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Principal Component Analysis



Projection onto a subspace

Assume x € RP. Given orthonormal vectors by, ...,b,,, i.e.
Ibjl =1 and b/b, =o0forj#k

where m < p, the projection of x onto the m-dimensional linear subspace
V,, = span(by, ..., b,,) is

m m
=) (x"byb; = (Z bb/ |x
j:l j=1
. . 2 2 Projection
The projection is orthogonal, i.e. matrix g

()( - jk)1-lzj =0
for allbj.
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Rayleigh Quotient

Let A € R¥*k be a symmetric matrix. For 0 # x € R¥ define

-
x' Ax

JX) = —
xTx

J(x) is called the Rayleigh Quotient for A.

Maximizing the Rayleigh Quotient
The maximization problem

T

max J(x) subjectto x'x=1
X

is solved by a unit eigenvector x of A corresponding to the largest eigenvalue 1
of A.

Note: —x is also a solution.
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Principal Component Analysis (PCA) (1)

Goal: Given continuous data, find an orthogonal coordinate system such that
the variance of the data is maximal along each direction.

S
Given data points x;, ..., X, and a unit vector r, the C - :’- o
variance of the data along r is "-N.\-'..e
n o .,o”'s: :
S@ = YT (x - %) = (n—Dr'Sr RO
=1 e
where £ is the empirical covariance matrix. .
Axes

=» Cartesian =» Principal Component
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Principal Component Analysis (PCA) (11)

Direction with maximal variance: Find r such that
max S(r) subjectto |r|?=r"r=1
r
» This is the same problem as maximizing the Rayleigh Quotient for the matrix

~

%
» The solution is the eigenvector r, of £ corresponding to the largest
eigenvalue 4;.

How do we find the other directions?
Project data on orthogonal complement of ry, i.e.

)A(l = (Ip — I'II'I)XI

and repeat the procedure above.
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Intermezzo: Pre-processing

Data is often pre-processed before it is used in computational methods.

Given a data matrix X € R™*P, let

» m, € R" be the vector of row-means,
» m, € RP be the vector of column-means, and
> s € RP be the vector of per-column standard deviations.

Then (with1, =(1,...,1)T € R?)

» the matrix X — mrlg has row means zero (row-centred),
» the matrix X —1,,m, has column means zero (column-centred), and

» the matrix X diag(1/s) has column standard deviations one (standardised
columns)
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Principal Component Analysis (PCA) (111)

Computational Procedure:
1. Centre (and possibly standardise) the columns of the data matrix X € R™<P

o.q q PN 1
2. Calculate the empirical covariance matrix £ = mXTX
3. Determine the eigenvalues 4; and corresponding orthonormal eigenvectors
r; of £ for j=1,..., p and order them such that

M2A> 22,20

4. The vectors r; give the direction of the principal components (PC) rox and
the eigenvalues 4; are the variances along the PC directions

Note: Set R = (1, ..., 1,) and D = diag(4,, ... , 4,) then
$=RDR" and RTR=RR" =1,
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PCA and Dimension Reduction

Recall: For a matrix A € Rk with eigenvalues 4,, ..., 4, it holds that

k
j=1

For the empirical covariance matrix % and the varignce of the j-th feature Var([x;]
trE) = ) Var[x;] = ). 4;
is called the total variation.

Using only the first m < p principal components leads to

Mt F A 100 of explained variance
Ty e A
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PCA and Dimension Reduction: Example (1)

Variant of the MNIST handwritten digits dataset
(n = 7291, 16 x 16 greyscale images, i.e. p = 256)

Digit Frequency

6 5
0 0.16

1 0.14

2 0.10

3 0.09 - Wl

4 0.09

5 0.08 ! s 6
6 0.09

7 0.09

8 0.07

9 0.09
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PCA and Dimension Reduction: Example (11)

For standardized variables
trE) =p
Typical selection rule: Components with

TEETONCE)

Scree plot
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PCA and Dimension Reduction: Example (llI)

Using the selection rule leads to 44
components. Using the projection

44
o T
X = errj X
=

creates a reconstruction of x.
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PCA and Dimension Reduction: Example (1V)

Projecting the digits onto the first two principal component directions gives a
very clear distinction of digits 0 and 1.

PC2

X
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Importance of standardisation (1)

The overall issue: Subjectivity vs Objectivity

(Co-)variance is scale dependent: If we have a sample (size n) of variables x and

v, then their empirical covariance is
1

n—1

Sy =

PNEEEITEND)
I=1

If x is scaled by a factor ¢, i.e. z =c- x, then

1 _ _
Szy = n_IZ(Zl_Z)(yl_y)
=1
1 &
= n_lZ(C'xl_c'})(YI_y)zc'sxy
=1

12/21



Importance of standardisation (II)

(Co-)variance is scale dependent: s,, = c- 5., where z =c - x

» By scaling variables we can therefore make them as large/influential or
small/insignificant as we want, which is a very subjective process

» By standardising variables we can get of rid of scaling and reach an
objective point-of-view

» Do we get rid of information?

» The typical range of a variable is compressed
» The overall shape of the data is preserved
» Outliers will still be outliers
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UCI Wine Data Set

UCI Wine Data Set’

» Results of a chemical analysis on multiple samples from three different
origins of wine
» n =178 samples (59 origin 1, 71 origin 2, 48 origin 3)

» p =13 features
» e.g. alcohol in %, ash, colour intensity, magnesium, ...

Thttps://archive.ics.uci.edu/ml/datasets/Wine
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Importance of standardisation (111)
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Singular Value Decomposition




Singular Value Decomposition (SVD)

The singular value decomposition (SVD) of a matrix X € R™*P, n > p, is
X =UDV'
where U € R™P and V € RP*P with
U'U=1, and VIV=VV' =],
and D € RP*P is diagonal. Usually
dyp 2 dp 2 2 dpp

Note: Due to the orthogonality conditions on U and V

XX'U = UD?

XXV = VD?
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SVD and PCA

In PCA the empirical covariance matrix £ is in focus, whereas SVD focuses on the
data matrix X directly.

Connection: For centred variables

s =

T T T 2
XX:VDU UDbVvV v D VT
n—1 n—1 n—1

The PC directions are in V and the eigenvalues of £ are d;j/(n -1).

Note: This is how PCA is typically calculated. SVD is a more general tool and is
used in many other contexts as well.
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SVD and best rank-g-approximation / dimension reduction

Write u; and v; for the columns of U and V, respectively. Then

X=UDV' = Z v/
rank1 matrix

Best rank-g-approximation: For g < p

q

P .. . T

X, = Z djju;v;
j=1

with approximation error

2 p
— 2
”X - Xq“F = 2 djuv] Z dj
Jj=q+1 F Jj=q+1
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Connections to Discriminant Analysis




Discriminant Analysis and the Inverse Covariance Matrix

From PCA or SVD we get £ = VDV where VIV =VVT =T, and
dyy > -+ 2 dy, > 0. Then

$-1 = vp-1vT = vD-12p-1/2yT = (§—1/2)T $-1/2
where (D71/2);; 1= 1/@ and £712 .= p~12vyT,
In LDA the term involving the inverse covariance matrix is then
x- DT x—@) = (x—@)T (£717) $12(x - @)
= (VIx-@) D (VI(x- @)
= jZ=:1 %(fj — &)

Inverse of the eigenvalues can lead to numerical instability. 19/21



Regularised Discriminant Analysis (RDA)

The empirical covariance matrix used by LDA can be stabilized:
S, =S4, = V(D + AL,)VT

where 2 > 0 is a tuning parameter.

» Using £, in LDA is called regularised discriminant analysis (RDA).
» Instead of 1/d;; the scaling factors are now 1/(d;; + 4).
> For small dj; this can lead to numerical stability, whereas large d;; are not

much affected.
> For increasingly large A the d;; will have diminishing impact and RDA starts

to become nearest centroids.
» RDA can be used with QDA as well by considering:

$:i= 5 18
QDA LDA 20/21



Take-home message

» Principal component analysis gives a convenient decomposition of the
variance of the data

» Pre-processing (centring and standardisation) is important if data is
collected on different scales

» Singular value decomposition is a universal workhorse for in numerical
methods
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