Lecture 6: Clustering

Rebecka Jörnsten, Mathematical Sciences

MSA220/MVE441 Statistical Learning for Big Data

1th April 2021

Classification without classes

In **classification** the main idea was to determine

 $p(i|\mathbf{x})$ or $p(\mathbf{x},i) = p(\mathbf{x}|i)p(i)$

through model approximations (LDA, logistic regression), rules/partitioning (CART, random forests) or directly from data (kNN).

Classification without classes

In classification the main idea was to determine

 $p(i|\mathbf{x})$ or $p(\mathbf{x},i) = p(\mathbf{x}|i)p(i)$

through model approximations (LDA, logistic regression), rules/partitioning (CART, random forests) or directly from data (kNN).

What if we do not have any classes?

Classification without classes

In **classification** the main idea was to determine

 $p(i|\mathbf{x})$ or $p(\mathbf{x},i) = p(\mathbf{x}|i)p(i)$

through model approximations (LDA, logistic regression), rules/partitioning (CART, random forests) or directly from data (kNN).

What if we do not have any classes? Clustering

In classification the main idea was to determine

 $p(i|\mathbf{x})$ or $p(\mathbf{x},i) = p(\mathbf{x}|i)p(i)$

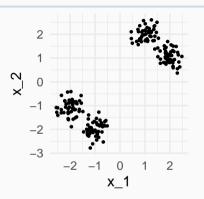
through model approximations (LDA, logistic regression), rules/partitioning (CART, random forests) or directly from data (kNN).

What if we do not have any classes? Clustering

Goals

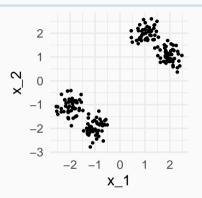
- Find groups in data
- Summarize high-dimensional data
- Data exploration

Clustering is a harder problem than classification



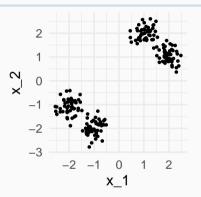
Clustering is a harder problem than classification

What is a cluster?



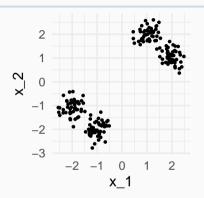
Clustering is a harder problem than classification

- What is a cluster?
- How many clusters are there?



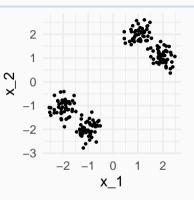
Clustering is a harder problem than classification

- What is a cluster?
- How many clusters are there?
- How do we find them? Can they have any shape?



Clustering is a harder problem than classification

- What is a cluster?
- How many clusters are there?
- How do we find them? Can they have any shape?



We need to able to measure **dissimilarity** between features to determine which samples/objects are close together or far apart.

Note: In clustering classes are often called labels and features are attributes

Dissimilarity measures

A **dissimilarity measure** for features x_1, x_2 is a function such that

 $d(x_1, x_2) \ge 0$ and $d(x_1, x_2) = d(x_2, x_1)$

A **dissimilarity measure** for features x_1, x_2 is a function such that

$$d(x_1, x_2) \ge 0$$
 and $d(x_1, x_2) = d(x_2, x_1)$

Dissimilarity across all features can be defined as

$$D(\mathbf{x}_1, \mathbf{x}_2) = \sum_{j=1}^p d_j(x_1^{(j)}, x_2^{(j)})$$

A **dissimilarity measure** for features x_1, x_2 is a function such that

$$d(x_1, x_2) \ge 0$$
 and $d(x_1, x_2) = d(x_2, x_1)$

Dissimilarity across all features can be defined as

$$D(\mathbf{x}_1, \mathbf{x}_2) = \sum_{j=1}^p d_j(x_1^{(j)}, x_2^{(j)})$$

Typical examples

- ► For quantitative features: ℓ₁ or ℓ₂ norm, correlation between whole feature vectors, ...
- ▶ For categorical variables with *K* levels: Loss matrix $\mathbf{L} \in \mathbb{R}^{K \times K}$ such that

$$\mathbf{L}_{rs} = \mathbf{L}_{sr}, \mathbf{L}_{rr} = 0$$
 and $\mathbf{L}_{rs} \ge 0$. Then $d(r, s) = \mathbf{L}_{rs}$

1. How many clusters are there?

- 1. How many clusters are there?
- 2. Given a number of clusters, how do we find them?

- 1. How many clusters are there?
- 2. Given a number of clusters, how do we find them?

Focus on Challenge 2 first.

- 1. How many clusters are there?
- 2. Given a number of clusters, how do we find them?

Focus on Challenge 2 first.

Idea: Partition the observations into *K* groups/clusters so that **pairwise dissimilarities within groups** are **smaller than between groups**.

Note: A partition of the observations is called a **clustering** $C(\mathbf{x}) = i$

Combinatorial Clustering (I)

Total amount of dissimilarity for an arbitrary clustering C

$$T = \underbrace{\sum_{l=1}^{n} \sum_{m < l} D(\mathbf{x}_l, \mathbf{x}_m)}_{\text{Total point scatter}}$$

Combinatorial Clustering (I)

Total amount of dissimilarity for an arbitrary clustering C

$$T = \underbrace{\sum_{l=1}^{n} \sum_{m < l} D(\mathbf{x}_{l}, \mathbf{x}_{m})}_{\text{Total point scatter}}$$
$$= \underbrace{\sum_{i=1}^{K} \sum_{\substack{l=1 \\ C(\mathbf{x}_{l})=i}}^{n} \left(\sum_{\substack{m < l \\ C(\mathbf{x}_{m})=i}} D(\mathbf{x}_{l}, \mathbf{x}_{m}) + \sum_{\substack{m < l \\ C(\mathbf{x}_{m})\neq i}} D(\mathbf{x}_{l}, \mathbf{x}_{m}) \right)$$

Combinatorial Clustering (I)

Total amount of dissimilarity for an arbitrary clustering C

$$T = \sum_{\substack{l=1\\ i=1}}^{n} \sum_{\substack{m < l\\ Total \text{ point scatter}}}^{n} D(\mathbf{x}_{l}, \mathbf{x}_{m})$$

$$= \sum_{\substack{l=1\\ i=1}}^{K} \sum_{\substack{l=1\\ C(\mathbf{x}_{l})=i}}^{n} \left(\sum_{\substack{m < l\\ C(\mathbf{x}_{m})=i}}^{m} D(\mathbf{x}_{l}, \mathbf{x}_{m}) + \sum_{\substack{m < l\\ C(\mathbf{x}_{m})\neq i}}^{m} D(\mathbf{x}_{l}, \mathbf{x}_{m}) \right)$$

$$= \sum_{\substack{l=1\\ i=1}}^{K} \sum_{\substack{l=1\\ C(\mathbf{x}_{l})=i}}^{n} \sum_{\substack{m < l\\ C(\mathbf{x}_{m})=i}}^{m} D(\mathbf{x}_{l}, \mathbf{x}_{m}) + \sum_{\substack{l=1\\ i=1}}^{K} \sum_{\substack{m < l\\ C(\mathbf{x}_{l})=i}}^{n} \sum_{\substack{m < l\\ C(\mathbf{x}_{m})\neq i}}^{m} D(\mathbf{x}_{l}, \mathbf{x}_{m})$$

$$= : W(C)$$
Within cluster point scatter
$$= : B(C)$$
Between cluster point scatter

Note that T does not depend on the clustering. Therefore

W(C) = T - B(C)

and **minimizing within cluster point scatter** is equivalent to **maximizing between cluster point scatter**.

Note that T does not depend on the clustering. Therefore

W(C) = T - B(C)

and **minimizing within cluster point scatter** is equivalent to **maximizing between cluster point scatter**.

As in the case of decision trees/CART looking at all possible partitions and finding the global minimum of W(C) is too computational expensive.

Note that T does not depend on the clustering. Therefore

W(C) = T - B(C)

and **minimizing within cluster point scatter** is equivalent to **maximizing between cluster point scatter**.

As in the case of decision trees/CART looking at all possible partitions and finding the global minimum of W(C) is too computational expensive.

Use greedy algorithms to find local minima.

An approximation to Combinatorical Clustering (I)

Consider the special case $D(\mathbf{x}_l, \mathbf{x}_m) = \|\mathbf{x}_l - \mathbf{x}_m\|^2$

An approximation to Combinatorical Clustering (I)

Consider the special case $D(\mathbf{x}_l, \mathbf{x}_m) = \|\mathbf{x}_l - \mathbf{x}_m\|^2$ then

$$W(C) = \sum_{i=1}^{K} \sum_{\substack{l=1 \ C(\mathbf{x}_l)=i}}^{n} \sum_{\substack{m < l \ C(\mathbf{x}_m)=i}} \|\mathbf{x}_l - \mathbf{x}_m\|^2$$

An approximation to Combinatorical Clustering (I)

Consider the special case $D(\mathbf{x}_l, \mathbf{x}_m) = \|\mathbf{x}_l - \mathbf{x}_m\|^2$ then

$$W(C) = \sum_{i=1}^{K} \sum_{\substack{l=1 \ C(\mathbf{x}_l)=i}}^{n} \sum_{\substack{m < l \ C(\mathbf{x}_m)=i}} \|\mathbf{x}_l - \mathbf{x}_m\|^2$$
$$= \sum_{i=1}^{K} n_i \sum_{\substack{l=1 \ C(\mathbf{x}_l)=i}}^{n} \|\mathbf{x}_l - \mathbf{m}_i\|^2$$

where

$$n_i = \sum_{l=1}^n \mathbb{1}(C(\mathbf{x}_l) = i)$$
 and $\mathbf{m}_i = \frac{1}{n_i} \sum_{C(\mathbf{x}_l) = i} \mathbf{x}_i$

An approximation to Combinatorical Clustering (II)

The goal now is to solve

$$\underset{C}{\operatorname{arg\,min}} \sum_{i=1}^{K} n_i \sum_{\substack{l=1\\C(\mathbf{x}_i)=i}}^{n} \|\mathbf{x}_l - \mathbf{m}_i(C)\|^2$$

which still requires to visit all possible partitions.

An approximation to Combinatorical Clustering (II)

The goal now is to solve

$$\underset{C}{\operatorname{arg\,min}} \sum_{i=1}^{K} n_i \sum_{\substack{l=1\\C(\mathbf{x}_i)=i}}^{n} \|\mathbf{x}_l - \mathbf{m}_i(C)\|^2$$

which still requires to visit all possible partitions.

Observation: For a fixed clustering rule *C* it holds that

$$\mathbf{m}_i(C) = \arg\min_{\mathbf{m}} \sum_{C(\mathbf{x}_l)=i} \|\mathbf{x}_l - \mathbf{m}\|^2$$

An approximation to Combinatorical Clustering (II)

The goal now is to solve

$$\underset{C}{\operatorname{arg\,min}} \sum_{i=1}^{K} n_i \sum_{\substack{l=1\\C(\mathbf{x}_i)=i}}^{n} \|\mathbf{x}_l - \mathbf{m}_i(C)\|^2$$

which still requires to visit all possible partitions.

Observation: For a fixed clustering rule *C* it holds that

$$\mathbf{m}_i(C) = \arg\min_{\mathbf{m}} \sum_{C(\mathbf{x}_l)=i} \|\mathbf{x}_l - \mathbf{m}\|^2$$

Approximative solution: Consider the larger problem

$$\underset{\substack{C\\m_i \text{ for } 1 \leq i \leq K}{\operatorname{arg\,min}} \sum_{i=1}^{K} n_i \sum_{\substack{l=1\\C(\mathbf{x}_l)=i}}^{n} \|\mathbf{x}_l - \mathbf{m}_i\|^2$$

k-means

This approximation can be solved iteratively for the clustering C and the cluster centres. This is called the **k-means** algorithm.

Computational procedure:

- 1. Initialize: Randomly choose K observations as cluster centres \mathbf{m}_i and set J_{\max} to a positive integer.
- 2. For steps $j = 1, \dots, J_{\max}$
 - 2.1 Cluster allocation: $C(\mathbf{x}_l) = \arg \min \|\mathbf{x}_l \mathbf{m}_i\|^2$
 - 2.2 Cluster centre update: $\mathbf{m}_i = \frac{1}{n_i} \sum_{C(\mathbf{x}_i)=i} \mathbf{x}_l$
 - 2.3 Stop if clustering C did not change

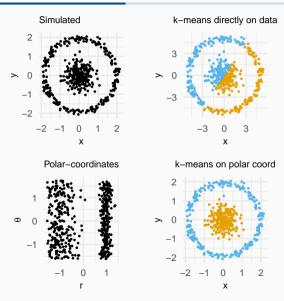
Dependence on initial selection: Run repeatedly to see if k-means provides stable results Dependence on initial selection: Run repeatedly to see if k-means provides stable results

Since k-means uses the *e*₂ norm it has all the typical problems (sensitive to outliers and noise)

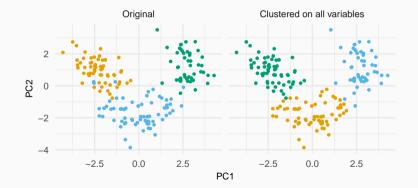
- Dependence on initial selection: Run repeatedly to see if k-means provides stable results
- Since k-means uses the *e*₂ norm it has all the typical problems (sensitive to outliers and noise)
- Clusters tend to be circular: k-means looks in a circular fashion around each cluster centre and assigns an observation to the closest centre

- Dependence on initial selection: Run repeatedly to see if k-means provides stable results
- Since k-means uses the *e*₂ norm it has all the typical problems (sensitive to outliers and noise)
- Clusters tend to be circular: k-means looks in a circular fashion around each cluster centre and assigns an observation to the closest centre
- Problems with unequal cluster size: If some clusters have less samples than others, then k-means tends to add those to the bigger clusters
- Always finds K clusters (not unique to k-means)

k-means and circular clusters



UCI Wine dataset: K = 3 classes. Let's see if k-means recovers the classes given only the features/attributes.



Idea: Similar approximation but use general distance measure. Also, use one of the observations as cluster centre (a **medoid**), not the centroid.

Idea: Similar approximation but use general distance measure. Also, use one of the observations as cluster centre (a **medoid**), not the centroid.

Solve

$$\underset{l_i \text{ for } 1 \leq i \leq K}{\operatorname{arg\,min}} \sum_{i=1}^{K} n_i \sum_{\substack{l=1 \\ C(\mathbf{x}_l)=i}}^{n} D(\mathbf{x}_l, \mathbf{x}_{l_i})$$

Idea: Similar approximation but use general distance measure. Also, use one of the observations as cluster centre (a **medoid**), not the centroid.

Solve

$$\underset{\substack{C \\ l_i \text{ for } 1 \le i \le K}{\operatorname{arg\,min}} \sum_{i=1}^{K} n_i \sum_{\substack{l=1 \\ C(\mathbf{x}_l)=i}}^{n} D(\mathbf{x}_l, \mathbf{x}_{l_i})$$

Notation: For observed feature vectors \mathbf{x}_l and \mathbf{x}_m set $\mathbf{D}_{l,m} = D(\mathbf{x}_l, \mathbf{x}_m)$. This results in $\mathbf{D} \in \mathbb{R}^{n \times n}$.

1. Initialize: Randomly choose K observation indices as cluster centres l_i and set J_{\max} to a positive integer

- 1. Initialize: Randomly choose K observation indices as cluster centres l_i and set J_{\max} to a positive integer
- 2. For steps $j = 1, \dots, J_{\max}$

- Initialize: Randomly choose K observation indices as cluster centres l_i and set J_{max} to a positive integer
 For steps i = 1
- 2. For steps $j = 1, \dots, J_{\max}$

```
2.1 Cluster allocation: C(\mathbf{x}_l) = \underset{1 \le i \le K}{\operatorname{arg\,min}} \mathbf{D}_{l,l_i}
```

- 1. Initialize: Randomly choose K observation indices as cluster centres l_i and set J_{\max} to a positive integer
- 2. For steps $j = 1, \dots, J_{\max}$
 - 2.1 Cluster allocation: $C(\mathbf{x}_l) = \underset{1 \le i \le K}{\operatorname{arg\,min}} \mathbf{D}_{l,l_i}$
 - 2.2 Cluster centre update: $l_i = \underset{\substack{1 \le l \le n \\ C(\mathbf{x}_l) = i}}{\operatorname{arg min}} \sum_{\substack{C(\mathbf{x}_m) = i}} \mathbf{D}_{l,m}$

- 1. Initialize: Randomly choose K observation indices as cluster centres l_i and set J_{\max} to a positive integer
- 2. For steps $j = 1, \dots, J_{\max}$
 - 2.1 Cluster allocation: $C(\mathbf{x}_l) = \underset{\substack{1 \le i \le K}}{\arg \min} \mathbf{D}_{l,l_i}$
 - 2.2 Cluster centre update: $l_i = \underset{\substack{1 \le l \le n \\ C(\mathbf{x}_l) = i}}{\operatorname{arg min}} \sum_{\substack{C(\mathbf{x}_m) = i}} \mathbf{D}_{l,m}$

2.3 Stop if clustering C did not change

- 1. Initialize: Randomly choose K observation indices as cluster centres l_i and set J_{\max} to a positive integer
- 2. For steps $j = 1, \dots, J_{\max}$
 - 2.1 Cluster allocation: $C(\mathbf{x}_l) = \underset{\substack{1 \le i \le K}}{\arg \min} \mathbf{D}_{l,l_i}$
 - 2.2 Cluster centre update: $l_i = \underset{\substack{1 \le l \le n \\ C(\mathbf{x}_l) = i}}{\arg \min} \sum_{\substack{C(\mathbf{x}_m) = i}} \mathbf{D}_{l,m}$
 - 2.3 Stop if clustering C did not change

Computational Complexity: Step 2.2 is now quadratic in n_i instead of linear as in k-means

- 1. Initialize: Randomly choose K observation indices as cluster centres l_i and set J_{\max} to a positive integer
- 2. For steps $j = 1, \dots, J_{\max}$
 - 2.1 Cluster allocation: $C(\mathbf{x}_l) = \underset{\substack{1 \le i \le K}}{\arg \min} \mathbf{D}_{l,l_i}$
 - 2.2 Cluster centre update: $l_i = \underset{\substack{1 \le l \le n \\ C(\mathbf{x}_l)=i}}{\operatorname{arg\,min}} \sum_{\substack{C(\mathbf{x}_m)=i}} \mathbf{D}_{l,m}$
 - 2.3 Stop if clustering C did not change
- **Computational Complexity:** Step 2.2 is now quadratic in n_i instead of linear as in k-means

Note: All PAM requires is a matrix of distances **D** and no additional distance computations are necessary. Very diverse types of features can be used.

Cluster validation and selection of cluster count

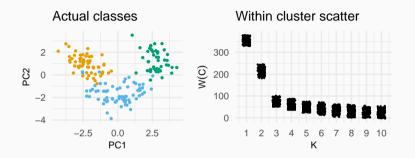
Internal indices

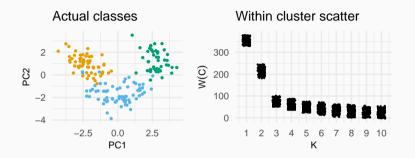
- Focus on between and within cluster scatter
- > Aim is to achieve high between cluster scatter and low within cluster scatter

External indices

- ► Focus on comparison of final clustering with reference classes
- Used to e.g. determine which types of clusters can be found in data, or to evaluate different clustering algorithms on a reference dataset

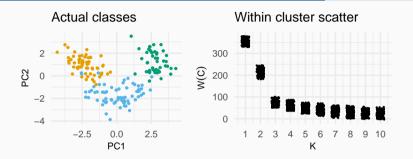
Examples of internal indices





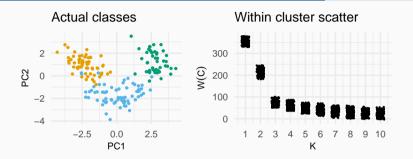
Observations:

▶ *W*(*C*) decreases with cluster count *K*



Observations:

- ▶ *W*(*C*) decreases with cluster count *K*
- > Decreases are less substantial if data does not support more clusters



Observations:

- ▶ *W*(*C*) decreases with cluster count *K*
- Decreases are less substantial if data does not support more clusters
- ► *K* is chosen such that **following decreases are substantially smaller**.

For every observation \mathbf{x}_l define (with $\mathbf{D}_{l,m} = D(\mathbf{x}_l, \mathbf{x}_m)$)

For every observation \mathbf{x}_l define (with $\mathbf{D}_{l,m} = D(\mathbf{x}_l, \mathbf{x}_m)$)

1. Average distance within cluster:

$$a_l = \frac{1}{n_{C(\mathbf{x}_l)}} \sum_{C(\mathbf{x}_m) = C(\mathbf{x}_l)} \mathbf{D}_{l,m}$$

For every observation \mathbf{x}_l define (with $\mathbf{D}_{l,m} = D(\mathbf{x}_l, \mathbf{x}_m)$)

1. Average distance within cluster:

$$a_l = \frac{1}{n_{C(\mathbf{x}_l)}} \sum_{C(\mathbf{x}_m) = C(\mathbf{x}_l)} \mathbf{D}_{l,m}$$

2. Average distance to nearest cluster:

$$b_l = \underset{\substack{1 \le i \le K \\ i \ne C(\mathbf{x}_l)}}{\arg \min} \frac{1}{n_i} \sum_{\substack{C(\mathbf{x}_m) = i}} \mathbf{D}_{l,m}$$

For every observation \mathbf{x}_l define (with $\mathbf{D}_{l,m} = D(\mathbf{x}_l, \mathbf{x}_m)$)

1. Average distance within cluster:

$$a_l = \frac{1}{n_{C(\mathbf{x}_l)}} \sum_{C(\mathbf{x}_m) = C(\mathbf{x}_l)} \mathbf{D}_{l,m}$$

2. Average distance to nearest cluster:

$$b_l = \underset{\substack{1 \le i \le K \\ i \ne C(\mathbf{x}_l)}}{\arg \min} \frac{1}{n_i} \sum_{\substack{C(\mathbf{x}_m) = i}} \mathbf{D}_{l,m}$$

3. Silhouette width: $s_l = \frac{b_l - a_l}{\max(a_l, b_l)} \in [-1, 1]$

For every observation \mathbf{x}_l define (with $\mathbf{D}_{l,m} = D(\mathbf{x}_l, \mathbf{x}_m)$)

1. Average distance within cluster:

$$a_l = \frac{1}{n_{C(\mathbf{x}_l)}} \sum_{C(\mathbf{x}_m) = C(\mathbf{x}_l)} \mathbf{D}_{l,m}$$

2. Average distance to nearest cluster:

$$b_l = \underset{\substack{1 \le i \le K \\ i \ne C(\mathbf{x}_l)}}{\arg\min} \frac{1}{n_i} \sum_{C(\mathbf{x}_m)=i} \mathbf{D}_{l,m}$$

3. Silhouette width:
$$s_l = \frac{b_l - a_l}{\max(a_l, b_l)} \in [-1, 1]$$

and overall **average silhouette width**: $S = \frac{1}{n} \sum_{l=1}^{n} s_l$.

Interpretation

- Close to 1 when observation is well located inside the cluster and separated from the nearest cluster
- Close to 0 when observation is between two clusters
- Negative if observation on average closer to another cluster.
 Warning sign: Hints at which observations should be investigated.
- > Average silhouette width should be maximal for a good clustering

Interpretation

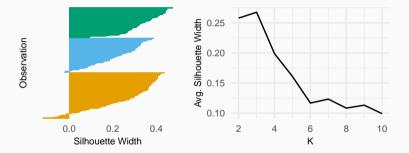
- Close to 1 when observation is well located inside the cluster and separated from the nearest cluster
- Close to 0 when observation is between two clusters
- Negative if observation on average closer to another cluster.
 Warning sign: Hints at which observations should be investigated.
- > Average silhouette width should be maximal for a good clustering

Limitations

- Needs at least two clusters
- Based on the same ideas as PAM/k-medoids and therefore considers clusters to be spherical

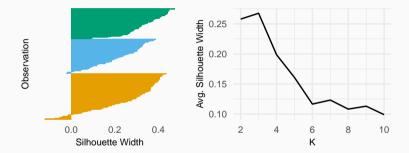
Silhouette Width: Example

Clustering of the UCI wine data using k-medoids with the ℓ_2 metric. Sorted per cluster and arranged in decreasing order of silhouette width.



Silhouette Width: Example

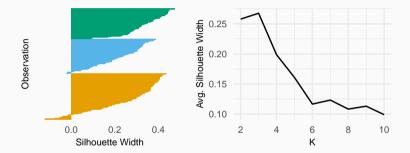
Clustering of the UCI wine data using k-medoids with the ℓ_2 metric. Sorted per cluster and arranged in decreasing order of silhouette width.



 Silhouette width gives a clear signal that more than three clusters lead to decreasing performance

Silhouette Width: Example

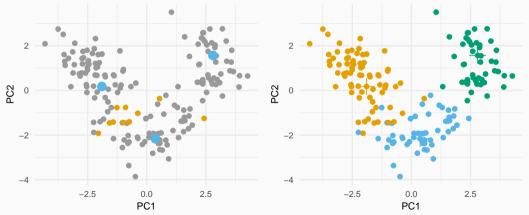
Clustering of the UCI wine data using k-medoids with the ℓ_2 metric. Sorted per cluster and arranged in decreasing order of silhouette width.



- Silhouette width gives a clear signal that more than three clusters lead to decreasing performance
- However, two and three clusters are indicated of similar quality.

Observations with negative Silhouette width

Observations in orange have negative silhouette width. Cluster medoids are shown in blue.



An example of an external index

Let *C* be a clustering for *K* clusters and *c* a classification rule for *M* classes. Denote $S_i = {\mathbf{x}_l : C(\mathbf{x}_l) = i}$, $S^j = {\mathbf{x}_l : c(\mathbf{x}_l) = j}$, and $S_i^j = S_i \cap S^j$.

Let *C* be a clustering for *K* clusters and *c* a classification rule for *M* classes. Denote $S_i = {\mathbf{x}_l : C(\mathbf{x}_l) = i}, S^j = {\mathbf{x}_l : c(\mathbf{x}_l) = j}$, and $S_i^j = S_i \cap S^j$.

We are interested in how well the two rules agree on a dataset.

Let *C* be a clustering for *K* clusters and *c* a classification rule for *M* classes. Denote $S_i = {\mathbf{x}_l : C(\mathbf{x}_l) = i}, S^j = {\mathbf{x}_l : c(\mathbf{x}_l) = j}$, and $S_i^j = S_i \cap S^j$.

We are interested in how well the two rules agree on a dataset.

Mutual Information: Amount of information that can be obtained about one rule by knowing the other rule

$$I(C,c) = \sum_{i=1}^{K} \sum_{j=1}^{M} \mathbb{P}(S_i^j) \log \frac{\mathbb{P}(S_i^j)}{\mathbb{P}(S_i)\mathbb{P}(S^j)} \approx \sum_{i=1}^{K} \sum_{j=1}^{M} \frac{|S_i^j|}{n} \log \frac{n|S_i^j|}{|S_i||S^j|}$$

Let *C* be a clustering for *K* clusters and *c* a classification rule for *M* classes. Denote $S_i = {\mathbf{x}_l : C(\mathbf{x}_l) = i}, S^j = {\mathbf{x}_l : c(\mathbf{x}_l) = j}$, and $S_i^j = S_i \cap S^j$.

We are interested in how well the two rules agree on a dataset.

Mutual Information: Amount of information that can be obtained about one rule by knowing the other rule

$$I(C,c) = \sum_{i=1}^{K} \sum_{j=1}^{M} \mathbb{P}(S_i^j) \log \frac{\mathbb{P}(S_i^j)}{\mathbb{P}(S_i) \mathbb{P}(S^j)} \approx \sum_{i=1}^{K} \sum_{j=1}^{M} \frac{|S_i^j|}{n} \log \frac{n|S_i^j|}{|S_i||S^j|}$$

Entropy: Information present in each rule

$$H(C) = -\sum_{i=1}^{K} \mathbb{P}(S_i) \log \mathbb{P}(S_i) \approx -\sum_{i=1}^{K} \frac{|S_i|}{n} \log \frac{|S_i|}{n}$$

and analogously for c.

If the clustering is **completely random**, we gain no knowledge, i.e. I(C, c) = 0. If the clustering is **perfect**, then mutual information is maximal.

If the clustering is **completely random**, we gain no knowledge, i.e. I(C, c) = 0. If the clustering is **perfect**, then mutual information is maximal.

However, mutual information is also maximal if K = n, i.e. each observation is in its own cluster. Since H(C) is maximal if K = n, normalisation can solve this problem.

If the clustering is **completely random**, we gain no knowledge, i.e. I(C, c) = 0. If the clustering is **perfect**, then mutual information is maximal.

However, mutual information is also maximal if K = n, i.e. each observation is in its own cluster. Since H(C) is maximal if K = n, normalisation can solve this problem.

Note that $I(C,c) \le (H(C) + H(c))/2$ which leads to the definition of **normalised** mutual information

$$NMI(C, c) = \frac{I(C, c)}{(H(C) + H(c))/2} \in [0, 1].$$

- Clustering is a more challenging problem than classification and needs to answer two questions:
 - What is a cluster?
 - How many clusters are there?
- > The clustering algorithm defines what shapes are considered as clusters.
- Clustering results can be validated by external indices and cluster count can be selected through internal indices.