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Abstract

Finite mixture modeling provides a framework for cluster analysis based on parsimonious 

Gaussian mixture models. Variable or feature selection is of particular importance in situations 

where only a subset of the available variables provide clustering information. This enables the 

selection of a more parsimonious model, yielding more efficient estimates, a clearer interpretation 

and, often, improved clustering partitions. This paper describes the R package clustvarsel which 

performs subset selection for model-based clustering. An improved version of the Raftery and 

Dean (2006) methodology is implemented in the new release of the package to find the (locally) 

optimal subset of variables with group/cluster information in a dataset. Search over the solution 

space is performed using either a step-wise greedy search or a headlong algorithm. Adjustments 

for speeding up these algorithms are discussed, as well as a parallel implementation of the 

stepwise search. Usage of the package is presented through the discussion of several data 

examples.
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1. Introduction

Cluster analysis is the search for a priori unknown group structure in data. Model-based 

clustering is increasingly becoming one of the most popular cluster analysis methods. 

Model-based clustering is based on finite mixture models (McLachlan and Peel 2000), with 

each component density usually representing a cluster. For continuous data, Gaussian 

components are usually used to model clusters. Model-based clustering as implemented in 

the R package mclust (Fraley, Raftery, Murphy, and Scrucca 2012; Scrucca, Fop, Murphy, 

and Raftery 2016) allows for automatic selection of the number of components, and 

selection of parsimonious covariance structures.

In cluster analysis, as in classification or other supervised learning tasks, the inclusion of 

noise variables, i.e., features without useful group information, can severely degrade the 

final results. In fact, the presence of noise variables can negatively impact both the 
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estimation of the number of clusters in the data and the recovery of those groups. The new 

release of R package clustvarsel (version ≥ 2.0; Dean, Raftery, and Scrucca 2017) 

implements a wrapper method for automatic variable selection in model-based clustering (as 

implemented in the mclust package). Thus, the addition of the clustvarsel package allows 

for automatic variable selection to be included in the estimation process.

Raftery and Dean (2006) introduced a stepwise variable selection methodology tailored to 

model-based clustering. Variables designated as noise variables in this process were not 

required to be independent of the clustering variables. However, noise variables could be 

conditionally independent of the clustering, but still linearly dependent on the clustering 

variables. This linear dependency was modeled using linear regression. An earlier version of 

clustvarsel (version 1) implemented this methodology. Dean (2006) is a vignette describing 

use of this earlier version.

Maugis, Celeux, and Martin-Magniette (2009a, b) extended the framework of Raftery and 

Dean (2006) by allowing the noise variables to depend on a (possibly null) subset of the 

clustering variables via stepwise variable selection in the linear regression. This allows for a 

more parsimonious modeling of the relationship between the noise variables and the 

clustering variables. For more details on the variable selection framework see Section 2.

Software packages related to subset selection in clustering are SelvarClust (Dia, Martin-

Magniette, and Maugis 2009a) and SelvarClustIndep (Dia, Martin-Magniette, and Maugis 

2009b), which implement in C++ the above mentioned approaches. The R package 

SelvarMix (Sedki, Celeux, and Maugis-Rabusseau 2017) provides a method based on the 

Maugis et al. (2009b) approach preceded by a step in which the variables are ranked using a 

lasso-like procedure. The R package vscc (Andrews and McNicholas 2013) implements the 

methodology proposed by Andrews and McNicholas (2014) which aims at finding the 

variables that simultaneously minimize the within-group variance and maximize the 

between-group variance. Finally, sparse hierarchical clustering and sparse k-means 

clustering are included in the R package sparcl (Witten and Tibshirani 2013) according to 

the proposal of Witten and Tibshirani (2010).

The paper is organized as follows: Section 3 introduces the main function in the clustvarsel 
package, and discusses the options for the available arguments. In Section 4, several 

examples are presented by applying the methodology to both synthetic and real world 

datasets. Algorithmic speedups are discussed in Section 5, including a description of a 

parallel implementation of the stepwise greedy search. The paper concludes with some 

discussion and final remarks in Section 6.

2. Methodology

Model-based clustering assumes that the observed data are generated from a mixture of G 
components, each representing the probability distribution for a different group or cluster 

(McLachlan and Peel 2000; Fraley and Raftery 2002). For continuous data, the density of 

each mixture component is often described by the multivariate Gaussian distribution. Thus, 

the general form of a Gaussian finite mixture model is
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f (x) = ∑
g = 1

G
πgϕ(x | μg, Σg),

where πg represents the mixing probabilities, so that πg > 0 and ∑g = 1
G πg = 1, ϕ(·) is the 

multivariate Gaussian density with parameters (μg, Σg) (g = 1, …, G). Clusters are 

ellipsoidal, centered at the mean vector μg, with other geometric features, such as volume, 

shape and orientation, determined by σg. Parsimonious parameterization of covariance 

matrices is available through the eigenvalue decomposition Σg = λgDgAgDg
┬, where λg is a 

scalar controlling the volume of the ellipsoid, Ag is a diagonal matrix specifying the shape of 

the density contours, and Dg is an orthogonal matrix which determines the orientation of the 

corresponding ellipsoid (Banfield and Raftery 1993; Celeux and Govaert 1995). Fraley et al. 
(2012, Table 1) report some parameterization of within-group covariance matrices available 

in the R package mclust, and the corresponding geometric characteristics.

Raftery and Dean (2006) discussed the problem of variable selection for model-based 

clustering by recasting the problem as a model selection procedure. Their proposal is based 

on the use of the Bayesian information criterion (BIC) to approximate Bayes factors to 

compare mixture models fitted on nested subsets of variables. A generalization of their 

approach was later discussed by Maugis et al. (2009a, b).

Let us suppose that the set of available variables, χ, is partitioned into three disjoint parts: 

the set of previously selected variables, χclust, the variable under consideration for inclusion 

or exclusion from the active set, Xi, and the set of the remaining variables, χother ≡ χ \ 

{χclust ∪ Xi}.

Raftery and Dean (2006) showed that the inclusion (or exclusion) of variables can be 

assessed using the following BIC difference:

BICdiff = BICclust(χclust, Xi) − BICnot clust(χclust, Xi), (1)

where BICclust(χclust, Xi) is the BIC value for the “best” clustering mixture model (i.e., 

assuming G ≥ 2) fitted using the features set {χclust ∪ Xi}, whereas BICnot clust(χclust, Xi) is 

the BIC value for no clustering for the same set of variables. The latter can be written as

BICnot clust(χclust, Xi) = BICclust(χclust) + BICreg(Xi | χclust), (2)

i.e., the BIC value for the “best” clustering model fitted using the set χclust plus the BIC 

value for the regression of the candidate variable Xi on the variables included in the set 

χclust. The difference in BIC score in Equation 1 is an approximation of the log of the Bayes 

factor comparing the model where the variable under consideration, Xi, is a clustering 
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variable with the model where the variable is conditionally independent of the clustering. 

Large, positive values of BICdiff can be taken as an evidence that variable Xi is useful for 

clustering.

In all clustering models, the “best” model is identified with respect to the number of mixture 

components (assuming G ≥ 2) and to model parameterization. In the linear regression model 

term, Xi can depend on all the variables in χclust, a subset of them, or none (complete 

independence). Thus, following the proposal of Maugis et al. (2009a), the regression on all 

the already selected clustering variables is replaced by regression on a subset of them, 

chosen by a stepwise method. Finally, note that in both Equations 1 and 2 the set of 

remaining variables, χother, plays no role.

As described by Raftery and Dean (2006) and Dean (2006), practical implementation of the 

above methodology requires the use of an algorithm for checking single variables for 

inclusion/exclusion from the set of selected clustering variables. The package clustvarsel 
implements two different algorithms: a stepwise greedy search algorithm, and a headlong 

algorithm. Both are based on the concept of a current set of selected clustering variables that 

expands or contracts at each step of the algorithm. They both also alternate between 

inclusion and exclusion steps, stopping when neither changes the current set. They are thus 

algorithms that actually exactly, rather than approximately to within a tolerance.

At each inclusion step, the stepwise greedy search algorithm considers each variable not in 

the current set of selected clustering variables in turn, and assesses the evidence in favor of 

adding it to the current set. If the evidence is against inclusion for all the variables not in the 

current set, no change is made. Otherwise, the variable for which the evidence in favor of 

inclusion is highest is added to the current set. Similarly, at each exclusion step, the 

algorithm assesses the evidence for removal of each variable in the current set, and removes 

the variable for which the evidence of removal is highest, provided that this evidence is 

positive.

The stepwise algorithm can be implemented in a forward/backward fashion, i.e., starting 

from the empty set of clustering variable and then continuing to add or remove features until 

there is no evidence of further clustering variables. It can also be implemented in a 

backward/forward fashion, i.e., starting from the full set of features as clustering variables 

and then continuing to remove or add features until there is no evidence of further clustering 

variables.

The basic idea is similar to stepwise regression and could in principle suffer from the 

instabilities of stepwise regression discussed by Miller (2002). However, we have not 

observed this in any of the numerous simulations we have carried out and examples we have 

analyzed with the method.

Unlike the stepwise greedy algorithm, at each inclusion step the headlong search algorithm 

does not check all the variables not in the current set. Instead it checks the variables one at a 

time until a variable is found for which the evidence in favor of inclusion exceeds a 

prespecified threshold. The default threshold is 0, in which case the inclusion step ends 

whenever a variable is found with positive evidence for inclusion. Any variable for which 
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the evidence for inclusion is below a prespecified level (the default is a BIC difference of 

−10) is removed from consideration for the rest of the algorithm. This allows variables that 

are likely to be irrelevant to be removed early in the algorithm.

Similarly, at each exclusion step, variables are checked one at a time until a variable is found 

for which the evidence for clustering versus not clustering is below the threshold, at which 

point that variable is removed and the exclusion step ends. See Badsberg (1992) for further 

details about the headlong algorithm.

The headlong algorithm involves fewer calculations than the stepwise greedy algorithm, and 

so is faster, sometimes much faster. The flip side is that it is a greedier algorithm, and so it 

may find a less good solution.

3. The R package clustvarsel

The clustvarsel package can be used to find the (locally) optimal subset of variables with 

group/cluster information in a dataset with continuous variables. In this section, usage of the 

main function clustvarsel and its arguments is described.

The clustvarsel package depends on other packages available on CRAN for model fitting 

(mclust, Fraley, Raftery, and Scrucca 2017), or for providing some facilities, such as paral-

lelization (parallel, R Core Team 2017; doParallel, Microsoft Corporation and Weston 

2017; foreach, Revolution Analytics and Weston 2015a; iterators, Revolution Analytics and 

Weston 2015b), and subset selection in regression models (BMA, Raftery, Hoeting, 

Volinsky, Painter, and Yeung 2017). By loading the package as usual with 

library( “clustvarsel”), it will also take care of making all the other packages 

available for the current session.

Once the clustvarsel package has been loaded, the main function a user needs to invoke is 

the following:

clustvarsel(data, G = 1:9, search = c(“greedy”, “headlong”),

  direction = c(“forward”, “backward”), emModels1 = c(“E”, “V”),

  emModels2 = mclust.options(“emModelNames”), samp = FALSE,

  sampsize = round(nrow(data) / 2), hcModel = “VVV”, allow.EEE = TRUE,

  forcetwo = TRUE, BIC.diff = 0, BIC.upper = 0, BIC.lower = -10,

  itermax = 100, parallel = FALSE, verbose = interactive())

The available arguments are:

data A numeric matrix or data frame where rows correspond to observations and columns 

correspond to variables. Categorical variables are not allowed.
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G An integer vector specifying the numbers of mixture components (clusters) for which the 

BIC is to be calculated. The default is G = 1:9.

search A character vector indicating whether a “greedy” or, potentially quicker but less 

optimal, “headlong” algorithm is to be used in the search for clustering variables.

direction A character vector indicating the type of search: “forward” starts from the 

empty model and at each step of the algorithm adds/removes a variable until the stopping 

criterion is satisfied; “backward” starts from the model with all the available variables and 

at each step of the algorithm removes/adds a variable until the stopping criterion is satisfied. 

For the “headlong” search only the “forward” algorithm is available.

emModels1 A vector of character strings indicating the models to be fitted in the 

expectation maximization (EM) phase of univariate clustering. Possible models are “E” and 

“V”, described in help(mclustModelNames).

emModels2 A vector of character strings indicating the models to be fitted in the EM phase 

of multivariate clustering. Possible models are described in help(mclustModelNames).

samp A logical value indicating whether or not a subset of observations should be used in 

the hierarchical clustering phase used to get starting values for the EM algorithm.

sampsize The number of observations to be used in the hierarchical clustering subset. By 

default, a random sample of approximately half of the sample size is used.

hcModel A character string specifying the model to be used in hierarchical clustering for 

choosing the starting values used by the EM algorithm. By default, the unconstrained “VVV” 

covariance structure is used.

allow.EEE A logical value indicating whether a new clustering will be run with equal 

within-cluster covariance for hierarchical clustering to get starting values, if the clusterings 

with variable within-cluster covariance for hierarchical clustering do not produce any viable 

BIC values.

forcetwo A logical value indicating whether at least two variables will be forced to be 

selected initially, regardless of whether BIC evidence suggests bivariate clustering or not.

BIC.diff A numerical value indicating the minimum BIC difference between clustering 

and no clustering used to accept the inclusion of a variable in the set of clustering variables 

in a forward step of the greedy search algorithm. Furthermore, minus BIC.diff is used to 

accept the exclusion of a selected variable from the set of clustering variable in a backward 

step of the greedy search algorithm. Default is 0.

BIC.upper A numerical value indicating the minimum BIC difference between clustering 

and no clustering used to select a clustering variable in the headlong search. Default is 0.
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BIC.lower A numerical value indicating the level of BIC difference between clustering and 

no clustering below which a variable will be removed from consideration in the headlong 

algorithm. Default is −10.

itermax An integer value giving the maximum number of iterations (of addition and 

removal steps) the selected algorithm is allowed to run for.

parallel This argument allows to specify if the selected “greedy” algorithm should be 

run sequentially or in parallel. For a single machine with multiple cores, the possible values 

are:

i. a logical value specifying if parallel computing should be used ( TRUE) or not 

( FALSE, default) for running the algorithm;

ii. a numerical value which gives the number of cores to employ (by default, this is 

obtained from function detectcores in the parallel package);

iii. a character string specifying the type of parallelization to use. The latter depends 

on the operating system: on Windows only “snow” type functionality is 

available, whereas on Unix/Linux/Mac OS X both “snow” and “multicore” 

(default) functionalities are available.

Options (ii) and (iii) imply that the search is performed in parallel, and at the end of the 

search the cluster is automatically stopped by shutting down the workers. If a cluster of 

multiple machines is available, the algorithm can be run in parallel using all, or a subset of, 

the cores available to the machines belonging to the cluster. However, this option requires 

more work from the user, who needs to set up and register a parallel back end. In this case, 

the cluster must be explicitly stopped using the function stopCluster from the parallel 
package. By default the algorithm is run sequentially.

verbose A logical value indicating if information should be provided at each step of the 

algorithm. By default is set to TRUE during interactive sessions, and FALSE otherwise.

A basic clustvarsel function call needs to input a matrix or data frame containing the 

data to analyze. Fine tuning is possible by specifying the arguments described above. The 

following section presents some examples of its usage in practice.

We conclude this section by noting that the initialization of EM is often crucial in fitting 

mixture models because the likelihood surface tends to have multiple modes. In mclust the 

EM algorithm is initialized using the partitions obtained from model-based hierarchical 

agglomerative clustering (MBHAC, Banfield and Raftery 1993). MBHAC is convenient 

because the underlying probabilistic model is shared by both the initialization step and the 

model fitting step. Furthermore, MBHAC is computationally advantageous because a single 

run provides the basis for initializing the EM algorithm for any number of components and 

covariance decompositions. However, problems may arise in presence of coarse data (i.e., 

discrete data or rounded continuous data) due to the presence of ties. In certain 

circumstances the final EM solution may even depend on the ordering of the variables. 

Scrucca and Raftery (2015) have recently proposed a simple approach to overcome these 
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drawbacks based on data projection via a suitable transformation before applying MBHAC. 

Once an initial partition is obtained, the EM algorithm is run as usual on the original 

variables. Thus, by default, clustvarsel employs a scaled singular values decomposition 

(SVD) transformation by setting mclust.options(hcUse = “SVD”). This often yields 

an improved model likelihood and, of particular importance in subset selection, removes any 

variables ordering effect.

4. Examples

In this section we present some data analysis examples based on simulated data and on well-

known real datasets. All calculations, and in particular the system times reported, have been 

carried out on a iMac with 4 cores i5 Intel CPU running at 2.8 GHz and with 16GB of RAM, 

unless explicitly indicated otherwise.

4.1. Simulated data

We consider some of the synthetic data examples described in Maugis et al. (2009a). 

Samples were simulated for a 10-dimensional feature vector where only the first two 

variables provide clustering information. These were generated from a mixture of four 

Gaussian distributions X[1:2] ∼ N(μk, I2) with μ1 = (−2, −2), μ2 = (−2, 2), μ3 = −μ2, μ4 = 

−μ1, and mixing probabilities π = (0.3, 0.2, 0.3, 0.2). The remaining eight variables were 

simulated according to the model X[3:10] = X[1:2]β + ε, where ε ∼ N(0, Ω). Different settings 

for β and Ω define seven different scenarios (see Table 1 in Maugis et al. 2009a). These 

range from independence of clustering variables on the other features (model 1 and 2) to 

cases of increasing degree of dependence of the irrelevant variables on the clustering ones 

(model 3 to 7). In the following, we focus only on some of the scenarios. For ease of 

reading, the values of the parameters for such scenarios are reported in Table 1.

The simulation results were evaluated using the following criteria:

• Variable selection error rate (VSER) to assess variable selection performance. 

VSER is defined as the ratio of the number of errors in selecting (or not 

selecting) variables to the total number of variables in the set. A perfect recovery 

of clustering variables gives VSER = 0, while VSER can be no greater than 1.

• Adjusted Rand index (ARI, Hubert and Arabie 1985) to measure classification 
accuracy. A perfect classification gives ARI = 1, whereas ARI = 0 for a random 

classification.

Table 2 shows the results from a simulation study for the above synthetic data using sample 

sizes n = 200 and n = 1000. The methods compared are MCLUST, the best Gaussian mixture 

model (GMM) using the full set of variables, CLUSTVARSEL[fwd] and 

CLUSTVARSEL[bkw], the best GMM using the subset of relevant clustering variables 

selected by, respectively, the forward/backward and backward/forward greedy search, and 

SPARSEKMEANS, a sparse version of k-means algorithm proposed by Witten and Tibshirani 

(2010) and implemented in the R package sparcl (Witten and Tibshirani 2013). Because the 

last method needs the number of clusters to be fixed in advance, we also included in the 

comparison versions of the methods based on GMMs with the number of components fixed 
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at the true number of clusters, i.e., G = 4. Finally, note that true subset size is 2, so the 

optimal VSER should be 0, and the best average ARI value attainable, using the true 

clustering variables and fixed G = 4 components, is about 0.88.

Compared to the performance of CLUSTVARSEL reported in Table 1 of Maugis et al. (2009a), 

the new version of the algorithm is able to correctly discard irrelevant variables, both when 

they are independent of the clustering ones and when they are correlated.

When G is fixed at the true number of clusters, MCLUST gives slightly less accurate results 

for n = 200, except in the case of complete independence (scenario 1). CLUSTVARSEL 

provides equivalent accuracy, both if a forward/backward search or a backward/forward 

search is used. SPARSEKMEANS shows results equivalent to greedy search in term of 

accuracy, but it tends to select (i.e., assigns weights different from zero to) too many 

variables. Consequently, the VSER of SPARSEKMEANS is always worse than that of 

CLUSTVARSEL.

When G is unknown, MCLUST often provides inaccurate clustering, in particular when n = 

200. On the contrary, CLUSTVARSEL is generally able to select the true clustering variables 

(i.e., VSER is near or exactly zero), and also provides very accurate clustering (i.e., ARI is 

close to 0.88). The only exceptions are scenarios 1 and 4, for the backward/forward search 

when n = 200. In these cases the number of selected variables is slightly larger, which in turn 

causes a small degradation of clustering accuracy. However, for n = 1,000 the forward/

backward and backward/forward greedy searches are equivalent.

4.2. Crabs data

The crabs dataset in the MASS package contains five morphological measurements on 200 

specimens of Leptograpsus variegatus crabs recorded on the shore in Western Australia 

(Campbell and Mahon 1974). Crabs are classified according to their color (blue and orange) 

and sex, giving four groups. Fifty specimens are available for each combination of color and 

sex.

R > data(“crabs”, package = “MASS”)

R> X <- crabs[, 4:8]

R> Class <- with(crabs, paste(sp, sex, sep = “|”))

R> table(Class)

Class

B|F B|M O|F O|M

50 50 50 50
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First we look at the result obtained using the function Mclust from the mclust package, 

with the best model selected by BIC for clustering on all the variables, allowing all possible 

parameterizations and the number of groups to range over 1 to 5:

R> mod1 <- Mclust(X, G = 1:5)

R> summary(mod1)

----------------------------------------------------

Gaussian finite mixture model fitted by EM algorithm

----------------------------------------------------

Mclust EEV (ellipsoidal, equal volume and shape) model with 4 components:

log.likelihood n df BIC ICL

-1241.006 200 68 -2842.298 -2854.29

Clustering table:

1 2 3 4

60 55 39 46

The estimated maximum a posteriori (MAP) classification is obtained from 

mod1$classification, so a table comparing the estimated and the true classifications, 

the corresponding misclassification error rate and the adjusted Rand index (ARI), can be 

obtained as follows:

R> table(Class, mod1$classification)

Class 1 2 3 4

B|F 49 0 0 1

B|M 11 0 39 0

O|F 0 5 0 45

O|M 0 50 0 0

R> classError(Class, mod1$classification)$errorRate

[1] 0.085

R> adjustedRandIndex(Class, mod1$classification)

[1] 0.793786
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The algorithm for selecting the variables that are useful for clustering can be run with the 

following code:

R> (out <- clustvarsel(X, G = 1:5))

------------------------------------------------------

Variable selection for Gaussian model-based clustering

Stepwise (forward/backward) greedy search

------------------------------------------------------

Variable proposed Type of step BICclust Model G BICdiff Decision

CW Add -1408.710 E 2 -6.21775 Accepted

RW Add -1908.964 EEV 2 127.38583 Accepted

FL Add -2357.252 EEV 4 81.24626 Accepted

FL Remove -1908.964 EEV 2 81.24626 Rejected

BD Add -2609.777 EEV 4 56.08094 Accepted

BD Remove -2357.252 EEV 4 56.08094 Rejected

CL Add -2842.298 EEV 4 -31.07119 Rejected

BD Remove -2357.252 EEV 4 56.08094 Rejected

Selected subset: CW, RW, FL, BD

By default, a greedy forward/backward search is used. The printed output shows the trace of 

the algorithm: at each step the most important variable is considered ( Variable 

proposed) for addition or deletion ( Type of step) from the set of active clustering 

variables. The column BICclust contains the BIC values for the “best” clustering model 

(i.e., the first term in the right hand side of Equation 1), followed by the corresponding 

model abbreviation ( Model) and number of mixture components ( G). The last two columns 

report, respectively, the criterion in Equation 1 ( BICdiff) and the final decision 

( Decision), which can be either to accept or reject the proposal.

In this example, the final subset contains four out of five morphological features:

R> out$subset

CW RW FL BD

4 2 1 5

The same subset is also obtained by using a backward/forward greedy search:

R> clustvarsel(X, G = 1:5, direction = “backward”)

------------------------------------------------------
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Variable selection for Gaussian model-based clustering

Stepwise (backward/forward) greedy search

------------------------------------------------------

Variable proposed Type of step BICclust Model G BICdiff Decision

CL Remove -2609.777 EEV 4 -31.07119 Accepted

BD Remove -2357.252 EEV 4 56.08094 Rejected

Selected subset: FL, RW, CW, BD

The identified subset can be used for fitting the final clustering model as follows:

R> Xs <- X[, out$subset]

R> mod2 <- Mclust(Xs, G = 1:5)

R> summary(mod2)

----------------------------------------------------

Gaussian finite mixture model fitted by EM algorithm

----------------------------------------------------

Mclust EEV (ellipsoidal, equal volume and shape) model with 4 components:

log.likelihood n df BIC ICL

-1180.378 200 47 -2609.777 -2624.892

Clustering table:

1 2 3 4

53 60 40 47

The accuracy of the clustering obtained on the selected subset of variables is obtained as:

R> table(Class, mod2$classification)

Class 1 2 3 4

B|F 0 50 0 0

B|M 0 10 40 0

O|F 3 0 0 47

O|M 50 0 0 0
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R> classError(Class, mod2$classification)$errorRate

[1] 0.065

R> adjustedRandIndex(Class, mod2$classification)

[1] 0.8399679

Finally, to get an idea of system times required by the subset selection procedure, the 

following code can be used (note that elapsed times are expressed in seconds):

R> library(“rbenchmark”)

R> benchmark(clustvarsel(X, G = 1:5, verbose = FALSE),

+clustvarsel(X, G = 1:5, direction = “backward”, verbose = FALSE),

+columns = c(“test”, “elapsed”), order = NULL, replications = 1)

test Elapsed

1 clustvarsel(X, G = 1:5, verbose = FALSE) 2.998

2 clustvarsel(X, G = 1:5, direction = “backward”, 
verbose = FALSE)

1.551

4.3. Coffee data

Data on twelve chemical constituents of coffee for 43 samples were collected from 29 

countries around the world (Streuli 1973). Each coffee sample is either of the Arabica or 

Robusta variety. The dataset is available in the R package pgmm (McNicholas, ElSherbiny, 

McDaid, and Murphy 2015).

R> data(“coffee”, package = “pgmm”)

R> X <- as.matrix(coffee[, 3:14])

R> Class <- factor(coffee$Variety, levels = 1:2,

+  labels = c(“Arabica”, “Robusta”))

R> table(Class)

Class

Arabica Robusta

36 7

R> mod1 <- Mclust(X)
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R> summary(mod1)

----------------------------------------------------

Gaussian finite mixture model fitted by EM algorithm

----------------------------------------------------

Mclust VEI (diagonal, equal shape) model with 3 components:

log.likelihood n df BIC ICL

-392.9397 43 52 -981.4619 -981.6379

Clustering table:

1 2 3

22 14 7

Model-based clustering applied to this dataset selects the VEI model with 3 components. 

The clustering table and the corresponding adjusted Rand index (ARI) are the following:

R> table(Class, mod1$classification)

Class 1 2 3

 Arabica 22 14 0

 Robusta 0 0 7

R> adjustedRandIndex(Class, mod1$classification)

[1] 0.3833116

The Arabica variety appears to be split into two sub-varieties, whereas the Robusta is 

correctly identified as a single cluster. As a result, a small value of ARI is obtained.

Now, we may try variable selection to drop irrelevant features, and see if we can improve 

upon the above model. The following code uses the backward/forward greedy search for 

variable selection, which by default is performed over all the covariance decomposition 

models and numbers of mixture components from 1 up to 9:

R> (out <- clustvarsel(X, direction = “backward”))

------------------------------------------------------

Variable selection for Gaussian model-based clustering

Stepwise (backward/forward) greedy search
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------------------------------------------------------

Variable proposed Type of step BICclust Model G BICdiff Decision

Extract Yield Remove -788.3021 VEI 3 -10.930431 Accepted

Neochlorogenic Acid Remove -852.5413 VEI 3 -9.982637 Accepted

Chlorogenic Acid Remove -805.6227 VEI 3 -11.065351 Accepted

Extract Yield Add -999.1101 VEI 3 -9.315106 Rejected

Isochlorogenic Acid Remove -816.8139 VEV 8 -13.958685 Accepted

Extract Yield Add -936.2985 VEV 6 66.325955 Accepted

Extract Yield Remove -816.8139 VEV 8 66.325955 Rejected

Isochlorogenic Acid Add -999.1101 VEI 3 -90.028182 Rejected

Selected subset: Water, Bean Weight, ph Value, Free Acid, Mineral Content, 

Fat, Caffine, Trigonelline, Extract Yield

Then, the clustering model estimated on the selected subset of variables is:

R> mod2 <- Mclust(X[, out$subset])

R> summary(mod2)

----------------------------------------------------

Gaussian finite mixture model fitted by EM algorithm

----------------------------------------------------

Mclust EEI (diagonal, equal volume and shape) model with 3 components:

log.likelihood n df BIC ICL

-443.2269 43 38 -1029.379 -1030.937

Clustering table:

1 2 3

22 14 7

R> table(Class, Cluster = mod2$class)

Cluster

Class 1 2 3

 Arabica 22 14 0

 Robusta 0 0 7

R> table(Class, Cluster = mod2$class)
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Cluster

Class 1 2 3

 Arabica 22 14 0

 Robusta 0 0 7

Both the covariance parameterization (EEE) and the number of mixture components (3) used 

with the selected features subset agree with those from the model using all the variables. The 

final clustering confirms the structure we already discussed, in particular the two sub-

varieties of Arabica coffee.

To show graphically these findings, we may project the data onto a dimension reduced 

subspace by using the methodology described in Scrucca (2010):

R> mod2dr <- MclustDR(mod2)

R> plot(mod2dr, what = “scatterplot”, symbols = c(“A”, “a”, “R”))

From Figure 1 there is an evident separation between Arabica and Robusta coffee samples 

along the first direction. Moreover, it seems to confirm the non homogeneous group of 

Arabica samples, which splits in two sub-varieties along the second direction. Finally, to get 

an idea of computing time required by the subset selection procedure, the following code 

can be used:

The system times (in seconds) required by the two stepwise greedy searches can be shown 

using the following code:

R> library(“rbenchmark”)

R> benchmark(clustvarsel(X, verbose = FALSE),

+  clustvarsel(X, direction = “backward”, verbose = FALSE),

+  columns = c(“test”, “elapsed”), order = NULL, replications = 1)

test elapsed

1 clustvarsel(X, verbose = FALSE) 8.19

2
clustvarsel(X, direction = “backward”, verbose = 

FALSE)
7.74

4.4. Simulated high-dimensional data

Witten and Tibshirani (2010, Section 3.3.2) discussed an example where five clustering 

variables are conditionally independent given the cluster memberships, whereas the 

remaining twenty features are simply independent standard normal variables, also 

independent from the clustering ones. The first five variables are distributed according to a 

spherical Gaussian distribution with mean μ1 = (μ, μ, …, μ), μ2 = 0, μ3 = −μ1, where μ = 1.7, 
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and common unit standard deviation. We replicated this experiment (denoted by WT) with 

varying sample sizes (ng cases for each group) and for a set of different techniques.

The algorithms we consider in the comparison are SPARSEKMEANS, and CLUSTVARSEL 

using both the forward/backward and the backward/forward greedy search. Furthermore, K-

MEANS, and MCLUST using either the first five variables and all the variables have been 

included as benchmarks. For MCLUST and CLUSTVARSEL models the EII parameterization is 

used both at the hierarchical initialization step and for mixture modeling.

Table 3 reports the variable selection error rate (VSER) and the classification error rate 

(CER). As already mentioned in Section 4.1, the VSER is defined as the ratio of the number 

of errors in selecting (or not selecting) variables with respect to the total number of variables 

considered. The CER between two partitions, which is equivalent to one minus the Rand 

index (Rand 1971), is equal to 0 in the case of perfect agreement, and becomes larger for 

increasing disagreement (for a formal definition see Witten and Tibshirani 2010). Smaller 

values of both VSER and CER are better. These two measures have been chosen for the 

purpose of comparison with the results in Witten and Tibshirani (2010, Table 4) and Celeux, 

Martin-Magniette, Maugis-Rabusseau, and Raftery (2014, Section 3.1).

The model with uniformly better performance in terms of classification error is the MCLUST 

model with the first five variables, i.e., the model which most resembles the data generation 

mechanism. However, this model is not available when we do not know the clustering 

variables, as we are assuming here. MCLUST using all the variables has quite good accuracy 

and improves as group sample size increases. On the contrary, K-MEANS on all the variables 

shows a constant larger classification error. SPARSEKMEANS performs well in term of 

accuracy, but the number of irrelevant variables selected increases with group sample size, 

and all the features tend to be selected for ng = 50 (VSER is almost equal to 20/25 = 0.8). 

CLUSTVARSEL using backward/forward greedy search shows good accuracy as well, and 

improves as group sample size gets larger. The variable selection error is the smallest when 

ng gets larger. Thus, for increasing sample size it converges to the true subset size. Note that 

forward/backward greedy search is clearly less accurate than the backward/forward search, 

with the VSER which is also larger, so the performance is overall worst than that of 

backward/forward search.

5. Adjustments for speeding up the algorithm

5.1. Sub-sampling at hierarchical initialization step

As mentioned in Section 3, the EM algorithm is initialized in mclust using the partitions 

obtained from model-based agglomerative hierarchical clustering. Efficient numerical 

algorithms for approximately maximizing the classification likelihood with multivariate 

normal models have been discussed by Fraley (1998). However, for datasets having a large 

number of observations this step can be computationally expensive.

When the number of observations is large, we may allow clustvarsel to use only a subset 

of the observations at the model-based hierarchical stage of clustering, to speed up the 
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algorithm. This is easily done by setting the argument samp = TRUE, and by specifying the 

number of observations to be used in the hierarchical clustering subset with sampsize.

Consider the following simulation scheme which constructs a medium sized dataset on five 

dimensions. Only the first two variables contain clustering information, the third is highly 

correlated with the first one, whereas the remaining features are simply noise variables.

R> set.seed(5)

R> library(“MASS”)

R> library(“rbenchmark”)

R> n <- 1000

R> pro <- 0.5

R> mu1 <- c(0, 0)

R> mu2 <- c(3, 3)

R> sigma1 <- matrix(c(1, 0.5, 0.5, 1), 2, 2)

R> sigma2 <- matrix(c(1.5, -0.7, -0.7, 1.5), 2, 2)

R> X <- matrix(0, n, 5, dimnames = list(NULL, paste0(“X”, 1:5)))

R> u <- runif(n)

R> Class <- ifelse(u < pro, 1, 2)

R> X[u < pro, 1:2] <- mvrnorm(sum(u < pro), mu = mu1, Sigma = sigma1)

R> X[u >= pro, 1:2] <- mvrnorm(sum(u >= pro), mu = mu2, Sigma = sigma2)

R> X[, 3] <- X[, 1] + rnorm(n)

R> X[, 4] <- rnorm(n, mean = 1.5, sd = 2)

R> X[, 5] <- rnorm(n, mean = 2, sd = 1)

R> clPairs(X, Class, gap = 0.2)

We may compare the procedure which uses sampling at the hierarchical stage with the 

default call to clustvarsel, both in terms of computing time, using the function 

system.time, and in terms of clustering accuracy.

R> benchmark(out1 <- clustvarsel(X, G = 1:5, verbose = FALSE),
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+out2 <- clustvarsel(X, G = 1:5, samp = TRUE, sampsize = 200,

+verbose = FALSE), columns = c(“test”, “elapsed”, “relative”),

+order = NULL, replications = 1)

test elapsed relative

1 out1 <- clustvarsel(X, G = 1:5) 5.560 1.798

2
out2 <- clustvarsel(X, G = 1:5, samp = 

TRUE, sampsize = 200)
3.093 1.000

Thus, by using sub-sampling for the initial hierarchical clustering we obtain a 1.65-fold 

speedup over the original with the same accuracy:

R> out1$subset

X2 X1

2 1

R> out2$subset

X2 X1

2 1

To investigate the effect of sampling as the number of observations increase we conducted a 

small simulation study by replicating the above simulation setting with different sample 

sizes and fixed size at 200 observations for choosing the initial starting points. Figure 3 

shows the results averaged over 10 replications. Panel (a) reports the computing time 

required as the sample size grows, whereas panel (b) shows the relative gain from using a 

subset of observations at the initial hierarchical stage. As can be seen, efficiency improves 

roughly exponentially as the number of observations increases, with sampling being about 

50 times faster at 10, 000 cases. As the system time required increases linearly for sampling, 

when no sampling is used at the initial stage the time required increases approximately 

exponentially. Furthermore, in all the replications the first two variables have been selected 

by both methods. Hence, the improvement in terms of computational efficiency has not 

caused any deterioration in terms of accuracy.

5.2. Headlong search

When a dataset contains a large number of variables we may find that using the headlong 

search algorithm option ( search = “headlong”) is faster than the default greedy search. 

To show an example we simulated a dataset analogous to the previous one for the clustering 

variables, then six more irrelevant variables were added, some correlated with the clustering 

ones, some independent and some correlated among themselves.

R> set.seed(7)
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R> library(“MASS”)

R> library(“rbenchmark”)

R> n <- 400

R> pro <- 0.5

R> mu1 <- c(0, 0)

R> mu2 <- c(3, 3)

R> sigma1 <- matrix(c(1, 0.5, 0.5, 1), 2, 2)

R> sigma2 <- matrix(c(1.5, -0.7, -0.7, 1.5), 2, 2)

R> X <- matrix(0, n, 10, dimnames = list(NULL, paste0(“X”, 1:10)))

R> u <- runif(n)

R> Class <- ifelse(u < pro, 1, 2)

R> X[u < pro, 1:2] <- mvrnorm(sum(u < pro), mu = mu1, Sigma = sigma1)

R> X[u >= pro, 1:2] <- mvrnorm(sum(u >= pro), mu = mu2, Sigma = sigma2)

R> X[, 3] <- X[, 1] + rnorm(n)

R> X[, 4] <- X[, 2] + rnorm(n)

R> X[, 5] <- rnorm(n, mean = 1.5, sd = 2)

R> X[, 6] <- rnorm(n, mean = 2, sd = 1)

R> X[, 7:8] <- mvrnorm(n, mu = mu1, Sigma = sigma1)

R> X[, 9:10] <- mvrnorm(n, mu = mu2, Sigma = sigma2)

Then, we may compare the time required by using the greedy method and using the 

headlong method:

R> benchmark(out1 <- clustvarsel(X, G = 1:5, verbose = FALSE),

+out2 <- clustvarsel(X, G = 1:5, search = “headlong”, verbose = FALSE),

+columns = c(“test”, “elapsed”, “relative”),

+order = NULL, replications = 1)
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test elapsed relative

1 out1 <- clustvarsel(X, G = 1:5) 4.913 1.707

2
out2 <- clustvarsel(X, G = 1:5, search 

= “headlong”)
2.878 1.000

In situations where there are many observations and a large number of variables, sub-

sampling at the hierarchical initialization step and the headlong search can be used 

concurrently to improve computational efficiency. A simulation study was conducted by 

replicating the previous simulation scheme with different sample sizes. The methods 

compared are greedy and headlong searches, without and with sampling using sampize = 

200. The results averaged over 10 replications are shown in Figure 4. Without sampling, 

headlong search is faster than greedy search with a constant speedup factor of about 1.7. The 

use of sampling at the initial hierarchical stage enables us to achieve an exponential relative 

gain as the sample size increases for both type of searches. Note that also in this case, the 

headlong search maintains an approximate 1.7-fold advantage compared to the greedy 

search.

The speed/optimally tradeoff in a headlong search can be changed by increasing or 

decreasing the different levels, e.g., by setting the upper level to 10 instead of 0 we would 

require a variable to have stronger evidence of clustering before it is included, and by setting 

the lower level to 0 we would remove variables that at any stage have evidence of clustering 

weaker by any amount than evidence against clustering.

5.3. Parallel computing

Parallel computing is a form of computation in which the required calculations are 

performed simultaneously, either on a single multi-core processors machine or on a cluster 

of multiple computers.

Direct support of parallelism in R is available since version 2.14.0 (released in October 

2011) through the package parallel (R Core Team 2017). This is essentially a merger of the 

multicore package (Urbanek 2011) and the snow package (Tierney, Rossini, Li, and 

Sevcikova 2016). The multicore functionality supports parallelism via forking, which is a 

concept from POSIX operating systems, so it is available on all R platforms except 

Windows. In contrast, snow supports different transport mechanisms (e.g., socket 

connections) to communicate between the master and the workers, and it is available on all 

operating systems. Other approaches to parallel computing in R are available as described in 

McCallum and Weston (2011). For an extensive list of packages see the CRAN task view on 

High-Performance and Parallel Computing with R (Eddelbuettel 2017).

The greedy search discussed in Section 2 constitutes an embarrassingly parallel problem, 

i.e., one for which little or no effort is required to separate the problem into a number of 

parallel tasks. Essentially, the sequential evaluation of candidate variables for inclusion or 

exclusion, which is the most time consuming task, can be done in parallel. For the actual 

implementation in clustvarsel we used the doParallel package (Microsoft Corporation and 

Weston 2017), a “parallel backend” which acts as an interface between the foreach package 

(Revolution Analytics and Weston 2015a; Kane, Emerson, and Weston 2013) and the 
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parallel package. Essentially, it provides a mechanism needed to execute for-loops in 

parallel.

To specify if parallel computing should be used in the evaluation of the BICdiff criterion in 

Equation 1, the optional argument parallel must be set to TRUE in the clustvarsel 

function call. In this case all the available cores, as returned by the detectCores function, 

are used. A numeric value specifying the number of cores to employ can also be specified in 

the optional argument parallel. Finally, the parallelization functionality depends on 

system OS: on Windows, only snow type functionality is available, whereas on Unix/

Linux/Mac OSX, both snow and multicore (default) functionalities are available.

As an example, consider a sample of n = 200 observations generated according to the 

simulation scheme described in Section 5.2. We may compare the sequential greedy 

backward/forward search with a parallel version of the algorithm with the default maximum 

cores available and by specifying 2 cores:

R> benchmark(clustvarsel(X, G = 1:9, direction = “backward”, verbose = 

FALSE),

+clustvarsel(X, G = 1:9, direction = “backward”, parallel = TRUE, verbose

+= FALSE), clustvarsel(X, G = 1:9, direction = “backward”, parallel = 2,

+verbose = FALSE), columns = c(“test”, “elapsed”), order = NULL,

+replications = 1)

test elapsed

1 clustvarsel(X, G = 1:9, direction = “backward”) 52.12

2
clustvarsel(X, G = 1:9, direction = “backward”, 

parallel = TRUE)
17.46

3
clustvarsel(X, G = 1:9, direction = “backward”, 

parallel = 2)
28.64

In this case, the execution time is reduced to about a third (52.12/17.46 = 2.985) using 4 

cores, whereas with 2 cores a speedup factor of 52.12/28.64 = 1.82 is obtained.

By using a machine with P processors instead of just one, we would like to obtain an 

increase in calculation speed of P times. As shown above, this is not the case because in the 

implementation of a parallel algorithm there are some inherent non-parallelizable parts and 

communication costs between tasks (Nakano 2012). Amdahl's Law (Amdahl 1967) is often 

used in parallel computing to predict the theoretical maximum speedup when using multiple 

processors. If f is the fraction of non-parallelizable task, i.e., the part of the algorithm that is 

strictly serial, and P is the number of processors in use, then the maximum speedup 

achievable on a parallel computing platform is given by
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SP = 1
f + (1 − f )/P . (3)

In the limit, the above ratio converges to Smax = 1/f, which represents the maximum increase 

of speed achievable in theory, i.e., by a machine with an infinite number of processors.

To investigate the performance of our parallel algorithm implementation, we conducted a 

small simulation study using the above simulation setting for increasing numbers of cores. 

The study was performed on a 18 cores Intel Xeon E5-2697 v4 running at 2.30GHz and with 

128GB of RAM.

Figure 5 shows the results averaged over 10 replications. The points represent the observed 

speedup factor (obtained as sP = t1/tP, where tP is the execution time using P cores) for 

running the greedy backward/forward algorithm with up to 10 cores. The curve represents 

the Amdahl's Law (3) with f estimated by non-linear least squares. It turns out that the 

estimated fraction of strictly sequential part in the backward/forward search for variable 

selection is f = 0.13, which yields a maximum speedup of about Smax = 7.6.

6. Conclusions and future work

This paper has presented the R package clustvarsel which provides a convenient set of tools 

for variable selection in model-based clustering using a finite mixture of Gaussian densities. 

Stepwise greedy search and headlong algorithm are implemented in order to find the 

(locally) optimal subset of variables with cluster information. The computational burden of 

such algorithms can be decreased by some ad hoc modifications in the algorithms, or via the 

use of parallel computation as implemented in the package. Examples illustrating the use of 

the package in practical applications have been presented.

Given the vast solution space, other optimization techniques could be usefully employed. 

For instance, the use of genetic algorithms as described in Scrucca (2016) will be included 

in a future release of the package.

The present methodology is restricted to continuous data modeled by mixtures of Gaussian 

distributions. However, an analogous method was proposed by Dean and Raftery (2010) for 

multivariate discrete data in the context of latent class analysis models, with improvements 

recently proposed by Fop, Smart, and Murphy (2017). This methodology could also be 

included in this or another package.
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Figure 1. 
Projection of coffee data samples marked according to the clustering obtained from the 

variables selected using the forward/backward greedy search. The symbol  indicates 

Robusta coffees,  and  the sub-varieties of Arabica coffees.
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Figure 2. 
Scatterplot matrix of simulated data with points marked according to the known groups.
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Figure 3. 
Comparison of computing time vs sample size. Panel (a) shows the average over 10 

replications for clustvarsel using sub-sampling with fixed size at 200 observations, and 

no sampling. Panel (b) shows the speedup factor, calculated as the ratio of execution time for 

the greedy search with no sampling to the system times for each examined strategy. All axes 

are on logarithmic scale.
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Figure 4. 
Comparison of computing time vs sample size. Panel (a) shows the average over 10 

replications for clustvarsel using search = “greedy” with and without sampling, and 

search = “headlong” with and without sampling. A fixed value sampsize = 200 is used 

throughout. Panel (b) shows the speedup factor, calculated as the ratio of execution time for 

the greedy search with no sampling to the system times for each examined strategy. All axes 

are on logarithmic scale.
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Figure 5. 
Graph of speedup factor vs the number of cores employed in the parallel algorithm for 

greedy backward/forward subset selection in model-based clustering. The fraction of non-

parallelizable task is estimated as f = 0.13, and, by Amdahl's Law, this gives a maximum 

speedup achievable by parallelization of around 7.6× the sequential algorithm (dashed 

horizontal line).
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Table 1

Parameter settings for the scenarios used to generated synthetic data: β defines the correlation of irrelevant 

variables on clustering variables, whereas Ω is the covariance structure of the noise component. 0p indicates 

the (2 × p) matrix of zeroes, and Ip the (p × p) identity matrix.

Scenario Parameters Scenario Parameters

Model 1 β = 08 Model 5

β = 0.5 0 2 0
0 1 0 304

Ω = I8 Ω = diag(I2, 0.5I2, I4)

Model 4

β = 0.5 0
0 106

Model 7

β = 0.5 0 2 0 2 0.5 2 0
0 1 0 3 0.5 1 0 3

Ω = I8 Ω = diag(I2, 0.5I4, I2)
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