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Bottom-up approach to clustering



Two approaches to combinatorial clustering

Top-down approach

» Start with all observations in one group and split them into clusters

» Examples: k-means and k-medoids
Bottom-up approach

» Start with all observations individually and join them together to build
clusters
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A bottom-up approach

Let g be the set of samples in cluster [ at iteration i.

Hierarchical clustering

1. Initialization: Let each observation x; be in its own cluster g) for[ =1,...,n

2. Joining: In step i, join the two clusters gi~* and gi;! that are closest to each
other, resulting in n — i clusters
3. After n — 1 steps all observations are in one big cluster
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A bottom-up approach

Let g be the set of samples in cluster [ at iteration i.
Hierarchical clustering

1. Initialization: Let each observation x; be in its own cluster g) for[ =1,...,n

2. Joining: In step i, join the two clusters gi~* and gi;! that are closest to each
other, resulting in n — i clusters

3. After n — 1 steps all observations are in one big cluster

Questions

» How do we measure distance between clusters?
» How do we get a final clustering with a certain number of clusters?
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Linkage

Cluster-cluster distance is called linkage
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Linkage

Cluster-cluster distance is called linkage

Distance between clusters g and h
Let D € R™" be a distance matrix between samples.

1. Average Linkage:

1
d(g,h) = ——— D
©0 = g &, P

Xm€Eh
2. Single Linkage
d(g, h) = min Dy,
Xm€Eh
3. Complete Linkage
d(g, h) = max Dy,
XmEh 3/2[|



Dendrograms

Hierarchical clustering applied to iris dataset

Complete Linkage

Height

» Leaf colours represent iris type: , and vir

» Height is the distance between clusters

» The tree can be cut at a certain height to achieve a final ¢
mean large increase in within cluster scatter at join

ginica

lustering. Long branches
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Dendrograms for other linkages
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Notes on hierarchical clustering and linkage

Linkage criteria

» Average linkage is most commonly used and encourages average similarity
between all pairs in the two clusters.

» Single linkage tends to create clusters that are quite spread out since it only
considers the closest observations between clusters

» Complete linkage tends to produce ‘tight’ clusters
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Notes on hierarchical clustering and linkage

Linkage criteria

» Average linkage is most commonly used and encourages average similarity
between all pairs in the two clusters.

» Single linkage tends to create clusters that are quite spread out since it only
considers the closest observations between clusters

» Complete linkage tends to produce ‘tight’ clusters

New view on clustering

» Clusters are joined by closeness to each other, not by closeness to some
centre

» e.g. single linkage hierarchical clustering can handle the circle around a disc
example from last lecture
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Model-based clustering



Model-based clustering

» All methods discussed so far were non-parametric clustering methods
based on

1. a distance/dissimilarity measure
2. a construction algorithm
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Model-based clustering

» All methods discussed so far were non-parametric clustering methods
based on

1. a distance/dissimilarity measure
2. a construction algorithm

» Performance depended on choices such as the metric and how to select the
cluster count

» Assuming an underlying theoretical model for the feature space worked well
in classification (LDA, QDA, logistic regression).

Is this transferable to clustering?
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Remember QDA

In Quadratic Discriminant Analysis (QDA) we assumed

p(x]i) = N (x|u;,Z;) and p(i) = 7;
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In Quadratic Discriminant Analysis (QDA) we assumed
p(x]i) = N (x|u;,Z;) and p(i) = 7;
This can be written as a Gaussian Mixture Model (GMM) for x where

K K
p(x) = D, p(DpX|i) = Y N (X|p;, Z¢)
i=1 i=1

QDA used that the classes i; and feature vectors x; of the observations were
known to calculate 7;, u; and ;.

8/24



Remember QDA

In Quadratic Discriminant Analysis (QDA) we assumed
p(x]i) = N (x|u;,Z;) and p(i) = 7;
This can be written as a Gaussian Mixture Model (GMM) for x where
K K
p(x) = D, p(DpX|i) = Y N (X|p;, Z¢)
i=1 i=1

QDA used that the classes i; and feature vectors x; of the observations were
known to calculate 7;, u; and ;.

What if we only know the features x;?
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Maximum Likelihood for GMMs?

The log-likelihood for the data X € R"*? and all unknowns

6= (7[1’”1’21’ ’nK’”K’ZK)

n K
log p(X|6) = D log (Z TN (Xq|pti, z31'))
=1 i=1
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The log-likelihood for the data X € R"*? and all unknowns

6= (7[1’”1’21’ ’nK’”K’ZK)

n K
log p(X|6) = D log (Z TN (Xq|pti, z31'))
=1 i=1

Taking the gradient (with chain-rule) and solving for u; gives

n
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Maximum Likelihood for GMMs?

The log-likelihood for the data X € R"*? and all unknowns
0 = (w1, 1, 2y, .., T, Mi, 2 )
n K
log p(X[6) = g{ log (; 7N (X |1, z31'))
Taking the gradient (with chain-rule) and solving for u; gives

n
_ X . Y.
_ Zl_nl NiX) where 7y = K”lN(Xlelu i)
V=1 Ml ¥ 1 NG|, Z)

i

Note: There is a non-linear cyclic dependence between 7;; and ;.
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Expectation-Maximization for GMMs

Finding the MLE for parameters 6 in GMMs results in an iterative process called
Expectation-Maximization (EM)
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2. E-Step: Update
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Expectation-Maximization for GMMs

Finding the MLE for parameters 6 in GMMs results in an iterative process called

Expectation-Maximization (EM)

1. Initialize 6
2. E-Step: Update

3. M-Step: Update

i

%

TN |1, Z5)
K
Zj:l ﬂjN(Xllﬂj’ z])

i =

n n
lel MiXq lel Mi
— 7Ti _ e

Zl:l Nl n
1 n

7 (X — )X — ;)7
21=1 i 1=1
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Expectation-Maximization for GMMs

Finding the MLE for parameters 6 in GMMs results in an iterative process called

Expectation-Maximization (EM)

1. Initialize 6
2. E-Step: Update
TN |1, Z5)

K
Zj:l ﬂjN(Xllﬂj’ Zj)

i =

3. M-Step: Update
n n
_ :E:lzl X . :E:lzl Nl
===l =2l
Zl:l Nl n
1 n
Z?ﬂ i 1=1
4. Repeat steps 2 and 3 until convergence

i

% (X — )X — ;)7
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GMM clustering example

» Yellow and green clusters share a
covariance matrix

» The blue cluster has a different one

» GMM clustering on only the data
points without knowledge of the
class labels recovers the covariance
structures and clusters
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Why does Expectation-Maximization
work?




Likelihood of the complete data

» Assume that the classes i; are known and code them as z;; = 1 if i; = j and
z;; = 0 otherwise. Collect them in Z € R"™*X,
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z;; = 0 otherwise. Collect them in Z € R"™*X,

» (X,Z) are called the complete data, and incomplete data when only X is
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» The class assignments Z are called latent variables

» Complete data likelihood

n K

log p(X,Z|6) = D > z; (log(;) + log(N(x s, Z;)))
I=1i=1
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Likelihood of the complete data

» Assume that the classes i; are known and code them as z;; = 1 if i; = j and
z;; = 0 otherwise. Collect them in Z € R"™*X,
» (X,Z) are called the complete data, and incomplete data when only X is
observed
» The class assignments Z are called latent variables
» Complete data likelihood
n K

log p(X,Z|6) = D > z; (log(;) + log(N(x s, Z;)))
I=1i=1

and the parameters in 0 are easy to estimate (QDA).
» Incomplete data likelihood

n K
log p(X|6) = D log (Z TN (X |, zi))
=

=1 i=1 12/24



Decomposing the incomplete data likelihood

» For known Z
p(X,Z|0)

X|0) = B2
PXI) = 7%, )
log p(X|6) = log p(X, Z|0) — log p(Z|X, 6)

is a decomposition of the log-likelihood for X given 6

i.e.
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Decomposing the incomplete data likelihood

» For known Z
p(X,Z|0)

p(X|0) = ZIX.0)’
log p(X|6) = log p(X, Z|0) — log p(Z|X, 6)
is a decomposition of the log-likelihood for X given 6
» For any density q(Z) it holds that

i.e.

p(X.Z|6) . p(ZIX.6)

log p(X|6) = log @) og @)
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Decomposing the incomplete data likelihood

» For known Z X.Z/6)

D(X,

X|0) = ——=,
A )

log p(X|6) = log p(X, Z|6) — log p(Z|X, 6)

is a decomposition of the log-likelihood for X given 6
» For any density q(Z) it holds that

i.e.

pX2ZI0) | p(ZIX.0)
q(Z) q(Z)
» Average over Z according to the density q(Z)
_ pX,Z|0) p(ZX,0)
log(p(X[0)) = Ey(z) [log W] A [log 42
=1 F(q,6) + KL(ql[p(-|X, ©))

where KL(q||p(-|X, 8)) is called the Kullback-Leibler (KL) divergence of q(Z)
and p(-|X, ).

log p(X|6) = log
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Decomposing the incomplete data likelihood (II)

It can be shown (using Jensen’s inequality) that

P(Z|X, 9)] >0

KL(ql|p(-X. 6)) = — Eqcz) [log o
with equality if q(Z) = p(Z|X, 6).

This implies that
log p(X|0) > F(q, 6)

is a lower bound which is tight (i.e. equality holds) if q(Z) = p(Z|X, 6).

This gives us a recipe on how to choose q(Z).
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Expectation-Maximization

1. Expectation step: For given parameters 6™ the density q(Z) = p(Z|X, 6™)
ensures that F(g, 6"™) = log p(X|6). Note that then

=: Q(6, 8/) + constant

2. Maximization step: Maximize F(q, ©) through

6"+ = arg max Q(6, 6U™)
0
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Expectation-Maximization

1. Expectation step: For given parameters 6™ the density q(Z) = p(Z|X, 6™)
ensures that F(g, 6"™) = log p(X|6). Note that then

=: Q(6, 8/) + constant

2. Maximization step: Maximize F(q, ©) through

6"+ = arg max Q(6, 6U™)
0

The incomplete data likelihood increases in each step until convergence to a
local maximum.
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How to use the EM algorithm?

Two step procedure

1. Compute for given 6™
q(Z) = p(Z|X,6™).

2. Maximize in 6
Q(6,6"™) = Ezyx otmy [log p(X, Z|6)]
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Applying EM to the GMM clustering problem (I)

Expectation step
Given X and 6™

K .
p(X,Z|6™) f[ Lo, NG|y, Zp))%

p(Z[X,60™) = = K

and recall that
n K
log p(X,Z|0) = IZ:I Z;Zli (log(7;) + log(N(xq|1;, Z;))) -
SIN=
To compute Q(6,6) we only need to compute
NG lpi, Z)
3o NG, E)
the so-called responsibility of class i for having generated the observation x;.  17/24

[Ep(z|x,a(M))[Zli] =



Applying EM to the GMM clustering problem (lI)

Maximization step

This results in

n K

Q6,6 = 3 > i (log(7;) + log(N(xy i, 1))

I=1i=1

which is maximized by the MLE estimates

n n
_ 2 X S 211 i
- n i— —
Zl:l i i
1 n

= an
Zl:l i 1=1

i

% (X — ) — p;) 7
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Cluster selection

A final clustering can be selected with

C(x)) = argmax7y;
i

or responsibilities can be used as a soft clustering

19/24



Cluster selection

A final clustering can be selected with

C(x)) = argmax7y;
i
or responsibilities can be used as a soft clustering

Cluster count selection
Model selection criteria for MLE can be used, e.g. minimal Bayesian Information
Criterion (BIC)

BIC(K) = — 2log(p(X|6, K))

p(p + 1)]
2

number of model parameters

+log(n)- [(K—1)+K-p+K-

which is valid for large n. 19/24



Caveat with MLE for GMMs

» Centering one mixture component on an observation (i.e. u; = x; for some i
and [) and letting its variance go to zero can drive the likelihood to infinity
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Caveat with MLE for GMMs

» Centering one mixture component on an observation (i.e. u; = x; for some i
and [) and letting its variance go to zero can drive the likelihood to infinity
» ‘Outside of scope’-solution:
Bayesian framework and Inverse-Wishart prior on %;
» Initialize Z; with large enough variances and potentially restart if bad
convergence

» Like k-means, this algorithm is sensitive to starting values
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GMMs and EM for classification




GMM for classification

In QDA p(x]i) = N(x|u;, Z;) capture classes with elliptic shape.
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GMM for classification

In QDA p(x]i) = N(x|u;, Z;) capture classes with elliptic shape.

Assume features are described by a GMM, i.e.
M;
pxli) = 3 TimNX|pim, E)

m=1

where

» M; components for class i

» 7;, IS the probability of mixture component m for class i

» Covariance matrix X is assumed to be constant across mixture components
and classes

Component membership z;, is a latent variable for the observation (x;, i;) with
Zim = 1 if x; is in component m € {1, ...,M; } and z,,,, = 0 otherwise
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Mixture DA

Finding the MLE for the mixture DA parameters can be achieved through
Expectation-Maximization (EM)
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1. Initialize 6
2. E-Step: Update
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Mixture DA

Finding the MLE for the mixture DA parameters can be achieved through
Expectation-Maximization (EM)

1. Initialize 6
2. E-Step: Update
ﬂilmN(Xlll'LilWUz)

nlm = Mi
X j=1 i Ny, Z)
3. M-Step: Update
Zil:inlmxl Zil:inlm
Fim =< Ty = ——
im ZiFi Nim im n;
1K M;
Z= %020 20 Mm% = M)~ i)
i=lij=im=1

4. Repeat steps 2 and 3 until convergence 22/24



MDA example

LDA Decision Boundaries QDA Decision Boundaries MDA Decision Boundaries
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Take-home message

» Hierarchical clustering and its linkage-methods allow for a different
non-parametric approach with visual output (dendrogram)

» Expectation-Maximization allows us to perform model-based clustering

» Both clustering and classification methods profit from using Gaussian
Mixture Models
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