Lecture 6b: Clustering (cont'd)

Rebecka Jörnsten, Mathematical Sciences

MSA220/MVE441 Statistical Learning for Big Data

1nd April 2021

Bottom-up approach to clustering

Two approaches to combinatorial clustering

Top-down approach

- ▶ Start with all observations in one group and split them into clusters
- ► Examples: k-means and k-medoids

Bottom-up approach

Start with all observations individually and join them together to build clusters

A bottom-up approach

Let g_l^i be the set of samples in cluster l at iteration i.

Hierarchical clustering

- 1. Initialization: Let each observation \mathbf{x}_l be in its own cluster g_l^0 for $l=1,\ldots,n$
- 2. Joining: In step i, join the two clusters g_l^{i-1} and g_m^{i-1} that are closest to each other, resulting in n-i clusters
- 3. After n-1 steps all observations are in one big cluster

A bottom-up approach

Let g_l^i be the set of samples in cluster l at iteration i.

Hierarchical clustering

- 1. Initialization: Let each observation \mathbf{x}_l be in its own cluster g_l^0 for $l=1,\ldots,n$
- 2. **Joining:** In step i, join the two clusters g_l^{i-1} and g_m^{i-1} that are closest to each other, resulting in n-i clusters
- 3. After n-1 steps all observations are in one big cluster

Questions

- ▶ How do we measure distance between clusters?
- ▶ How do we get a final clustering with a certain number of clusters?

Cluster-cluster distance is called **linkage**

Cluster-cluster distance is called **linkage**

Distance between clusters g and h

Let $\mathbf{D} \in \mathbb{R}^{n \times n}$ be a distance matrix between samples.

Cluster-cluster distance is called linkage

Distance between clusters g and h

Let $\mathbf{D} \in \mathbb{R}^{n \times n}$ be a distance matrix between samples.

1. Average Linkage:

$$d(g,h) = \frac{1}{|g| \cdot |h|} \sum_{\substack{\mathbf{x}_l \in g \\ \mathbf{x}_m \in h}} \mathbf{D}_{l,m}$$

Cluster-cluster distance is called linkage

Distance between clusters g and h

Let $\mathbf{D} \in \mathbb{R}^{n \times n}$ be a distance matrix between samples.

1. Average Linkage:

$$d(g,h) = \frac{1}{|g| \cdot |h|} \sum_{\substack{\mathbf{x}_l \in g \\ \mathbf{x}_m \in h}} \mathbf{D}_{l,m}$$

2. Single Linkage

$$d(g,h) = \min_{\substack{\mathbf{x}_l \in g \\ \mathbf{x}_m \in h}} \mathbf{D}_{l,m}$$

Cluster-cluster distance is called linkage

Distance between clusters g and h

Let $\mathbf{D} \in \mathbb{R}^{n \times n}$ be a distance matrix between samples.

1. Average Linkage:

$$d(g,h) = \frac{1}{|g| \cdot |h|} \sum_{\substack{\mathbf{x}_l \in g \\ \mathbf{x}_m \in h}} \mathbf{D}_{l,m}$$

2. Single Linkage

$$d(g,h) = \min_{\substack{\mathbf{x}_l \in g \\ \mathbf{x}_m \in h}} \mathbf{D}_{l,m}$$

3. Complete Linkage

$$d(g,h) = \max_{\substack{\mathbf{x}_l \in g \\ \mathbf{x}_m \in h}} \mathbf{D}_{l,m}$$

Dendrograms

Hierarchical clustering applied to iris dataset

- ► Leaf colours represent iris type: setosa, versicolor and virginica
- ► **Height** is the distance between clusters
- ► The tree can be **cut** at a certain height to achieve a final clustering. Long branches mean large increase in within cluster scatter at join

Dendrograms for other linkages

Notes on hierarchical clustering and linkage

Linkage criteria

- ► Average linkage is most commonly used and encourages average similarity between all pairs in the two clusters.
- ► Single linkage tends to create clusters that are quite spread out since it only considers the closest observations between clusters
- ► Complete linkage tends to produce 'tight' clusters

Notes on hierarchical clustering and linkage

Linkage criteria

- ► Average linkage is most commonly used and encourages average similarity between all pairs in the two clusters.
- ► Single linkage tends to create clusters that are quite spread out since it only considers the closest observations between clusters
- Complete linkage tends to produce 'tight' clusters

New view on clustering

- Clusters are joined by closeness to each other, not by closeness to some centre
- e.g. single linkage hierarchical clustering can handle the circle around a disc example from last lecture

- ► All methods discussed so far were non-parametric clustering methods based on
 - 1. a distance/dissimilarity measure
 - 2. a construction algorithm

- All methods discussed so far were non-parametric clustering methods based on
 - 1. a distance/dissimilarity measure
 - 2. a construction algorithm
- ▶ Performance depended on choices such as the metric and how to select the cluster count

- ► All methods discussed so far were non-parametric clustering methods based on
 - 1. a distance/dissimilarity measure
 - 2. a construction algorithm
- ▶ Performance depended on choices such as the metric and how to select the cluster count
- Assuming an underlying theoretical model for the feature space worked well in classification (LDA, QDA, logistic regression).

Is this transferable to clustering?

Remember QDA

In Quadratic Discriminant Analysis (QDA) we assumed

$$p(\mathbf{x}|i) = N(\mathbf{x}|\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$$
 and $p(i) = \pi_i$

Remember QDA

In Quadratic Discriminant Analysis (QDA) we assumed

$$p(\mathbf{x}|i) = N(\mathbf{x}|\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$$
 and $p(i) = \pi_i$

This can be written as a Gaussian Mixture Model (GMM) for x where

$$p(\mathbf{x}) = \sum_{i=1}^{K} p(i)p(\mathbf{x}|i) = \sum_{i=1}^{K} \pi_i N(\mathbf{x}|\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$$

QDA used that the classes i_l and feature vectors \mathbf{x}_l of the observations were known to calculate π_i , $\boldsymbol{\mu}_i$ and $\boldsymbol{\Sigma}_i$.

Remember QDA

In Quadratic Discriminant Analysis (QDA) we assumed

$$p(\mathbf{x}|i) = N(\mathbf{x}|\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$$
 and $p(i) = \pi_i$

This can be written as a Gaussian Mixture Model (GMM) for x where

$$p(\mathbf{x}) = \sum_{i=1}^{K} p(i)p(\mathbf{x}|i) = \sum_{i=1}^{K} \pi_i N(\mathbf{x}|\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$$

QDA used that the classes i_l and feature vectors \mathbf{x}_l of the observations were known to calculate π_i , $\boldsymbol{\mu}_i$ and $\boldsymbol{\Sigma}_i$.

What if we only know the features x_l ?

Maximum Likelihood for GMMs?

The log-likelihood for the data $X \in \mathbb{R}^{n \times p}$ and all unknowns

$$\boldsymbol{\theta} = (\pi_1, \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1, \dots, \pi_K, \boldsymbol{\mu}_K, \boldsymbol{\Sigma}_K)$$

is

$$\log p(\mathbf{X}|\boldsymbol{\theta}) = \sum_{l=1}^{n} \log \left(\sum_{i=1}^{K} \pi_{i} N(\mathbf{x}_{l} | \boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}) \right)$$

Maximum Likelihood for GMMs?

The log-likelihood for the data $X \in \mathbb{R}^{n \times p}$ and all unknowns

$$\theta = (\pi_1, \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1, \dots, \pi_K, \boldsymbol{\mu}_K, \boldsymbol{\Sigma}_K)$$

is

$$\log p(\mathbf{X}|\boldsymbol{\theta}) = \sum_{l=1}^{n} \log \left(\sum_{i=1}^{K} \pi_{i} N(\mathbf{x}_{l} | \boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}) \right)$$

Taking the gradient (with chain-rule) and solving for μ_i gives

$$\mu_i = \frac{\sum_{l=1}^n \eta_{li} \mathbf{x}_l}{\sum_{l=1}^n \eta_{li}} \quad \text{where} \quad \eta_{li} = \frac{\pi_i N(\mathbf{x}_l | \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)}{\sum_{j=1}^K \pi_j N(\mathbf{x}_l | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

Maximum Likelihood for GMMs?

The log-likelihood for the data $\mathbf{X} \in \mathbb{R}^{n \times p}$ and all unknowns

$$\theta = (\pi_1, \mu_1, \Sigma_1, \dots, \pi_K, \mu_K, \Sigma_K)$$

is

$$\log p(\mathbf{X}|\boldsymbol{\theta}) = \sum_{l=1}^{n} \log \left(\sum_{i=1}^{K} \pi_{i} N(\mathbf{x}_{l} | \boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}) \right)$$

Taking the gradient (with chain-rule) and solving for μ_i gives

$$\mu_i = \frac{\sum_{l=1}^n \eta_{li} \mathbf{x}_l}{\sum_{l=1}^n \eta_{li}} \quad \text{where} \quad \eta_{li} = \frac{\pi_i N(\mathbf{x}_l | \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)}{\sum_{i=1}^K \pi_j N(\mathbf{x}_l | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

Note: There is a **non-linear cyclic dependence** between η_{li} and μ_i .

Finding the MLE for parameters θ in GMMs results in an iterative process called **Expectation-Maximization (EM)**

Finding the MLE for parameters θ in GMMs results in an iterative process called **Expectation-Maximization (EM)**

1. Initialize θ

Finding the MLE for parameters θ in GMMs results in an iterative process called **Expectation-Maximization (EM)**

- 1. Initialize θ
- 2. E-Step: Update

$$\eta_{li} = \frac{\pi_i N(\mathbf{x}_l | \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)}{\sum_{j=1}^K \pi_j N(\mathbf{x}_l | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

Finding the MLE for parameters θ in GMMs results in an iterative process called **Expectation-Maximization (EM)**

- 1. Initialize θ
- 2. E-Step: Update

$$\eta_{li} = \frac{\pi_i N(\mathbf{x}_l | \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)}{\sum_{j=1}^K \pi_j N(\mathbf{x}_l | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

3. M-Step: Update

$$\mu_{i} = \frac{\sum_{l=1}^{n} \eta_{li} \mathbf{x}_{l}}{\sum_{l=1}^{n} \eta_{li}} \qquad \pi_{i} = \frac{\sum_{l=1}^{n} \eta_{li}}{n}$$
$$\Sigma_{i} = \frac{1}{\sum_{l=1}^{n} \eta_{li}} \sum_{l=1}^{n} \eta_{li} (\mathbf{x}_{l} - \boldsymbol{\mu}_{i}) (\mathbf{x}_{l} - \boldsymbol{\mu}_{i})^{\mathsf{T}}$$

Finding the MLE for parameters θ in GMMs results in an iterative process called **Expectation-Maximization (EM)**

- 1. Initialize θ
- 2. E-Step: Update

$$\eta_{li} = \frac{\pi_i N(\mathbf{x}_l | \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)}{\sum_{j=1}^K \pi_j N(\mathbf{x}_l | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

3. M-Step: Update

$$\mu_{i} = \frac{\sum_{l=1}^{n} \eta_{li} \mathbf{x}_{l}}{\sum_{l=1}^{n} \eta_{li}} \qquad \pi_{i} = \frac{\sum_{l=1}^{n} \eta_{li}}{n}$$
$$\Sigma_{i} = \frac{1}{\sum_{l=1}^{n} \eta_{li}} \sum_{l=1}^{n} \eta_{li} (\mathbf{x}_{l} - \boldsymbol{\mu}_{i}) (\mathbf{x}_{l} - \boldsymbol{\mu}_{i})^{\mathsf{T}}$$

4. Repeat steps 2 and 3 until convergence

GMM clustering example

- Yellow and green clusters share a covariance matrix
- ▶ The blue cluster has a different one
- ► GMM clustering on only the data points without knowledge of the class labels recovers the covariance structures and clusters

Why does Expectation-Maximization work?

▶ Assume that the classes i_l are known and code them as $z_{lj} = 1$ if $i_l = j$ and $z_{lj} = 0$ otherwise. Collect them in $\mathbf{Z} \in \mathbb{R}^{n \times K}$.

- ▶ Assume that the classes i_l are known and code them as $z_{lj} = 1$ if $i_l = j$ and $z_{lj} = 0$ otherwise. Collect them in $\mathbf{Z} \in \mathbb{R}^{n \times K}$.
- ► (X, Z) are called the **complete data**, and **incomplete data** when only X is observed

- ▶ Assume that the classes i_l are known and code them as $z_{lj} = 1$ if $i_l = j$ and $z_{lj} = 0$ otherwise. Collect them in $\mathbf{Z} \in \mathbb{R}^{n \times K}$.
- ► (X, Z) are called the **complete data**, and **incomplete data** when only X is observed
- ► The class assignments **Z** are called **latent variables**

- ▶ Assume that the classes i_l are known and code them as $z_{lj} = 1$ if $i_l = j$ and $z_{lj} = 0$ otherwise. Collect them in $\mathbf{Z} \in \mathbb{R}^{n \times K}$.
- ► (X, Z) are called the **complete data**, and **incomplete data** when only X is observed
- ► The class assignments **Z** are called **latent variables**
- Complete data likelihood

$$\log p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) = \sum_{l=1}^{n} \sum_{i=1}^{K} z_{li} \left(\log(\pi_i) + \log(N(\mathbf{x}_l|\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)) \right)$$

and the parameters in θ are easy to estimate (QDA).

- ▶ Assume that the classes i_l are known and code them as $z_{lj} = 1$ if $i_l = j$ and $z_{lj} = 0$ otherwise. Collect them in $\mathbf{Z} \in \mathbb{R}^{n \times K}$.
- ► (X, Z) are called the **complete data**, and **incomplete data** when only X is observed
- ► The class assignments **Z** are called **latent variables**
- ► Complete data likelihood

$$\log p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\theta}) = \sum_{l=1}^{n} \sum_{i=1}^{K} z_{li} \left(\log(\pi_i) + \log(N(\mathbf{x}_l | \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)) \right)$$

and the parameters in θ are easy to estimate (QDA).

► Incomplete data likelihood

$$\log p(\mathbf{X}|\boldsymbol{\theta}) = \sum_{l=1}^{n} \log \left(\sum_{i=1}^{K} \pi_{i} N(\mathbf{x}_{l} | \boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}) \right)$$

Decomposing the incomplete data likelihood

► For known Z

$$p(\mathbf{X}|\theta) = \frac{p(\mathbf{X}, \mathbf{Z}|\theta)}{p(\mathbf{Z}|\mathbf{X}, \theta)}, \quad \text{i.e.}$$
$$\log p(\mathbf{X}|\theta) = \log p(\mathbf{X}, \mathbf{Z}|\theta) - \log p(\mathbf{Z}|\mathbf{X}, \theta)$$

is a **decomposition** of the log-likelihood for X given heta

Decomposing the incomplete data likelihood

► For known Z

$$p(\mathbf{X}|\theta) = \frac{p(\mathbf{X}, \mathbf{Z}|\theta)}{p(\mathbf{Z}|\mathbf{X}, \theta)}, \text{ i.e.}$$
$$\log p(\mathbf{X}|\theta) = \log p(\mathbf{X}, \mathbf{Z}|\theta) - \log p(\mathbf{Z}|\mathbf{X}, \theta)$$

is a **decomposition** of the log-likelihood for ${f X}$ given ${m heta}$

For any density $q(\mathbf{Z})$ it holds that

$$\log p(\mathbf{X}|\boldsymbol{\theta}) = \log \frac{p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})}{q(\mathbf{Z})} - \log \frac{p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta})}{q(\mathbf{Z})}$$

Decomposing the incomplete data likelihood

For known Z

$$p(\mathbf{X}|\theta) = \frac{p(\mathbf{X}, \mathbf{Z}|\theta)}{p(\mathbf{Z}|\mathbf{X}, \theta)}$$
, i.e.

$$\log p(\mathbf{X}|\boldsymbol{\theta}) = \log p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) - \log p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta})$$

is a **decomposition** of the log-likelihood for X given θ

 \triangleright For any density $q(\mathbf{Z})$ it holds that

$$\log p(\mathbf{X}|\boldsymbol{\theta}) = \log \frac{p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})}{q(\mathbf{Z})} - \log \frac{p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta})}{q(\mathbf{Z})}$$

Average over **Z** according to the density $q(\mathbf{Z})$

$$\log(p(\mathbf{X}|\boldsymbol{\theta})) = \mathbb{E}_{q(\mathbf{Z})} \left[\log \frac{p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})}{q(\mathbf{Z})} \right] - \mathbb{E}_{q(\mathbf{Z})} \left[\log \frac{p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta})}{q(\mathbf{Z})} \right]$$
$$=: F(q, \boldsymbol{\theta}) + \mathrm{KL}(q||p(\cdot|\mathbf{X}, \boldsymbol{\theta}))$$

where $\mathrm{KL}(q||p(\cdot|\mathbf{X},\theta))$ is called the **Kullback-Leibler (KL) divergence** of $q(\mathbf{Z})$ and $p(\cdot|\mathbf{X},\theta)$.

Decomposing the incomplete data likelihood (II)

It can be shown (using Jensen's inequality) that

$$\mathrm{KL}(q||p(\cdot|\mathbf{X},\boldsymbol{\theta})) = -\mathbb{E}_{q(\mathbf{Z})}\left[\log\frac{p(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta})}{q(\mathbf{Z})}\right] \geq 0$$

with equality if $q(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \theta)$.

This implies that

$$\log p(\mathbf{X}|\boldsymbol{\theta}) \geq F(q,\boldsymbol{\theta})$$

is a **lower bound** which is tight (i.e. equality holds) if $q(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \theta)$.

This gives us a **recipe** on how to choose $q(\mathbf{Z})$.

Expectation-Maximization

1. **Expectation step:** For given parameters $\theta^{(m)}$ the density $q(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \theta^{(m)})$ ensures that $F(q, \theta^{(m)}) = \log p(\mathbf{X}|\theta^{(m)})$. Note that then

$$F(q, \boldsymbol{\theta}) = \mathbb{E}_{p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{(m)})} \left[\log p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) \right] - \mathbb{E}_{p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{(m)})} \left[\log p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{(m)}) \right]$$

=: $Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(m)}) + \text{constant}$

2. **Maximization step:** Maximize $F(q, \theta)$ through

$$\theta^{(m+1)} = \underset{\theta}{\operatorname{arg\,max}} Q(\theta, \theta^{(m)})$$

Expectation-Maximization

1. **Expectation step:** For given parameters $\theta^{(m)}$ the density $q(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \theta^{(m)})$ ensures that $F(q, \theta^{(m)}) = \log p(\mathbf{X}|\theta^{(m)})$. Note that then

$$F(q, \boldsymbol{\theta}) = \mathbb{E}_{p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{(m)})} \left[\log p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) \right] - \mathbb{E}_{p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{(m)})} \left[\log p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{(m)}) \right]$$

=: $Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(m)}) + \text{constant}$

2. **Maximization step:** Maximize $F(q, \theta)$ through

$$\theta^{(m+1)} = \underset{\theta}{\operatorname{arg\,max}} Q(\theta, \theta^{(m)})$$

The incomplete data likelihood increases in each step until convergence to a **local maximum**.

How to use the EM algorithm?

Two step procedure

1. Compute for given $\theta^{(m)}$

$$q(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{(m)}).$$

2. Maximize in 0

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(m)}) = \mathbb{E}_{p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{(m)})} \left[\log p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) \right]$$

Applying EM to the GMM clustering problem (I)

Expectation step

Given **X** and $\theta^{(m)}$

$$p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{(m)}) = \frac{p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}^{(m)})}{p(\mathbf{X}|\boldsymbol{\theta}^{(m)})} = \prod_{l=1}^{n} \frac{\prod_{i=1}^{K} (\pi_{i} N(\mathbf{x}_{l}|\boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}))^{z_{li}}}{\sum_{i=1}^{K} \pi_{j} N(\mathbf{x}_{l}|\boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j})}$$

and recall that

$$\log p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\theta}) = \sum_{l=1}^{n} \sum_{i=1}^{K} z_{li} \left(\log(\boldsymbol{\pi}_{i}) + \log(N(\mathbf{x}_{l} | \boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i})) \right).$$

To compute $O(\theta, \theta^{(m)})$ we only need to compute

$$\mathbb{E}_{p(\mathbf{Z}|\mathbf{X},\theta^{(m)})}[z_{li}] = \frac{\pi_i N(\mathbf{x}_l|\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)}{\sum_{i=1}^K \pi_i N(\mathbf{x}_l|\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)} = \eta_{li}$$

the so-called **responsibility** of class i for having generated the observation \mathbf{x}_l .

17/24

Applying EM to the GMM clustering problem (II)

Maximization step

This results in

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(m)}) = \sum_{l=1}^{n} \sum_{i=1}^{K} \eta_{li} \left(\log(\boldsymbol{\pi}_{\boldsymbol{i}}) + \log(N(\mathbf{x}_{l} | \boldsymbol{\mu}_{\boldsymbol{i}}, \boldsymbol{\Sigma}_{\boldsymbol{i}})) \right)$$

which is maximized by the MLE estimates

$$\mu_{i} = \frac{\sum_{l=1}^{n} \eta_{li} \mathbf{x}_{l}}{\sum_{l=1}^{n} \eta_{li}} \qquad \pi_{i} = \frac{\sum_{l=1}^{n} \eta_{li}}{n}$$

$$\Sigma_{i} = \frac{1}{\sum_{l=1}^{n} \eta_{li}} \sum_{l=1}^{n} \eta_{li} (\mathbf{x}_{l} - \boldsymbol{\mu}_{i}) (\mathbf{x}_{l} - \boldsymbol{\mu}_{i})^{\mathsf{T}}$$

Cluster selection

A final clustering can be selected with

$$C(\mathbf{x}_l) = \argmax_i \eta_{li}$$

or responsibilities can be used as a soft clustering

Cluster selection

A final clustering can be selected with

$$C(\mathbf{x}_l) = \argmax_i \eta_{li}$$

or responsibilities can be used as a soft clustering

Cluster count selection

Model selection criteria for MLE can be used, e.g. minimal **Bayesian Information Criterion (BIC)**

$$BIC(K) = -2 \log(p(\mathbf{X}|\boldsymbol{\theta}, K))$$

$$+ \log(n) \cdot \underbrace{\left[(K-1) + K \cdot p + K \cdot \frac{p(p+1)}{2} \right]}_{\text{number of model parameters}}$$

which is valid for large *n*.

▶ Centering one mixture component on an observation (i.e. $\mu_i = \mathbf{x}_l$ for some i and l) and letting its variance go to zero can drive the likelihood to infinity

- ▶ Centering one mixture component on an observation (i.e. $\mu_i = \mathbf{x}_l$ for some i and l) and letting its variance go to zero can drive the likelihood to infinity
 - 'Outside of scope'-solution:
 Bayesian framework and Inverse-Wishart prior on Σ_i

- ▶ Centering one mixture component on an observation (i.e. $\mu_i = \mathbf{x}_l$ for some i and l) and letting its variance go to zero can drive the likelihood to infinity
 - ightharpoonup 'Outside of scope'-solution: Bayesian framework and Inverse-Wishart prior on Σ_i
 - Initialize Σ_i with large enough variances and potentially restart if bad convergence

- ▶ Centering one mixture component on an observation (i.e. $\mu_i = \mathbf{x}_l$ for some i and l) and letting its variance go to zero can drive the likelihood to infinity
 - 'Outside of scope'-solution:
 Bayesian framework and Inverse-Wishart prior on Σ_i
 - Initialize Σ_i with large enough variances and potentially restart if bad convergence
- ▶ Like k-means, this algorithm is sensitive to starting values

GMMs and **EM** for classification

In QDA $p(\mathbf{x}|i) = N(\mathbf{x}|\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$ capture classes with **elliptic shape**.

In QDA $p(\mathbf{x}|i) = N(\mathbf{x}|\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$ capture classes with **elliptic shape**.

Assume features are described by a GMM, i.e.

$$p(\mathbf{x}|i) = \sum_{m=1}^{M_i} \pi_{im} N(\mathbf{x}|\boldsymbol{\mu}_{im}, \boldsymbol{\Sigma})$$

where

In QDA $p(\mathbf{x}|i) = N(\mathbf{x}|\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$ capture classes with **elliptic shape**.

Assume features are described by a GMM, i.e.

$$p(\mathbf{x}|i) = \sum_{m=1}^{M_i} \pi_{im} N(\mathbf{x}|\boldsymbol{\mu}_{im}, \boldsymbol{\Sigma})$$

where

 $ightharpoonup M_i$ components for class i

In QDA $p(\mathbf{x}|i) = N(\mathbf{x}|\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$ capture classes with **elliptic shape**.

Assume features are described by a GMM, i.e.

$$p(\mathbf{x}|i) = \sum_{m=1}^{M_i} \pi_{im} N(\mathbf{x}|\boldsymbol{\mu}_{im}, \boldsymbol{\Sigma})$$

where

- $ightharpoonup M_i$ components for class i
- \blacktriangleright π_{im} is the probability of mixture component m for class i

In QDA $p(\mathbf{x}|i) = N(\mathbf{x}|\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$ capture classes with **elliptic shape**.

Assume features are described by a GMM, i.e.

$$p(\mathbf{x}|i) = \sum_{m=1}^{M_i} \pi_{im} N(\mathbf{x}|\boldsymbol{\mu}_{im}, \boldsymbol{\Sigma})$$

where

- $ightharpoonup M_i$ components for class i
- \blacktriangleright π_{im} is the probability of mixture component m for class i
- ightharpoonup Covariance matrix Σ is assumed to be constant across mixture components and classes

In QDA $p(\mathbf{x}|i) = N(\mathbf{x}|\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$ capture classes with **elliptic shape**.

Assume features are described by a GMM, i.e.

$$p(\mathbf{x}|i) = \sum_{m=1}^{M_i} \pi_{im} N(\mathbf{x}|\boldsymbol{\mu}_{im}, \boldsymbol{\Sigma})$$

where

- $ightharpoonup M_i$ components for class i
- \blacktriangleright π_{im} is the probability of mixture component m for class i
- lacktriangle Covariance matrix $oldsymbol{\Sigma}$ is assumed to be constant across mixture components and classes

Component membership z_{lm} is a latent variable for the observation (\mathbf{x}_l, i_l) with $z_{lm} = 1$ if \mathbf{x}_l is in component $m \in \{1, \dots, M_{i_l}\}$ and $z_{lm} = 0$ otherwise

Finding the MLE for the mixture DA parameters can be achieved through **Expectation-Maximization (EM)**

Finding the MLE for the mixture DA parameters can be achieved through **Expectation-Maximization (EM)**

1. Initialize θ

Finding the MLE for the mixture DA parameters can be achieved through **Expectation-Maximization (EM)**

- 1. Initialize θ
- 2. **E-Step:** Update

$$\eta_{lm} = \frac{\pi_{i_l m} N(\mathbf{x}_l | \boldsymbol{\mu}_{i_l m}, \boldsymbol{\Sigma})}{\sum_{j=1}^{M_{i_l}} \pi_{i_l j} N(\mathbf{x}_l | \boldsymbol{\mu}_{i_l j}, \boldsymbol{\Sigma})}$$

Finding the MLE for the mixture DA parameters can be achieved through **Expectation-Maximization (EM)**

- 1. Initialize θ
- 2. **E-Step:** Update

$$\eta_{lm} = \frac{\pi_{i_l m} N(\mathbf{x}_l | \boldsymbol{\mu}_{i_l m}, \boldsymbol{\Sigma})}{\sum_{j=1}^{M_{i_l}} \pi_{i_l j} N(\mathbf{x}_l | \boldsymbol{\mu}_{i_l j}, \boldsymbol{\Sigma})}$$

3. M-Step: Update

$$\mu_{im} = \frac{\sum_{i_l=i} \eta_{lm} \mathbf{x}_l}{\sum_{i_l=i} \eta_{lm}} \qquad \pi_{im} = \frac{\sum_{i_l=i} \eta_{lm}}{n_i}$$
$$\mathbf{\Sigma} = \frac{1}{n} \sum_{i=1}^{K} \sum_{i_l=i} \sum_{m=1}^{M_i} \eta_{lm} (\mathbf{x}_l - \boldsymbol{\mu}_{im}) (\mathbf{x}_l - \boldsymbol{\mu}_{im})^{\mathsf{T}}$$

Finding the MLE for the mixture DA parameters can be achieved through Expectation-Maximization (EM)

- 1. Initialize θ
- 2. **E-Step:** Update

$$\eta_{lm} = \frac{\pi_{i_l m} N(\mathbf{x}_l | \boldsymbol{\mu}_{i_l m}, \boldsymbol{\Sigma})}{\sum_{j=1}^{M_{i_l}} \pi_{i_l j} N(\mathbf{x}_l | \boldsymbol{\mu}_{i_l j}, \boldsymbol{\Sigma})}$$

3. M-Step: Update

$$\mu_{im} = \frac{\sum_{i_l=i} \eta_{lm} \mathbf{x}_l}{\sum_{i_l=i} \eta_{lm}} \qquad \pi_{im} = \frac{\sum_{i_l=i} \eta_{lm}}{n_i}$$

$$\mathbf{\Sigma} = \frac{1}{n} \sum_{i=1}^{K} \sum_{j_l=i} \sum_{m=1}^{M_i} \eta_{lm} (\mathbf{x}_l - \boldsymbol{\mu}_{im}) (\mathbf{x}_l - \boldsymbol{\mu}_{im})^{\mathsf{T}}$$

4. Repeat steps 2 and 3 until convergence

MDA example

Take-home message

- ► Hierarchical clustering and its linkage-methods allow for a different non-parametric approach with visual output (dendrogram)
- ► Expectation-Maximization allows us to perform model-based clustering
- ▶ Both clustering and classification methods profit from using Gaussian Mixture Models