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Extensions of Discriminant Analysis



Recap: The setting of Discriminant Analysis

Apply Bayes’ law
𝑝(𝑖|𝐱) = 𝑝(𝐱|𝑖)𝑝(𝑖)

∑𝐾
𝑗=1 𝑝(𝐱|𝑗)𝑝(𝑗)

Instead of specifying 𝑝(𝑖|𝐱) we can specify

𝑝(𝐱|𝑖) and 𝑝(𝑖)

The main assumption of Discriminant Analysis (DA) is

𝑝(𝐱|𝑖) ∼ 𝑁(𝝁𝑖, 𝚺𝑖)

where 𝝁𝑖 ∈ ℝ𝑝 is the mean vector for class 𝑖 and 𝚺𝑖 ∈ ℝ𝑝×𝑝 the corresponding
covariance matrix.
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Finding the parameters of DA

▶ Notation: Write 𝑝(𝑖) = 𝜋𝑖 and consider them as unknown parameters
▶ Given data (𝑖𝑙, 𝐱𝑙) the likelihood maximization problem is

arg max
𝝁,𝚺,𝝅

𝑛
∏
𝑙=1

𝑁(𝐱𝑙|𝝁𝑖𝑙 , 𝚺𝑖𝑙 )𝜋𝑖𝑙 subject to
𝐾
∑
𝑖=1

𝜋𝑖 = 1.

▶ Can be solved using a Lagrange multiplier (try it!) and leads to

𝜋𝑖 =
𝑛𝑖
𝑛 , with 𝑛𝑖 =

𝑛
∑
𝑙=1

1(𝑖𝑙 = 𝑖)

𝝁𝑖 =
1
𝑛𝑖
∑
𝑖𝑙=𝑖

𝑥𝑙

𝚺𝑖 =
1

𝑛𝑖 − 1 ∑𝑖𝑙=𝑖
(𝑥𝑙 − 𝝁𝑖)(𝑥𝑙 − 𝝁𝑖)⊤
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Performing classification in DA

Bayes’ rule implies the classification rule

𝑐(𝐱) = arg max
1≤𝑖≤𝐾

𝑁(𝐱|𝝁𝑖, 𝚺𝑖)𝜋𝑖

Note that since log is strictly increasing this is equivalent to

𝑐(𝐱) = arg max
1≤𝑖≤𝐾

𝛿𝑖(𝐱)

where
𝛿𝑖(𝐱) = log𝑁(𝐱|𝝁𝑖, 𝚺𝑖) + log𝜋𝑖

= log𝜋𝑖 −
1
2(𝐱 − 𝝁𝑖)⊤𝚺−1𝑖 (𝐱 − 𝝁𝑖) −

1
2 log |𝚺𝑖| (+𝐶)

This is a quadratic function in 𝐱.
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Different levels of complexity

▶ This method is called Quadratic Discriminant Analysis (QDA)
▶ Problem: Many parameters that grow quickly with dimension

▶ 𝐾 − 1 for all 𝜋𝑖
▶ 𝑝 ⋅ 𝐾 for all 𝝁𝑖
▶ 𝑝(𝑝 + 1)/2 ⋅ 𝐾 for all 𝚺𝑖 (most costly)

▶ Solution: Replace covariance matrices 𝚺𝑖 by a pooled estimate

�̂� =
𝐾
∑
𝑖=1

�̂�𝑖
𝑛𝑖 − 1
𝑛 − 𝐾 = 1

𝑛 − 𝐾
𝐾
∑
𝑖=1

∑
𝑖𝑙=𝑖

(𝑥𝑙 − 𝝁𝑖)(𝑥𝑙 − 𝝁𝑖)⊤

▶ Simpler correlation and variance structure: All classes are assumed to have
the same correlation structure between features
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Performing classification in the simplified case

As before, consider
𝑐(𝐱) = arg max

1≤𝑖≤𝐾
𝛿𝑖(𝐱)

where
𝛿𝑖(𝐱) = log𝜋𝑖 + 𝐱⊤𝚺−1𝝁𝑖 −

1
2𝝁

⊤
𝑖 𝚺−1𝝁𝑖 (+𝐶)

This is a linear function in 𝐱. The method is therefore called Linear Discriminant
Analysis (LDA).
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Even more simplifications

Other simplifications of the correlation structure are possible

▶ Ignore all correlations between features but allow different variances, i.e.
𝚺𝑖 = 𝚲𝑖 for a diagonal matrix 𝚲𝑖 (Diagonal QDA or Naive Bayes’ Classifier)

▶ Ignore all correlations and make feature variances equal, i.e. 𝚺𝑖 = 𝚲 for a
diagonal matrix 𝚲 (Diagonal LDA)

▶ Ignore correlations and variances, i.e. 𝚺𝑖 = 𝜎2𝐈𝑝×𝑝 (Nearest Centroids
adjusted for class frequencies 𝜋𝑖 )
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Regularized Discriminant Analysis

You can let the amount/type of regularization be controlled by tuning
parameters

▶ Σ̂𝑖(𝜆) = (1 − 𝜆)Σ̂𝑖 + 𝜆Σ̂: shrinking individual covariance matrices toward the
same shape.

▶ Σ̂𝑖(𝜆, 𝛾) = (1 − 𝛾)Σ̂𝑖(𝜆) + 𝛾 1
𝑑
𝑇𝑟𝑎𝑐𝑒(Σ̂𝑖)𝐼: shrinks the regularized estimate toward

a diagonal.
▶ Use CV to estimate the optimal tuningparameter values 𝛾∗, 𝜆∗ - implemented
in the caret package.

▶ With 𝛾, 𝜆 = 0, 0 this is QDA, with 𝛾, 𝜆 = 0, 1 it’s LDA and 𝛾, 𝜆 = 1, 1 is nearest
centroid, 𝛾, 𝜆 = 1, 0 Naive Bayes.
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More flexible DA methods

What if the model assumption for DA is too simple?
▶ Mixture Discriminant Analysis where each class is modeled with several
Gaussian distributions, i.e.

𝑝(𝐱|𝑖) ∼
𝐶𝑖

∑
𝑐=1

𝜋𝑐𝑁(𝐱|𝝁𝑖,𝑐, 𝚺)

▶ Use a simple, common shape for all the class components
▶ You can use a different number of components for each class. This could be
very useful in practice when some classes are more complex than others

▶ In order to fit the class-mixtures you use an iterative algorithm called
Expectation-Maximization - we will revisit this in upcoming lecture when we
switch focus to clustering/unsupervised learning
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More flexible DA methods

Another way to increase flexibility to make the classification boundaries depend
on more transformations/richer representations of 𝑥

▶ Flexible Discrimimant Analysis is method based on LDA but extended
through regression modeling and optimal scoring.

▶ The scores, 𝜃𝑘, 𝑘 = 1,⋯ , 𝐿 <= 𝐾 − 1, are maps from a regression prediction
𝑥𝑇𝛽𝑖 to classes.

▶ LDA = regression fits + nearest centroid classification in the fitted space.
▶ Now you extend this to more general forms of regression: splines,
polynomial OR, if you want to regularize instead, ridge regression. Lots of
possibilities.
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Discriminant Analysis Methods
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Diagnosis Benign Malignant
RDA and PDA set to shrink the covariances toward diagonal. MDA with 4
components and FDA with 3-degree splines.
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Regularized Discriminant Analysis
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Diagnosis Benign Malignant
RDA can span from QDA to LDA to nearest centroid.
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Regularized Discriminant Analysis
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Diagnosis Benign Malignant
Use CV to select the optimal tuning parameters.
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Mixture Discriminant Analysis

MDA2 MDA1+4

LDA MDA1
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Diagnosis Benign Malignant
You can use different number of components for the classes.
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Take-home message

▶ Discriminant Analysis can be extended to handle very complex decision
boundaries.

▶ MDA
▶ FDA - goes through regression which opens up for use of lots if regression type
methods for creating both flexible and interpretable classification (more later
on sparse DA)

▶ There is a range of assumptions in DA about the correlation structure in
feature space→ trade-off between numerical stability and flexibility

▶ High-dimensional case: simplify or regularize
▶ Let the data tell you which modeling assumptions provide the best
generalization properties (CV)
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