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Extensions of Discriminant Analysis



Recap: The setting of Discriminant Analysis

Apply Bayes’ law
px[i)p(i)

¥ P&l )p()

Instead of specifying p(i|x) we can specify

p(ilx) =

p(x[i) and p(i)
The main assumption of Discriminant Analysis (DA) is
p(x[i) ~ N(p;, Z;)

where u; € RP is the mean vector for class i and X; € RP*P the corresponding
covariance matrix.
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Finding the parameters of DA

» Notation: Write p(i) = 7; and consider them as unknown parameters
» Given data (ij, x;) the likelihood maximization problem is

n K
arg maXHN(XlWipZil)”il subject to Z ;= 1.
wET =1 i=1

» Can be solved using a Lagrange multiplier (try it!) and leads to

n
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Performing classification in DA

Bayes’ rule implies the classification rule

c(x) = arg max N(X|u;, Z;)7;
1<i<K

Note that since log is strictly increasing this is equivalent to

c(x) = arg max §;(X)
1<i<K

where
8;i(x) = log N(x|u;, Z;) + log 7;

1 _ 1
= logm; — 5(x — ) =7 (x — ) — S log|Zi|  (+C)
This is a quadratic function in x.
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Different levels of complexity

» This method is called Quadratic Discriminant Analysis (QDA)
» Problem: Many parameters that grow quickly with dimension

» K —1forall z;
» p-K forall u;
» p(p+1)/2-K for all ; (most costly)

» Solution: Replace covariance matrices ; by a pooled estimate

K
R KZZ(xl 20y~ )T

i=1i=

» Simpler correlation and variance structure: All classes are assumed to have
the same correlation structure between features
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Performing classification in the simplified case

As before, consider

c(x) = argmax §;(x)
1<i<K

where 1
8i(x) = logm; + X =7 p; — E#iTz_lﬂi (+C)

This is a linear function in x. The method is therefore called Linear Discriminant
Analysis (LDA).
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Even more simplifications

Other simplifications of the correlation structure are possible

» Ignore all correlations between features but allow different variances, i.e.
%, = A, for a diagonal matrix A; (Diagonal QDA or Naive Bayes’ Classifier)

» Ignore all correlations and make feature variances equal, i.e. ; = A for a
diagonal matrix A (Diagonal LDA)

» Ignore correlations and variances, i.e. X; = 0°I,«, (Nearest Centroids
adjusted for class frequencies 7; )
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Regularized Discriminant Analysis

You can let the amount/type of regularization be controlled by tuning
parameters

» 3.(1) = (1 — A)E; + AS: shrinking individual covariance matrices toward the
same shape.

> S(Ly) =1 -pPS) + 7% Trace(E;)I: shrinks the regularized estimate toward
a diagonal.

» Use CV to estimate the optimal tuningparameter values y*, * - implemented
in the caret package.

» With y,A = 0,0 this is QDA, with y,4 = 0,1 it's LDA and y,41 = 1,1 is nearest
centroid, y,4 = 1,0 Naive Bayes.
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More flexible DA methods

What if the model assumption for DA is too simple?

» Mixture Discriminant Analysis where each class is modeled with several
Gaussian distributions, i.e.
Ci
p(xli) ~ 3 AN Xlpie, 2)

G=il
» Use a simple, common shape for all the class components
» You can use a different number of components for each class. This could be
very useful in practice when some classes are more complex than others
» In order to fit the class-mixtures you use an iterative algorithm called
Expectation-Maximization - we will revisit this in upcoming lecture when we
switch focus to clustering/unsupervised learning
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More flexible DA methods

Another way to increase flexibility to make the classification boundaries depend
on more transformations/richer representations of x

» Flexible Discrimimant Analysis is method based on LDA but extended
through regression modeling and optimal scoring.

» The scores, 6;,k=1,---,L <= K — 1, are maps from a regression prediction
xTB; to classes.

» LDA = regression fits + nearest centroid classification in the fitted space.

» Now you extend this to more general forms of regression: splines,
polynomial OR, if you want to regularize instead, ridge regression. Lots of
possibilities.
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Discriminant Analysis Methods
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RDA and PDA set to shrink the covariances toward dlagonal MDA with 4

components and FDA with 3-degree splines.
10/14



Regularized Discriminant Analysis
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RDA can span from QDA to LDAto nearest centroid.
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Regularized Discriminant Analysis
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Use CV to select the optimal tuning parameters.
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Mixture Discriminant Analysis
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You can use different number of components for the classes.
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Take-home message

» Discriminant Analysis can be extended to handle very complex decision
boundaries.

» MDA
» FDA - goes through regression which opens up for use of lots if regression type
methods for creating both flexible and interpretable classification (more later
on sparse DA)
» There is a range of assumptions in DA about the correlation structure in
feature space — trade-off between numerical stability and flexibility

» High-dimensional case: simplify or regularize

> Let the data tell you which modeling assumptions provide the best
generalization properties (CV)
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