
random Monte Carlo approximation has a negligible effect on the whole problem
(which is the usual view in bootstrapping or subsampling).

6. Proofs. Since the proof for Theorem 3.1 is long, we leave it to the end.
Other proofs are given in order.

PROOF OF PROPOSITION 2.2. Due to the definition of βn = βn(b), n1/2σ−1

× β̂ →D Zb ∼ N (b,1). Then, by the continuous mapping theorem,

n1/2σ−1θ̂n(x) = g(n1/2σ−1β̂) →D g(Zb),

because the set of discontinuity points of g(·) has Lebesgue measure zero. This
proves the first assertion.

For the bagged predictor we use that

sup
v∈R

∣∣P∗[
n1/2(β̂∗ − β̂) ≤ v

] −�(v/σ )
∣∣ = oP (1),

cf. Freedman (1981); or in other words, n1/2(β̂∗ − β̂) →D∗ N (0, σ 2) in probabil-
ity. Therefore, using uniform integrability in probability for β̂∗ [which is ensured
by E

∗|β̂∗|2 = OP (1)],

n1/2σ−1θ̂n;B(x) →D EW [W1[|W |>c]|Z]x,(6.1)

where W ∼ N (Z,1), Z ∼ N (0,1). The right-hand side of (6.1) is

EW [W1[|W |>c]|Z]x = (
Z − (EW [W1[W≤c]|Z] − EW [W1[W<−c]|Z]))x.(6.2)

Now, for any v ∈ R,

EW [W1[W≤v]|Z] =
∫ v

−∞
wϕ(w −Z)dw =

∫ v−Z

−∞
(Z + s)ϕ(s) ds

(6.3)

= Z�(v −Z) +
∫ v−Z

−∞
sϕ(s) ds = Z�(v −Z) − ϕ(v −Z).

Using (6.3) with v = c and v = −c for (6.2), we complete the proof by (6.1). �

PROOF OF PROPOSITION 2.4. We can represent the estimator as

θ̂n(xn(c)) = β0(xn(c)− d̂
)
+ +OP (n−1),(6.4)

due to the convergence properties of β̂, d̂ and the neighborhood definition of xn(c)
in (2.14). The first assertion is then immediate from (6.4) and Proposition 2.3.



954 P. BÜHLMANN AND B. YU

For the second assertion we first show that the bootstrap works:

sup
v∈R

∣∣P∗[√
n(β̂n − β0) ≤ v

] −�(v/σβ)
∣∣ = oP (1),

(6.5)
sup
v∈R

∣∣P∗[√
n(d̂n − d0) ≤ v

] −�(v/σd)
∣∣ = oP (1),

with σ 2
β , σ 2

d from Proposition 2.3. We sketch an outline: the bootstrap works here
for empirical processes needed to deal with the problem; cf. Giné and Zinn (1990).
Then, the proof for Proposition 2.3 can be adapted for the bootstrap and (6.5)
follows.

The second assertion of the Proposition follows using (6.5) and analogously to
the proof of Proposition 2.2 in Section 6; in particular, we use again formula (6.3).

�

PROOF OF THEOREM 3.2. According to (3.4),

E
[
θ̂n;SB(m)(xn(c))

] = E
[
hm(L1, . . . ,Lm)(xn(c))

]
,

and the first assertion follows by the definition of xn(c) in (3.6).
For the variance, we invoke the bound in Proposition 3.1 and use straightforward

calculation as with the expected value, but now for Var(hm(L1, . . . ,Lm)(xn(c))).
�

PROOF OF THEOREM 3.1. Recall the definition of (β̂/, β̂u, d̂n) in (3.2). Under
weak conditions [implied by (A2)], β̂/, β̂u converge at the conventional n−1/2-rate
to the projected values β0

/ and β0
u defined in (3.3). Without loss of generality, we

concentrate on the limiting distribution of d̂n when β/ and βu take the projected
values β0

/ and β0
u in (3.3). That is, we consider in the sequel

d̂n = arg min
d

n∑
i=1

(Yi − β0
/1[Xi<d] − β0

u1[Xi≥d])2.

Rewrite

(Yi − β0
/1[Xi<d] − β0

u1[Xi≥d])2 − Y 2
i

= (β0
/ )

21[Xi<d] + (β0
u)

21[Xi≥d] − 2Yiβ
0
/1[Xi<d] − 2Yiβ

0
u1[Xi≥d]

= (β0
/ − β0

u)
[
(β0

/ + β0
u)− 2Yi

]
1[Xi<d] + β0

u(β
0
u − 2Yi).

Assume now β0
/ > β0

u (the other case β0
/ < β0

u is analogous). It follows that

d̂n = arg max
d

n∑
i=1

g(Li, d), g(Li, d) =
(
Yi − β0

/ + β0
u

2

)
1[Xi<d].(6.6)

In general, let {g(·, θ) : θ ∈ =} be a class of functions indexed by a subset =
in R

k . Its envelope function GR(·) is defined as the supremum of g(·, θ) over the
class

GR = {|g(·, θ)| : |θ − θ0| ≤ R
}
, R > 0.
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We will apply the main theorem in Kim and Pollard (1990) which gives a cube-root
asymptotic limiting distribution of the maximizer of

Png(·, θ) := 1

n

n∑
i=1

g(ξi, θ)

where {ξi}i is a sequence of i.i.d. observations from a distribution P .

THEOREM 6.1 [Kim and Pollard (1990)]. Let {θn} be a sequence of estima-
tors. Suppose:

(i) Png(·, θn) ≥ supθ∈=Png(·, θ) − oP (n
−2/3);

(ii) θn converges in probability to the unique θ0 that maximizes Pg(·, θ) =
EPg(·, θ);

(iii) θ0 is an interior point of =.

Let the functions be standardized so that g(·, θ0) ≡ 0. Suppose the classes GR

for R near 0 are uniformly manageable for the envelopes GR and satisfy:

(iv) Pg(·, θ) is twice differentiable with second derivative matrix −V at θ0;
(v) H(s, t) = limα→∞ αPg(·, θ0 + t/α)g(·, θ0 + s/α) exists for each s, t in

R
k and limα→∞ αPg(·, θ0 + t/α)2{|g(·, θ0 + t/α)| > εα} = 0 for each ε > 0 and

t in R
k ;

(vi) PG2
R = O(R) as R → 0 and for each ε > 0 there is a constant K such

that PG2
R1[GR>K] ≤ εR for R near 0;

(vii) P |g(·, θ1) − g(·, θ2)| = O(|θ1 − θ2|) near θ0.

Then, the process n2/3Png(·, θ0 + tn−1/3) converges in distribution to a
Gaussian process Q(t) with continuous sample paths, expected value −1

2 t
′V t

and covariance kernel H . If V is positive definite and if Q has nondegenerate
increments, then n1/3(θn − θ0) converges in distribution to the (almost surely
unique) random vector that maximizes Q.

We apply Theorem 6.1 by taking ξi = Li , θ = d , θn = d̂n, θ0 = d0 and with
standardized

g(L,d) =
(
Y − β0

/ + β0
u

2

)
(1[X<d] − 1[X<d0]).

First let’s find the covariance kernel H :

Pg(·, θ0 + t/α)g(·, θ0 + s/α)

= E

[(
Y − β0

/ + β0
u

2

)2

(1[X<d+s/α] − 1[X<d])(1[X<d+t/α] − 1[X<d])
]
.
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The above expression equals 0 if s and t are on opposite sides of 0 or st < 0. If
st > 0, it equals

∫ min(s,t)/α+d0

d0
pX(x) dx

∫ ∞
−∞

(
y − β0

/ + β0
u

2

)2

pε

(
y − f (x)

)
dy.

Hence, when st < 0, H(s, t) = 0 and when st > 0,

H(s, t) = lim
α→∞α

∫ min(s,t)/α+d0

d0
pX(x) dx

∫ ∞
−∞

(
y − β0

/ + β0
u

2

)2

pε

(
y − f (x)

)
dy

= min(s, t)pX(d0)

∫ ∞
−∞

(
y − β0

/ + β0
u

2

)2

pε

(
y − f (d0)

)
dy

= min(s, t)pX(d0)

∫ ∞
−∞

(
y + f (d0) − β0

/ + β0
u

2

)2

pε(y) dy

= min(s, t)pX(d0)

∫ ∞
−∞

y2pε(y) dy = min(s, t)pX(d0)σ 2,

since pX(·) is continuous at x = d0 by assumption (i) in (A2).
If the other conditions are satisfied, then, as n → ∞,

n1/3(d̂n − d0) →D W := arg max
t

Q(t),

where the limiting process Q is a scaled two-sided Brownian motion, originating
from zero, with a quadratic drift:

Q(t) = σ0B(t) − 1

2
V t2 = σ0

(
B(t) − 1

2σ0
V t2

)
,

where σ 2
0 = pX(d0)σ 2, B(t) is two-sided Brownian motion, and

V = −h′′(d0) = −pX(d0)f ′(d0) > 0,

where h(d) := Pg(·, d) = E[(Y − β0
/+β0

u

2 )1[X<d]]; positivity of V is due to the
assumption that h(·) has a unique maximizer and the conditions in (A2)(i)–(ii).

Now let’s verify conditions (i)–(vii) one-by-one and in order.

CONDITION (i). Since Png(·, d) takes only finite values, this condition is
trivially satisfied with an equality.

CONDITION (ii). The graphs of our function class {g(·, d) :d ∈ (−∞,∞)}
form a VC class. Hence the class is manageable if it also has a square integrable

envelope function. An obvious envelope function is 2|Y − β0
/+β0

u

2 | and E|Y −
β0
/+β0

u

2 |2 < ∞ by assumption (iii) in (A2).
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It follows [cf. Pollard (1990)] that almost surely

supd |Png(·, d)− Pg(·, d)| → 0.

Expanding

h(d) =
∫ ∞
−∞

∫ d

−∞

(
y − β0

/ + β0
u

2

)
pX(x)pε

(
y − f (x)

)
dx dy

makes it clear that h(·) is continuous by the smoothness conditions in assump-
tion (A2). Because d0 is the maximizer of h(·),

supd |Png(·, d)− Pg(L,d)| + h(d0)

≥ |Png(·, d̂n) − h(d̂n)| + h(d0)

≥ |Png(·, d̂n) − h(d̂n)| + h(d̂n) ≥ Png(·, d̂n)
≥ Png(·, d0) → h(d0).

The last limit holds due to the LLN. It follows that almost surely,

lim
n→∞h(d̂n) = h(d0),

which implies that d̂n → d0 almost surely, because d0 is the unique maximizer of
h(·) and h(·) is continuous. Hence d̂n is a consistent estimator of d0.

CONDITION (iii). d0 is an interior point of D since D is assumed open and
the maximizer is assumed unique.

Now we calculate the envelope function with ξ = (x, y),

GR(x, y) := sup
{
g(x, y, d) : |d − d0| ≤ R

}

= sup|d−d0|≤R

[(
y − β0

/ + β0
u

2

)
1[x<d] − 1[x<d0]

]

=
∣∣∣∣y − β0

/ + β0
u

2

∣∣∣∣1[|x−d0|<R],

PG2
R = E

(
Y − β0

/ + β0
u

2

)2

1[|X−d0|<R]

=
∫ d0+R

d0−R

∫ ∞
−∞

pX(x)pε

(
y − f (x)

)(
y − β0

/ + β0
u

2

)2

dy dx

(6.7)

= 2RpX(d0)

∫ ∞
−∞

(
y − β0

/ + β0
u

2

)2

pε

(
y − f (d0)

)
dy

(
1 + o(1)

)

[by the moment conditions in (A2)]
= O(R).

Hence the envelope function is uniformly square integrable for R near 0 and
therefore the classes GR are uniformly manageable.
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CONDITION (iv). h(d) := Pg(·, d) is twice differentiable at d = d0 because

h(d) =
∫ ∞
−∞

∫ d

−∞
pX(x)pε

(
y − f (x)

)(
y − β0

/ + β0
u

2

)
dx dy,

h′(d) =
∫ ∞
−∞

pX(d)pε

(
y−f (d)

)(
y − β0

/ +β0
u

2

)
dy =pX(d)

(
f (d)− β0

/ +β0
u

2

)
,

h′′(d) = p′
X(d)

(
f (d) − β0

/ + β0
u

2

)
+ pX(d)f ′(d).

The existence of the derivatives in the calculation for h′′(d) follows from

assumptions (i-ii) in (A2). When the maximizer is unique, f (d0) = β0
/+β0

u

2 . It
follows that

V = −h′′(d0) = −pX(d0)f ′(d0).

CONDITION (v). H(s, t) has been found in the beginning of this proof so that
it is enough to verify the second part. For each ε > 0 and t ∈ R

1,

αPg(·, d0 + t/α)21[g(·,d0+t/α)>εα]

= αE

(
Y − β0

/ + β0
u

2

)2

1[X<d0+t/α]1[|Y−(β0
/+β0

u)/2|>εα]

≤ αE

(
y − β0

/ + β0
u

2

)2

1[|Y−(β0
/+β0

u)/2|>εα]

≤ O

(
α

∫ ∞
εα

y2/y4+δ dy

)
[by the tail condition (iv) in (A2)]

≤ O

(
α

∫ ∞
εα

1/y2+δ dy

)
≤ O

(
α/(εα)1+δ

) → 0 as α → ∞.

CONDITION (vi). The first part has been shown in (6.7). We now verify the
second part. For any ε > 0 and K > 0,

PG2
R{GR >K}

≤ E

(
Y − β0

/ + β0
u

2

)2

1[|X−d0|<R]1[|(Y−(β0
/+β0

u)/2|>K]

=
∫ d0+R

d0−R
pX(x)

∫
|y−(β0

/+β0
u)/2|>K

∣∣∣∣y − β0
/ + β0

u

2

∣∣∣∣
2

pε

(
y − f (x)

)
dy dx

≤ MpX
R o(1) as K → ∞.

The last inequality follows from the fact that both f and pX are continuous at d0,
hence are bounded by constants Mf and MpX

near d0 respectively, and from the
moment condition (iii) in (A2).
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CONDITION (vii). Without loss of generality, assume d1 < d2 which are
near d0. Then,

|Pg(., d1) − Pg(., d2)| ≤ MpX
|d2 − d1|

∫ ∞
−∞

(
|y| +Mf +

∣∣∣∣β
0
/ + β0

u

2

∣∣∣∣
)
pε(y) dy,

because pX is bounded near d0 and the last integral is finite due to the moment
condition (iii) in (A2). �

PROOF OF FACT 3.1. We provide only a sketch here. It is not hard to show that
d̂2 is a consistent estimator of d0

2 which is the population optimal split point when
dividing the original domain of X into two by d0

1 , the limiting point of the first level
split. Assume that these two split points d0

1 , d
0
2 are distinct and unique. Because of

the consistency of their estimators, without loss of generality, we assume d̂2 < d̂1.
Then,

d̂2 = arg min
d2<d̂1

n∑
i=1

(Yi − β0
2,/1[Xi<d2] − β0

2,u1[Xi≥d2])21[Xi≤d̂1],

where β0
2,/ and β0

2,u are the best projected values corresponding to the lower
partition region. Rewrite

(Yi − β0
2,/1[Xi<d2] − β0

2,u1[Xi≥d2])2 − Y 2
i

= (β0
2,/)

21[Xi<d2] + (β0
2,u)

21[Xi≥d2] − 2Yiβ
0
2,/1[Xi<d2] − 2Yiβ

0
2,u1[Xi≥d2]

= (β0
2,/ − β0

2,u)
[
(β0

2,/ + β0
2,u) − 2Yi

]
1[Xi<d2] + β0

2,u(β
0
2,u − 2Yi).

It follows that, assuming β0
2,/ > β0

2,u (without loss of generality),

d̂2 = arg max
d2<d̂1

n∑
i=1

g(Li, d2)1[Xi<d̂1], g(Li, d2) =
[
Yi − β0

2,/ + β0
2,u

2

]
1[Xi<d2].

Moreover,

n∑
i=1

g(Li, d2)1[Xi<d̂1] =
n∑

i=1

g(Li, d2)1[Xi<d0
1 ] +C,

where

C =
n∑

i=1

g(Li, d2)1[Xi<d̂1] −
n∑

i=1

g(Li, d2)1[Xi<d0
1 ]

=
n∑

i=1

[
Yi − β0

2,/ + β0
2,u

2

]
1[Xi<d2]

[
1[Xi<d̂1] − 1[Xi<d0

1 ]
]
.
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Because d̂1 converges to d0
1 and d̂2 converges to d0

2 , and d0
1 and d0

2 are distinct, so
with high probability,

1[Xi<d2](1[Xi<d̂1] − 1[Xi<d0
1 ]) = 0

for d2 in a neighborhood of d0
2 . That is, C = 0 for d2 in a neighborhood of d0

2 and
with high probability. It follows that with high probability,

d̂2 = arg max
d2<d̂1

n∑
i=1

g(Li, d2)1[Xi<d̂1] = arg max
d2<d0

1

n∑
i=1

g(Li, d2)1[Xi<d0
1 ].

Comparing with (6.6), we have just shown that d̂2 will have the same asymptotic
distribution (but with possibly different distribution parameters) as the estimator
for the first level split. The key in this argument is that the unstable regions are
nonoverlapping when the tree is “finite” relative to the sample size. �
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