Lecture 5: A first look at dimension reduction

Rebecka Jörnsten, Mathematical Sciences

MSA220/MVE441 Statistical Learning for Big Data
$31^{\text {th }}$ March 2021

Principal Component Analysis

Projection onto a subspace

Assume $\mathbf{x} \in \mathbb{R}^{p}$. Given orthonormal vectors $\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}$, i.e.

$$
\left\|\mathbf{b}_{j}\right\|=1 \quad \text { and } \quad \mathbf{b}_{j}^{\top} \mathbf{b}_{k}=0 \text { for } j \neq k
$$

where $m<p$, the projection of \mathbf{x} onto the m-dimensional linear subspace $V_{m}=\operatorname{span}\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right)$ is

$$
\hat{\mathbf{x}}=\sum_{j=1}^{m}\left(\mathbf{x}^{\top} \mathbf{b}_{j}\right) \mathbf{b}_{j}=\underbrace{\left(\sum_{j=1}^{m} \mathbf{b}_{j} \mathbf{b}_{j}^{\top}\right)}_{\begin{array}{c}
\text { Projection } \\
\text { matrix }
\end{array}} \mathbf{x}
$$

$$
(\mathbf{x}-\hat{\mathbf{x}})^{\top} \mathbf{b}_{j}=0
$$

for all \mathbf{b}_{j}.

Rayleigh Quotient

Let $\mathbf{A} \in \mathbb{R}^{k \times k}$ be a symmetric matrix. For $\mathbf{0} \neq \mathbf{x} \in \mathbb{R}^{k}$ define

$$
J(\mathbf{x})=\frac{\mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}}
$$

$J(\mathbf{x})$ is called the Rayleigh Quotient for \mathbf{A}.

Maximizing the Rayleigh Quotient

The maximization problem

$$
\max _{\mathbf{x}} J(\mathbf{x}) \quad \text { subject to } \quad \mathbf{x}^{\top} \mathbf{x}=1
$$

is solved by a unit eigenvector \mathbf{x} of \mathbf{A} corresponding to the largest eigenvalue λ of \mathbf{A}.

Note: -x is also a solution.

Principal Component Analysis (PCA) (I)

Goal: Given continuous data, find an orthogonal coordinate system such that the variance of the data is maximal along each direction.

Given data points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ and a unit vector \mathbf{r}, the variance of the data along r is

$$
S(\mathbf{r})=\sum_{l=1}^{n}\left(\mathbf{r}^{\top}\left(\mathbf{x}_{l}-\overline{\mathbf{x}}\right)\right)^{2}=(n-1) \mathbf{r}^{\top} \widehat{\mathbf{\Sigma}} \mathbf{r}
$$

where $\widehat{\boldsymbol{\Sigma}}$ is the empirical covariance matrix.

Axes
\Rightarrow Cartesian \Rightarrow Principal Component

Principal Component Analysis (PCA) (II)

Direction with maximal variance: Find \mathbf{r} such that

$$
\max _{\mathbf{r}} S(\mathbf{r}) \text { subject to }\|\mathbf{r}\|^{2}=\mathbf{r}^{\top} \mathbf{r}=1
$$

- This is the same problem as maximizing the Rayleigh Quotient for the matrix $\widehat{\Sigma}$.
- The solution is the eigenvector \mathbf{r}_{1} of $\widehat{\boldsymbol{\Sigma}}$ corresponding to the largest eigenvalue λ_{1}.

How do we find the other directions?
Project data on orthogonal complement of \mathbf{r}_{1}, i.e.

$$
\hat{\mathbf{x}}_{l}=\left(\mathbf{I}_{p}-\mathbf{r}_{1} \mathbf{r}_{1}^{\top}\right) \mathbf{x}_{l}
$$

and repeat the procedure above.

Intermezzo: Pre-processing

Data is often pre-processed before it is used in computational methods. Given a data matrix $\mathbf{X} \in \mathbb{R}^{n \times p}$, let

- $\mathbf{m}_{r} \in \mathbb{R}^{n}$ be the vector of row-means,
- $\mathbf{m}_{c} \in \mathbb{R}^{p}$ be the vector of column-means, and
- $\mathbf{s} \in \mathbb{R}^{p}$ be the vector of per-column standard deviations.

Then (with $\mathbf{1}_{n}=(1, \ldots, 1)^{\top} \in \mathbb{R}^{n}$)

- the matrix $\mathbf{X}-\mathbf{m}_{r} \mathbf{1}_{p}^{\top}$ has row means zero (row-centred),
- the matrix $\mathbf{X}-\mathbf{1}_{n} \mathbf{m}_{r}^{\top}$ has column means zero (column-centred), and
- the matrix $\mathbf{X} \operatorname{diag}(1 / \mathbf{s})$ has column standard deviations one (standardised columns)

Principal Component Analysis (PCA) (III)

Computational Procedure:

1. Centre (and possibly standardise) the columns of the data matrix $\mathbf{X} \in \mathbb{R}^{n \times p}$
2. Calculate the empirical covariance matrix $\widehat{\boldsymbol{\Sigma}}=\frac{1}{n-1} \mathbf{X}^{\top} \mathbf{X}$
3. Determine the eigenvalues λ_{j} and corresponding orthonormal eigenvectors \mathbf{r}_{j} of $\widehat{\boldsymbol{\Sigma}}$ for $j=1, \ldots, p$ and order them such that

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{p} \geq 0
$$

4. The vectors \mathbf{r}_{j} give the direction of the principal components (PC) $\mathbf{r}_{j}^{\top} \mathbf{x}$ and the eigenvalues λ_{j} are the variances along the PC directions

Note: Set $\mathbf{R}=\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{p}\right)$ and $\mathbf{D}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{p}\right)$ then

$$
\widehat{\boldsymbol{\Sigma}}=\mathbf{R D R}^{\top} \quad \text { and } \quad \mathbf{R}^{\top} \mathbf{R}=\mathbf{R R}^{\top}=\mathbf{I}_{p}
$$

PCA and Dimension Reduction

Recall: For a matrix $\mathbf{A} \in \mathbb{R}^{k \times k}$ with eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$ it holds that

$$
\operatorname{tr}(\mathbf{A})=\sum_{j=1}^{k} \lambda_{j}
$$

For the empirical covariance matrix $\widehat{\Sigma}_{p}$ and the variance of the j-th feature $\operatorname{Var}\left[x_{j}\right]$

$$
\operatorname{tr}(\widehat{\boldsymbol{\Sigma}})=\sum_{j=1}^{p} \operatorname{Var}\left[x_{j}\right]=\sum_{j=1}^{p} \lambda_{j}
$$

is called the total variation.
Using only the first $m<p$ principal components leads to

$$
\frac{\lambda_{1}+\cdots+\lambda_{m}}{\lambda_{1}+\cdots+\lambda_{p}} \cdot 100 \% \text { of explained variance }
$$

PCA and Dimension Reduction: Example (I)

> Variant of the MNIST handwritten digits dataset
> $(n=7291,16 \times 16$ greyscale images, i.e. $p=256)$

Digit	Frequency
0	0.16
1	0.14
2	0.10
3	0.09
4	0.09
5	0.08
6	0.09
7	0.09
8	0.07
9	0.09

PCA and Dimension Reduction: Example (II)

For standardized variables

$$
\operatorname{tr}(\widehat{\mathbf{\Sigma}})=p
$$

Typical selection rule: Components with

$$
\lambda_{j} \geq \frac{1}{p} \operatorname{tr}(\widehat{\boldsymbol{\Sigma}}) \quad(=1)
$$

Visualisations of the first four principal components

Scree plot

PCA and Dimension Reduction: Example (III)

Using the selection rule leads to 44 components. Using the projection

$$
\hat{\mathbf{x}}=\left(\sum_{j=1}^{44} \mathbf{r}_{j} \mathbf{r}_{j}^{\top}\right) \mathbf{x}
$$

5

PCA and Dimension Reduction: Example (IV)

Projecting the digits onto the first two principal component directions gives a very clear distinction of digits 0 and 1.

> Digit - 0 0 1

Importance of standardisation (I)

The overall issue: Subjectivity vs Objectivity

(Co-)variance is scale dependent: If we have a sample (size n) of variables x and y, then their empirical covariance is

$$
s_{x y}=\frac{1}{n-1} \sum_{l=1}^{n}\left(x_{l}-\bar{x}\right)\left(y_{l}-\bar{y}\right)
$$

If x is scaled by a factor c, i.e. $z=c \cdot x$, then

$$
\begin{aligned}
s_{z y} & =\frac{1}{n-1} \sum_{l=1}^{n}\left(z_{l}-\bar{z}\right)\left(y_{l}-\bar{y}\right) \\
& =\frac{1}{n-1} \sum_{l=1}^{n}\left(c \cdot x_{l}-c \cdot \bar{x}\right)\left(y_{l}-\bar{y}\right)=c \cdot s_{x y}
\end{aligned}
$$

Importance of standardisation (II)

(Co-)variance is scale dependent: $s_{z y}=c \cdot s_{x y}$ where $z=c \cdot x$

- By scaling variables we can therefore make them as large/influential or small/insignificant as we want, which is a very subjective process
- By standardising variables we can get of rid of scaling and reach an objective point-of-view
- Do we get rid of information?
- The typical range of a variable is compressed
- The overall shape of the data is preserved
- Outliers will still be outliers

UCI Wine Data Set

UCI Wine Data Set ${ }^{1}$

- Results of a chemical analysis on multiple samples from three different origins of wine
- $n=178$ samples (59 origin 1,71 origin 2,48 origin 3)
- $p=13$ features
- e.g. alcohol in \%, ash, colour intensity, magnesium, ...

[^0]
Importance of standardisation (III)

Singular Value Decomposition

Singular Value Decomposition (SVD)

The singular value decomposition (SVD) of a matrix $\mathbf{X} \in \mathbb{R}^{n \times p}, n \geq p$, is

$$
\mathbf{X}=\mathbf{U D V}^{\top}
$$

where $\mathbf{U} \in \mathbb{R}^{n \times p}$ and $\mathbf{V} \in \mathbb{R}^{p \times p}$ with

$$
\mathbf{U}^{\top} \mathbf{U}=\mathbf{I}_{p} \quad \text { and } \quad \mathbf{V}^{\top} \mathbf{V}=\mathbf{V} \mathbf{V}^{\top}=\mathbf{I}_{p}
$$

and $\mathbf{D} \in \mathbb{R}^{p \times p}$ is diagonal. Usually

$$
d_{11} \geq d_{22} \geq \cdots \geq d_{p p}
$$

Note: Due to the orthogonality conditions on \mathbf{U} and \mathbf{V}

$$
\begin{aligned}
\mathbf{X X}^{\top} \mathbf{U} & =\mathbf{U D}^{2} \\
\mathbf{X}^{\top} \mathbf{X V} & =\mathbf{V D}^{2}
\end{aligned}
$$

SVD and PCA

In PCA the empirical covariance matrix $\widehat{\boldsymbol{\Sigma}}$ is in focus, whereas SVD focuses on the data matrix \mathbf{X} directly.

Connection: For centred variables

$$
\widehat{\mathbf{\Sigma}}=\frac{\mathbf{X}^{\top} \mathbf{X}}{n-1}=\frac{\mathbf{V D U}^{\top} \mathbf{U D} \mathbf{V}^{\top}}{n-1}=\mathbf{V}\left(\frac{\mathbf{D}^{2}}{n-1}\right) \mathbf{V}^{\top}
$$

The PC directions are in \mathbf{V} and the eigenvalues of $\widehat{\boldsymbol{\Sigma}}$ are $d_{j j}^{2} /(n-1)$.
Note: This is how PCA is typically calculated. SVD is a more general tool and is used in many other contexts as well.

SVD and best rank- q-approximation / dimension reduction

Write \mathbf{u}_{j} and \mathbf{v}_{j} for the columns of \mathbf{U} and \mathbf{V}, respectively. Then

$$
\mathbf{X}=\mathbf{U D V}^{\top}=\sum_{j=1}^{p} d_{j j} \underbrace{\mathbf{u}_{j} \mathbf{v}_{j}^{\top}}_{\text {rank-1-matrix }}
$$

Best rank- q-approximation: For $q<p$

$$
\mathbf{X}_{q}=\sum_{j=1}^{q} d_{j j} \mathbf{u}_{j} \mathbf{v}_{j}^{\top}
$$

with approximation error

$$
\left\|\mathbf{X}-\mathbf{X}_{q}\right\|_{F}^{2}=\left\|\sum_{j=q+1}^{p} d_{j j} \mathbf{u}_{j} \mathbf{v}_{j}^{\top}\right\|_{F}^{2}=\sum_{j=q+1}^{p} d_{j}^{2}
$$

Connections to Discriminant Analysis

Discriminant Analysis and the Inverse Covariance Matrix

From PCA or SVD we get $\widehat{\boldsymbol{\Sigma}}=\mathbf{V D V}^{\top}$ where $\mathbf{V}^{\top} \mathbf{V}=\mathbf{V V}^{\top}=\mathbf{I}_{p}$ and $d_{11} \geq \cdots \geq d_{p p} \geq 0$. Then

$$
\widehat{\boldsymbol{\Sigma}}^{-1}=\mathbf{V D}^{-1} \mathbf{V}^{\top}=\mathbf{V D}^{-1 / 2} \mathbf{D}^{-1 / 2} \mathbf{V}^{\top}=\left(\widehat{\boldsymbol{\Sigma}}^{-1 / 2}\right)^{\top} \widehat{\boldsymbol{\Sigma}}^{-1 / 2}
$$

where $\left(\mathbf{D}^{-1 / 2}\right)_{j j}:=1 / \sqrt{d_{j j}}$ and $\widehat{\mathbf{\Sigma}}^{-1 / 2}:=\mathbf{D}^{-1 / 2} \mathbf{V}^{\top}$.
In LDA the term involving the inverse covariance matrix is then

$$
\begin{aligned}
(\mathbf{x}-\widehat{\boldsymbol{\mu}})^{\top} \widehat{\boldsymbol{\Sigma}}^{-1}(\mathbf{x}-\widehat{\boldsymbol{\mu}}) & =(\mathbf{x}-\widehat{\boldsymbol{\mu}})^{\top}\left(\widehat{\mathbf{\Sigma}}^{-1 / 2}\right)^{\top} \widehat{\mathbf{\Sigma}}^{-1 / 2}(\mathbf{x}-\widehat{\boldsymbol{\mu}}) \\
& =\left(\mathbf{V}^{\top}(\mathbf{x}-\widehat{\mu})\right)^{\top} \mathbf{D}^{-1}\left(\mathbf{V}^{\top}(\mathbf{x}-\widehat{\mu})\right) \\
& =\sum_{j=1} \frac{1}{d_{j j}}\left(\tilde{x}_{j}-\tilde{\mu}_{j}\right)^{2}
\end{aligned}
$$

Inverse of the eigenvalues can lead to numerical instability.

Regularised Discriminant Analysis (RDA)

The empirical covariance matrix used by LDA can be stabilized:

$$
\widehat{\boldsymbol{\Sigma}}_{\lambda}:=\widehat{\boldsymbol{\Sigma}}+\lambda \mathbf{I}_{p}=\mathbf{V}\left(\mathbf{D}+\lambda \mathbf{I}_{p}\right) \mathbf{V}^{\top}
$$

where $\lambda>0$ is a tuning parameter.

- Using $\widehat{\boldsymbol{\Sigma}}_{\lambda}$ in LDA is called regularised discriminant analysis (RDA).
- Instead of $1 / d_{j j}$ the scaling factors are now $1 /\left(d_{j j}+\lambda\right)$.
- For small $d_{j j}$ this can lead to numerical stability, whereas large $d_{j j}$ are not much affected.
- For increasingly large λ the $d_{j j}$ will have diminishing impact and RDA starts to become nearest centroids.
- RDA can be used with QDA as well by considering:

$$
\widehat{\boldsymbol{\Sigma}}_{i, \lambda}:=\underbrace{\widehat{\boldsymbol{\Sigma}}_{i}}_{\text {QDA }}+\lambda \underbrace{\widehat{\boldsymbol{\Sigma}}}_{\text {LDA }}
$$

Take-home message

- Principal component analysis gives a convenient decomposition of the variance of the data
- Pre-processing (centring and standardisation) is important if data is collected on different scales
- Singular value decomposition is a universal workhorse for in numerical methods

[^0]: ${ }^{1}$ https://archive.ics.uci.edu/ml/datasets/Wine

