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Classification without classes

In classification the main idea was to determine

𝑝(𝑖|𝐱) or 𝑝(𝐱, 𝑖) = 𝑝(𝐱|𝑖)𝑝(𝑖)

through model approximations (LDA, logistic regression), rules/partitioning
(CART, random forests) or directly from data (kNN).

What if we do not have any classes? Clustering
Goals
▶ Find groups in data
▶ Summarize high-dimensional data
▶ Data exploration
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Clustering

Clustering is a harder problem than
classification

▶ What is a cluster?
▶ How many clusters are there?
▶ How do we find them? Can they
have any shape?
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We need to able to measure dissimilarity between features to determine which
samples/objects are close together or far apart.

Note: In clustering classes are often called labels and features are attributes
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Dissimilarity measures

A dissimilarity measure for features 𝑥1, 𝑥2 is a function such that

𝑑(𝑥1, 𝑥2) ≥ 0 and 𝑑(𝑥1, 𝑥2) = 𝑑(𝑥2, 𝑥1)

Dissimilarity across all features can be defined as

𝐷(𝐱1, 𝐱2) =
𝑝
∑
𝑗=1

𝑑𝑗(𝑥(𝑗)1 , 𝑥(𝑗)2 )

Typical examples
▶ For quantitative features: ℓ1 or ℓ2 norm, correlation between whole feature
vectors, . . .

▶ For categorical variables with 𝐾 levels: Loss matrix 𝐋 ∈ ℝ𝐾×𝐾 such that
𝐋𝑟𝑠 = 𝐋𝑠𝑟, 𝐋𝑟𝑟 = 0 and 𝐋𝑟𝑠 ≥ 0. Then 𝑑(𝑟, 𝑠) = 𝐋𝑟𝑠
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Challenges in Clustering

Two main challenges

1. How many clusters are there?
2. Given a number of clusters, how do we find them?

Focus on Challenge 2 first.

Idea: Partition the observations into 𝐾 groups/clusters so that pairwise
dissimilarities within groups are smaller than between groups.

Note: A partition of the observations is called a clustering 𝐶(𝐱) = 𝑖
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Combinatorial Clustering (I)

Total amount of dissimilarity for an arbitrary clustering 𝐶

𝑇 =
𝑛
∑
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Combinatorial Clustering (II)

Note that 𝑇 does not depend on the clustering. Therefore

𝑊(𝐶) = 𝑇 − 𝐵(𝐶)

and minimizing within cluster point scatter is equivalent to maximizing between
cluster point scatter.

As in the case of decision trees/CART looking at all possible partitions and
finding the global minimum of𝑊(𝐶) is too computational expensive.

Use greedy algorithms to find local minima.
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An approximation to Combinatorical Clustering (I)

Consider the special case 𝐷(𝐱𝑙, 𝐱𝑚) = ‖𝐱𝑙 − 𝐱𝑚‖2

then

𝑊(𝐶) =
𝐾
∑
𝑖=1

𝑛
∑
𝑙=1

𝐶(𝐱𝑙)=𝑖

∑
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‖𝐱𝑙 − 𝐱𝑚‖2

=
𝐾
∑
𝑖=1

𝑛𝑖
𝑛
∑
𝑙=1

𝐶(𝐱𝑙)=𝑖

‖𝐱𝑙 −𝐦𝑖‖2

where

𝑛𝑖 =
𝑛
∑
𝑙=1

1(𝐶(𝐱𝑙) = 𝑖) and 𝐦𝑖 =
1
𝑛𝑖

∑
𝐶(𝐱𝑙)=𝑖

𝐱𝑙
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An approximation to Combinatorical Clustering (II)

The goal now is to solve

arg min
𝐶

𝐾
∑
𝑖=1

𝑛𝑖
𝑛
∑
𝑙=1

𝐶(𝐱𝑙)=𝑖

‖𝐱𝑙 −𝐦𝑖(𝐶)‖2

which still requires to visit all possible partitions.

Observation: For a fixed clustering rule 𝐶 it holds that
𝐦𝑖(𝐶) = arg min

𝐦
∑

𝐶(𝐱𝑙)=𝑖
‖𝐱𝑙 −𝐦‖2

Approximative solution: Consider the larger problem

arg min
𝐶

𝑚𝑖 for 1≤𝑖≤𝐾

𝐾
∑
𝑖=1

𝑛𝑖
𝑛
∑
𝑙=1

𝐶(𝐱𝑙)=𝑖

‖𝐱𝑙 −𝐦𝑖‖2
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k-means

This approximation can be solved iteratively for the clustering 𝐶 and the
cluster centres. This is called the k-means algorithm.

Computational procedure:

1. Initialize: Randomly choose 𝐾 observations as cluster centres𝐦𝑖 and set
𝐽max to a positive integer.

2. For steps 𝑗 = 1,… , 𝐽max
2.1 Cluster allocation: 𝐶(𝐱𝑙) = arg min

1≤𝑖≤𝐾
‖𝐱𝑙 −𝐦𝑖‖2

2.2 Cluster centre update: 𝐦𝑖 =
1
𝑛𝑖

∑
𝐶(𝐱𝑙)=𝑖

𝐱𝑙

2.3 Stop if clustering 𝐶 did not change
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Notes on k-means

▶ Dependence on initial selection: Run repeatedly to see if k-means provides
stable results

▶ Since k-means uses the ℓ2 norm it has all the typical problems (sensitive to
outliers and noise)

▶ Clusters tend to be circular: k-means looks in a circular fashion around each
cluster centre and assigns an observation to the closest centre

▶ Problems with unequal cluster size: If some clusters have less samples than
others, then k-means tends to add those to the bigger clusters

▶ Always finds 𝐾 clusters (not unique to k-means)
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k-means and circular clusters
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Using k-means on the wine dataset

UCI Wine dataset: 𝐾 = 3 classes. Let’s see if k-means recovers the classes given
only the features/attributes.

Original Clustered on all variables
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Partition around medoids (PAM) or k-medoids

Restrictions of k-means: Features have to be continuous and the ℓ2 norm has
to be used as a distance measure.

Idea: Similar approximation but use general distance measure. Also, use one of
the observations as cluster centre (a medoid), not the centroid.

Solve

arg min
𝐶

𝑙𝑖 for 1≤𝑖≤𝐾

𝐾
∑
𝑖=1

𝑛𝑖
𝑛
∑
𝑙=1

𝐶(𝐱𝑙)=𝑖

𝐷(𝐱𝑙, 𝐱𝑙𝑖 )

Notation: For observed feature vectors 𝐱𝑙 and 𝐱𝑚 set 𝐃𝑙,𝑚 = 𝐷(𝐱𝑙, 𝐱𝑚). This
results in 𝐃 ∈ ℝ𝑛×𝑛.
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PAM/k-medoids algorithm

Computational procedure:

1. Initialize: Randomly choose 𝐾 observation indices as cluster centres 𝑙𝑖 and
set 𝐽max to a positive integer

2. For steps 𝑗 = 1,… , 𝐽max

2.1 Cluster allocation: 𝐶(𝐱𝑙) = arg min
1≤𝑖≤𝐾

𝐃𝑙,𝑙𝑖

2.2 Cluster centre update: 𝑙𝑖 = arg min
1≤𝑙≤𝑛
𝐶(𝐱𝑙)=𝑖

∑
𝐶(𝐱𝑚)=𝑖

𝐃𝑙,𝑚

2.3 Stop if clustering 𝐶 did not change

Computational Complexity: Step 2.2 is now quadratic in 𝑛𝑖 instead of linear as in
k-means

Note: All PAM requires is a matrix of distances 𝐃 and no additional distance
computations are necessary. Very diverse types of features can be used.
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Cluster validation and selection of
cluster count



Cluster validation

Internal indices

▶ Focus on between and within cluster scatter
▶ Aim is to achieve high between cluster scatter and low within cluster scatter

External indices

▶ Focus on comparison of final clustering with reference classes
▶ Used to e.g. determine which types of clusters can be found in data, or to
evaluate different clustering algorithms on a reference dataset

15/23



Examples of internal indices



Elbow heuristic for k-means
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Observations:
▶ 𝑊(𝐶) decreases with cluster count 𝐾
▶ Decreases are less substantial if data does not support more clusters
▶ 𝐾 is chosen such that following decreases are substantially smaller.
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Silhouette Width

For every observation 𝐱𝑙 define (with 𝐃𝑙,𝑚 = 𝐷(𝐱𝑙, 𝐱𝑚))

1. Average distance within cluster:

𝑎𝑙 =
1

𝑛𝐶(𝐱𝑙)
∑

𝐶(𝐱𝑚)=𝐶(𝐱𝑙)
𝐃𝑙,𝑚

2. Average distance to nearest cluster:

𝑏𝑙 = arg min
1≤𝑖≤𝐾
𝑖≠𝐶(𝐱𝑙)

1
𝑛𝑖

∑
𝐶(𝐱𝑚)=𝑖

𝐃𝑙,𝑚

3. Silhouette width: 𝑠𝑙 =
𝑏𝑙 − 𝑎𝑙

max(𝑎𝑙, 𝑏𝑙)
∈ [−1, 1]

and overall average silhouette width: 𝑆 = 1
𝑛

𝑛
∑
𝑙=1

𝑠𝑙.
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Notes on silhouette width

▶ Interpretation
▶ Close to 1 when observation is well located inside the cluster and separated
from the nearest cluster

▶ Close to 0 when observation is between two clusters
▶ Negative if observation on average closer to another cluster.
Warning sign: Hints at which observations should be investigated.

▶ Average silhouette width should be maximal for a good clustering

▶ Limitations
▶ Needs at least two clusters
▶ Based on the same ideas as PAM/k-medoids and therefore considers clusters
to be spherical

18/23



Notes on silhouette width

▶ Interpretation
▶ Close to 1 when observation is well located inside the cluster and separated
from the nearest cluster

▶ Close to 0 when observation is between two clusters
▶ Negative if observation on average closer to another cluster.
Warning sign: Hints at which observations should be investigated.

▶ Average silhouette width should be maximal for a good clustering
▶ Limitations

▶ Needs at least two clusters
▶ Based on the same ideas as PAM/k-medoids and therefore considers clusters
to be spherical

18/23



Silhouette Width: Example

Clustering of the UCI wine data using k-medoids with the ℓ2 metric. Sorted per
cluster and arranged in decreasing order of silhouette width.
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▶ Silhouette width gives a clear signal that more than three clusters lead to
decreasing performance

▶ However, two and three clusters are indicated of similar quality.
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Observations with negative Silhouette width

Observations in orange have negative silhouette width. Cluster medoids are
shown in blue.
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An example of an external index



Mutual information and entropy

Let 𝐶 be a clustering for 𝐾 clusters and 𝑐 a classification rule for 𝑀 classes.
Denote 𝑆 𝑖 = {𝐱𝑙 ∶ 𝐶(𝐱𝑙) = 𝑖}, 𝑆𝑗 = {𝐱𝑙 ∶ 𝑐(𝐱𝑙) = 𝑗}, and 𝑆𝑗𝑖 = 𝑆 𝑖 ∩ 𝑆𝑗 .

We are interested in how well the two rules agree on a dataset.

Mutual Information: Amount of information that can be obtained about one rule
by knowing the other rule

𝐼(𝐶, 𝑐) =
𝐾
∑
𝑖=1

𝑀
∑
𝑗=1

ℙ(𝑆𝑗𝑖 ) log
ℙ(𝑆𝑗𝑖 )

ℙ(𝑆 𝑖) ℙ(𝑆𝑗)
≈

𝐾
∑
𝑖=1

𝑀
∑
𝑗=1

|𝑆𝑗𝑖 |
𝑛 log

𝑛|𝑆𝑗𝑖 |
|𝑆 𝑖||𝑆𝑗 |

Entropy: Information present in each rule

𝐻(𝐶) = −
𝐾
∑
𝑖=1

ℙ(𝑆 𝑖) logℙ(𝑆 𝑖) ≈ −
𝐾
∑
𝑖=1

|𝑆 𝑖|
𝑛 log |𝑆 𝑖|𝑛

and analogously for 𝑐.
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Normalised mutual information

Mutual information can be seen as a measure for how much more information
about the true classes we obtain by being given the cluster labels.

If the clustering is completely random, we gain no knowledge, i.e. 𝐼(𝐶, 𝑐) = 0. If
the clustering is perfect, then mutual information is maximal.

However, mutual information is also maximal if 𝐾 = 𝑛, i.e. each observation is in
its own cluster. Since 𝐻(𝐶) is maximal if 𝐾 = 𝑛, normalisation can solve this
problem.

Note that 𝐼(𝐶, 𝑐) ≤ (𝐻(𝐶) + 𝐻(𝑐))/2 which leads to the definition of normalised
mutual information

NMI(𝐶, 𝑐) = 𝐼(𝐶, 𝑐)
(𝐻(𝐶) + 𝐻(𝑐))/2 ∈ [0, 1].
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Take-home message

▶ Clustering is a more challenging problem than classification and needs to
answer two questions:

▶ What is a cluster?
▶ How many clusters are there?

▶ The clustering algorithm defines what shapes are considered as clusters.
▶ Clustering results can be validated by external indices and cluster count can
be selected through internal indices.
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