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Abstract

Finite mixture models are being used increasingly to model a wide variety of random phenomena 

for clustering, classification and density estimation. mclust is a powerful and popular package 

which allows modelling of data as a Gaussian finite mixture with different covariance structures 

and different numbers of mixture components, for a variety of purposes of analysis. Recently, 

version 5 of the package has been made available on CRAN. This updated version adds new 

covariance structures, dimension reduction capabilities for visualisation, model selection criteria, 

initialisation strategies for the EM algorithm, and bootstrap-based inference, making it a full-

featured R package for data analysis via finite mixture modelling.

Introduction

mclust is a popular R package for model-based clustering, classification, and density 

estimation based on finite Gaussian mixture modelling. An integrated approach to finite 

mixture models is provided, with functions that combine model-based hierarchical 

clustering, EM for mixture estimation and several tools for model selection. Thus mclust 
provides a comprehensive strategy for clustering, density estimation and discriminant 

analysis. A variety of covariance structures obtained through eigenvalue decomposition are 

available. Functions for performing single E and M steps and for simulating data for each 

available model are also included. Additional ways of displaying and visualising fitted 

models along with clustering, classification, and density estimation results are also provided. 

It has been used in a broad range of contexts including geochemistry (Templ et al., 2008; 

Ellefsen et al., 2014), chemometrics (Fraley and Raftery, 2006a, 2007b), DNA sequence 

analysis (Verbist et al., 2015), gene expression data (Yeung et al., 2001; Li et al., 2005; 
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Fraley and Raftery, 2006b), hydrology (Kim et al., 2014), wind energy (Kazor and Hering, 

2015), industrial engineering (Campbell et al., 1999), epidemiology (Flynt and Daepp, 

2015), food science (Kozak and Scaman, 2008), clinical psychology (Suveg et al., 2014), 

political science (Ahlquist and Breunig, 2012; Jang and Hitchcock, 2012), and anthropology 

(Konigsberg et al., 2009).

One measure of the popularity of mclust is provided by the download logs of the RStudio 

(http://www.rstudio.com) CRAN mirror (available at http://cran-logs.rstudio.com). The 

cran-logs package (Csardi, 2015) makes it easy to download such logs and graph the 

number of downloads over time. We used cranlogs to query the RStudio download database 

over the past three years. In addition to mclust, other R packages which handle Gaussian 

finite mixture modelling as part of their capabilities have been included in the comparison: 

Rmixmod (Lebret et al., 2015), mixture (Browne et al., 2015), EMCluster (Chen and 

Maitra, 2015), mixtools (Benaglia et al., 2009), and bgmm (Biecek et al., 2012). We also 

included flexmix (Leisch, 2004; Grün and Leisch, 2007, 2008) which provides a general 

framework for finite mixtures of regression models using the EM algorithm, since it can be 

adapted to perform Gaussian model-based clustering using a limited set of models (only the 

diagonal and unconstrained covariance matrix models). Table 1 summarises the 

functionalities of the selected packages.

Figure 1 shows the trend in weekly downloads from the RStudio CRAN mirror for the 

selected packages. The popularity of mclust has been increasing steadily over time with a 

high peak around mid April 2015, probably due to the release of R version 3.2 and, shortly 

after, the release of version 5 of mclust. Based on these logs, mclust is the most downloaded 

package dealing with Gaussian mixture models, followed by flexmix which, as mentioned, 

is a more general package for fitting mixture models but with limited clustering capabilities.

Another aspect that can be considered as a proxy for the popularity of a package is the 

mutual dependencies structure between R packages1. This can be represented as a graph 

with packages at the vertices and dependencies (either “Depends”, “Imports”, “LinkingTo”, 

“Suggests” or “Enhances”) as directed edges, and analysed through the PageRank algorithm 

used by the Google search engine (Brin and Page, 1998). For the packages considered 

previously, we used the page.rank function available in the igraph package (Csardi and 

Nepusz, 2006) and we obtained the ranking reported in Table 2, which approximately 

reproduces the results discussed above. Note that mclust is among the top 100 packages on 

CRAN by this ranking. Finally, its popularity is also indicated by the 55 other CRAN 

packages listed as reverse dependencies, either “Depends”, “Imports” or “Suggests”.

Earlier versions of the package have been described in Fraley and Raftery (1999), Fraley and 

Raftery (2003), and Fraley et al. (2012). In this paper we discuss some of the new 

functionalities available in mclust version = 5. In particular we describe the newly available 

models, dimension reduction for visualisation, bootstrap-based inference, implementation of 

different model selection criteria and initialisation strategies for the EM algorithm.

1See http://piccolboni.info/2012/05/essential-r-packages.html.
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The reader should first install the latest version of the package from CRAN with

> install.packages(“mclust”)

Then the package is loaded into an R session using the command

All the datasets used in the examples are available in mclust or in other R packages, such as 

gclus (Hurley, 2012), rrcov (Todorov and Filzmoser, 2009) and tourr (Wickham et al., 

2011), and can be installed from CRAN using the above procedure, except where noted 

differently.

Gaussian finite mixture modelling

Let x = {x1, x2, …, xi, …, xn } be a sample of n independent identically distributed 

observations. The distribution of every observation is specified by a probability density 

function through a finite mixture model of G components, which takes the following form

(1)

where Ψ = {π1, . . ., πG−1, θ1, . . ., θG} are the parameters of the mixture model, fk(xi; θk) is 

the kth component density for observation xi with parameter vector θk, (π1, . . ., πG−1) are 

the mixing weights or probabilities (such that πk > 0, ), and G is the number of 

mixture components.

Assuming that G is fixed, the mixture model parameters Ψ are usually unknown and must be 

estimated. The log-likelihood function corresponding to equation (1) is given by 

. Direct maximisation of the log-likelihood function is 

complicated, so the maximum likelihood estimator (MLE) of a finite mixture model is 

usually obtained via the EM algorithm (Dempster et al., 1977; McLachlan and Peel, 2000).

In the model-based approach to clustering, each component of a finite mixture density is 

usually associated with a group or cluster. Most applications assume that all component 

densities arise from the same parametric distribution family, although this need not be the 

case in general. A popular model is the Gaussian mixture model (GMM), which assumes a 

(multivariate) Gaussian distribution for each component, i.e. fk (x; θk) ~ N(μk, Σk). Thus, 

clusters are ellipsoidal, centered at the mean vector μk, and with other geometric features, 

such as volume, shape and orientation, determined by the covariance matrix Σk. 
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Parsimonious parameterisations of the covariances matrices can be obtained by means of an 

eigen-decomposition of the form , where λk is a scalar controlling the 

volume of the ellipsoid, Ak is a diagonal matrix specifying the shape of the density contours 

with det(Ak) = 1, and Dk is an orthogonal matrix which determines the orientation of the 

corresponding ellipsoid (Banfield and Raftery, 1993; Celeux and Govaert, 1995). In one 

dimension, there are just two models: E for equal variance and V for varying variance. In the 

multivariate setting, the volume, shape, and orientation of the covariances can be constrained 

to be equal or variable across groups. Thus, 14 possible models with different geometric 

characteristics can be specified. Table 3 reports all such models with the corresponding 

distribution structure type, volume, shape, orientation, and associated model names. In 

Figure 2 the geometric characteristics are shown graphically.

Starting with version 5.0 of mclust, four additional models have been included: EVV, VEE, 

EVE, VVE. Models EVV and VEE are estimated using the methods described in Celeux and 

Govaert (1995), and the estimation of models EVE and VVE is carried out using the 

approach discussed by Browne and McNicholas (2014). In the models VEE, EVE and VVE 

it is assumed that the mixture components share the same orientation matrix. This 

assumption allows for a parsimonious characterisation of the clusters, while still retaining 

flexibility in defining volume and shape.

Model-based clustering

To illustrate the new modelling capabilities of mclust for model-based clustering consider 

the wine dataset contained in the gclus R package. This dataset provides 13 measurements 

obtained from a chemical analysis of 178 wines grown in the same region in Italy but 

derived from three different cultivars (Barolo, Grignolino, Barbera).

> data(wine, package = “gclus”)

> Class <- factor(wine$Class, levels = 1:3, labels = c(“Barolo”, 

“Grignolino”, “Barbera”))

> X <- data.matrix(wine[,-1])

> mod <- Mclust(X)

> summary(mod$BIC)

Best BIC values:

            EVE,3      VVE,3       VVE,6

BIC     -6873.257  -6896.83693  -6906.37460

BIC diff      0.000   -23.57947    -33.11714

> plot(mod, what = “BIC”, ylim = range(mod$BIC[,-(1:2)], na.rm = TRUE),

     legendArgs = list(x = “bottomleft”))

In the above Mclust() function call, only the data matrix is provided, and the number of 

mixing components and the covariance parameterisation are selected using the Bayesian 

Information Criterion (BIC). A summary showing the top-three models and a plot of the BIC 

traces (see Figure 3) for all the models considered is then obtained. In the last plot we 
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adjusted the range of y-axis so to remove those models with lower BIC values. There is a 

clear indication of a three-component mixture with covariances having different shapes but 

the same volume and orientation (EVE). Note that all the top three models are among the 

models added to the latest major release of mclust.

A summary of the selected model is obtained as:

> summary(mod)

----------------------------------------------------------------

Gaussian finite mixture model fitted by EM algorithm

----------------------------------------------------------------

Mclust EVE (ellipsoidal, equal volume and orientation) model with 3 

components:

log.likelihood   n   df       BIC       ICL

    -3032.45 178  156  -6873.257  -6873.549

Clustering table:

1    2   3

63  51  64

The fitted model provides an accurate recovery of the true classes:

> table(Class, mod$classification)

Class        1  2  3

  Barolo      59  0  0

  Grignolino   4  3 64

  Barbera      0 48  0

> adjustedRandIndex(Class, mod$classification)

[1] 0.8803998

The latter index is the adjusted Rand index (ARI; Hubert and Arabie, 1985), which can be 

used for evaluating a clustering solution. The ARI is a measure of agreement between two 

partitions, one estimated by a statistical procedure independent of the labelling of the 

groups, and one being the true classification. It has zero expected value in the case of a 

random partition, and it is bounded above by 1, with higher values representing better 

partition accuracy.

To visualise the clustering structure and the geometric characteristics induced by an 

estimated Gaussian finite mixture model we may project the data onto a suitable dimension 

reduction subspace. The function MclustDR() implements the methodology introduced in 

Scrucca (2010). The estimated directions which span the reduced subspace are defined as a 

set of linear combinations of the original features, ordered by importance as quantified by 

the associated eigenvalues. By default, information on the dimension reduction subspace is 

provided by both the variation on cluster means and, depending on the estimated mixture 

model, on the variation on cluster covariances. This methodology has been extended to 

supervised classification by Scrucca (2014). Furthermore, a tuning parameter has been 

included which enables the recovery of most of the separating directions, i.e. those that show 

maximal separation among groups. Other dimension reduction techniques for finding the 
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directions of optimum separation have been discussed in detail by Hennig (2004) and 

implemented in the package fpc (Hennig, 2015).

Applying MclustDR to the wine data example, such directions are obtained as follows:

> drmod <- MclustDR(mod, lambda = 1)

> summary(drmod)

-----------------------------------------------------------------------------

---

Dimension reduction for model-based clustering and classification

-----------------------------------------------------------------------------

---

Mixture model type: Mclust (EVE, 3)

Clusters  n

      1 63

      2 51

      3 64

Estimated basis vectors:

                         Dir1         Dir2

Alcohol            0.11701058     0.2637302

Malic             -0.02814821     0.0489447

Ash               -0.18258917     0.5390056

Alcalinity          -0.02969793    -0.0309028

Magnesium         0.00575692     0.0122642

Phenols            -0.18497201    -0.0016806

Flavanoids          0.45479873    -0.2948947

Nonflavanoid        0.59278569   -0.5777586

Proanthocyanins      0.05347167    0.0508966

Intensity           -0.08328239    0.0332611

Hue               0.42950365    -0.4588969

OD280             0.40563746   -0.0369229

Proline             0.00075867    0.0010457

                 Dir1    Dir2

Eigenvalues      1.5794    1.332

Cum. %        54.2499  100.000

By setting the optional tuning parameter lambda = 1, instead of the default value 0.5, only 

the information on cluster means is used for estimating the directions. In this case, the 

dimension of the subspace is d = min(p, G −1), where p is the number of variables and G the 

number of mixture components or clusters. In the data example, there are p = 13 features 

and G = 3 clusters, so the dimension of the reduced subspace is d = 2. As a result, the 

projected data show the maximal separation among clusters, as shown in Figure 4a, which is 

obtained with
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> plot(drmod, what = “contour”)

On the same subspace we can also plot the uncertainty boundaries corresponding to the 

MAP classification:

> plot(drmod, what = “boundaries”, ngrid = 200)

and then add a circle around the misclassified observations

> miscl <- classError(Class, mod$classification)$misclassified

> points(drmod$dir[miscl,], pch = 1, cex = 2)

Model selection

A central question in finite mixture modelling is how many components should be included 

in the mixture. In GMMs we need also to decide which covariance parameterisation to 

adopt. Both questions can be addressed by information criteria, such as the BIC (Schwartz, 

1978; Fraley and Raftery, 1998) or the integrated complete-data likelihood criterion (ICL; 

Biernacki et al., 2000). The selection of the order of the mixture, i.e. the number of mixture 

components or clusters, can be also performed by formal hypothesis testing; for a recent 

review see McLachlan and Rathnayake (2014).

Information criteria are based on penalised forms of the log-likelihood. As the likelihood 

increases with the addition of more components, a penalty term for the number of estimated 

parameters is subtracted from the log-likelihood. The BIC is a popular choice in the context 

of GMMs, and takes the form

where ℓℳG (x|Ψ̂) is the log-likelihood at the MLE Ψ̂ for model &M with G components, n is 

the sample size, and v is the number of estimated parameters. The pair {ℳ, G} which 

maximises BICℳ,G is selected. Given some necessary regularity conditions, BIC is derived 

as an approximation to the model evidence using the Laplace method. Although these 

conditions do not hold for mixture models in general (Aitkin and Rubin, 1985), some 

consistency results apply (Roeder and Wasserman, 1997; Keribin, 2000) and the criterion 

has been shown to perform well in applications (Fraley and Raftery, 1998).

In the mclust package, BIC is used by default for model selection. The function 

mclustBIC() allows the user to obtain a matrix of BIC values for all the available models and 

number of components up to 9 (by default).
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For example, consider the diabetes dataset which contains measurements on 145 non-obese 

adult subjects. Recorded variables are glucose, the area under plasma glucose curve after a 

three hour oral glucose tolerance test (OGTT), insulin, the area under plasma insulin curve 

after a three hour OGTT, and sspg, the steady state plasma glucose level. The patients are 

classified clinically into three groups.

> data(diabetes)

> X <- diabetes[,2:4]

> Class <- diabetes$class

> table(Class)

Chemical   Normal    Overt

      36       76       33

The data can be shown graphically (see Figure 5) as follows:

> clp <- clPairs(X, Class, lower.panel = NULL)

> clPairsLegend(0.1, 0.3, class = clp$class, col = clp$col, pch = clp$pch)

The following function call can be used to compute the BIC for all the covariance structures 

and up to 9 components:

> BIC <- mclustBIC(X)

> BIC

Bayesian Information Criterion (BIC):

       EII      VII      EEI      VEI     EVI      VVI     EEE     EVE

1 -5863.923 -5863.923 -5530.129 -5530.129 -5530.129 -5530.129 -5136.446 

-5136.446

2 -5449.518 -5327.719 -5169.399 -5019.350 -5015.884 -4988.322 -5010.994 

-4875.633

3 -5412.588 -5206.399 -4998.446 -4899.759 -5000.661 -4827.818 -4976.853 

-4858.851

4 -5236.008 -5208.512 -4937.627 -4835.856 -4865.767 -4813.002 -4865.864 

-4793.261

5 -5181.608 -5202.555 -4915.486 -4841.773 -4838.587 -4833.589 -4882.812      

NA

6 -5162.164 -5135.069 -4885.752      NA -4848.623 -4810.558 -4835.226      NA

7 -5128.736 -5129.460 -4857.097      NA -4849.023      NA -4805.518      NA

8 -5135.787 -5135.053 -4858.904      NA -4873.450      NA -4820.155      NA

9 -5150.374 -5112.616 -4878.786      NA -4865.166      NA -4840.039      NA

      VEE     VVE     EEV     VEV     EVV     VVV

1 -5136.446 -5136.446 -5136.446 -5136.446 -5136.446 -5136.446

2 -4920.301 -4877.086 -4918.500 -4834.727 -4823.779 -4825.027
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3 -4851.667 -4775.537 -4917.567 -4809.225 -4817.884 -4760.091

4 -4840.034 -4794.892 -4887.406 -4823.882 -4828.796 -4802.420

5      NA      NA -4908.030 -4842.077      NA      NA

6      NA      NA -4844.584 -4826.457      NA      NA

7      NA      NA -4910.155 -4852.182      NA      NA

8      NA      NA -4858.974 -4870.633      NA      NA

9      NA      NA -4930.535 -4887.206      NA      NA

Top 3 models based on the BIC criterion:

  VVV,3    VVE,3    EVE,4

-4760.091 -4775.537 -4793.261

In the results reported above, the NA values mean that a particular model cannot be 

estimated. This happens in practice due to singularity in the covariance matrix estimate and 

can be avoided using the Bayesian regularisation proposed in Fraley and Raftery (2007a) 

and implemented in mclust as described in Fraley et al. (2012). Optional arguments allow 

finetuning, such as G for the number of components, and modelNames for specifying the 

model covariances parameterisations (see Table 3 and help(mclustModelNames) for a 

description of available model names). Another optional argument x can be used to provide 

the output from a previous call to mclustBIC(). This is useful if the model space needs to be 

enlarged by fitting more models, e.g. by increasing the number of mixture components, 

without the need to recompute the BIC values for those models already fitted. Another usage 

of such strategy that may be helpful to users is provided in Mclust(). For example, BIC 

values already available can be provided as follows

> Mclust(X, x = BIC)

Note that by specifying the argument G and modelNames the model space can be restricted 

to a subset, or enlarged to a superset. In the latter case the BIC is calculated only for the new 

included models.

The use of BIC for model selection was available in mclust since earlier versions. However, 

BIC tends to select the number of mixture components needed to reasonably approximate 

the density, rather than the number of clusters as such. For this reason, other criteria have 

been proposed for model selection, like the integrated complete-data likelihood (ICL) 

criterion (Biernacki et al., 2000):

where zik is the conditional probability that xi arises from the kth mixture component, and 

cik = 1 if the ith unit is assigned to cluster k and 0 otherwise. ICL penalises the BIC through 

an entropy term which measures clusters overlap. Provided that clusters overlapping is not 

too strong, ICL has shown good performance in selecting the number of clusters, with 

preference for solutions with well-separated groups.
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In mclust the ICL can be computed by means of the mclustICL() function:

> ICL <- mclustICL(X)

> ICL

Integrated Complete-data Likelihood (ICL) criterion:

       EII      VII      EEI     VEI      EVI     VVI     EEE     EVE

1 -5863.923 -5863.923 -5530.129 -5530.129 -5530.129 -5530.129 -5136.446 

-5136.446

2 -5450.004 -5333.689 -5169.732 -5023.533 -5016.010 -4994.986 -5012.758 

-4876.295

3 -5415.983 -5219.627 -4999.693 -4910.963 -5011.423 -4839.130 -4985.448 

-4875.992

4 -5238.797 -5224.698 -4939.741 -4847.524 -4876.784 -4823.308 -4867.650 

-4809.169

5 -5190.524 -5226.204 -4923.986 -4865.230 -4854.347 -4859.162 -4895.412      

NA

6 -5171.561 -5158.411 -4901.823      NA -4865.106 -4820.076 -4846.827      NA

7 -5136.220 -5152.330 -4872.644      NA -4870.151      NA -4817.584      NA

8 -5146.628 -5156.135 -4871.975      NA -4897.172      NA -4834.074      NA

9 -5180.744 -5145.708 -4911.346      NA -4883.199      NA -4872.677      NA

      VEE     VVE     EEV     VEV     EVV    VVV

1 -5136.446 -5136.446 -5136.446 -5136.446 -5136.446 -5136.446

2 -4927.621 -4885.421 -4920.413 -4844.590 -4826.796 -4834.539

3 -4866.976 -4793.271 -4927.563 -4821.068 -4828.535 -4776.086

4 -4869.658 -4823.020 -4956.077 -4847.034 -4839.703 -4830.658

5      NA      NA -4948.787 -4869.279      NA      NA

6      NA      NA -4884.720 -4849.505      NA      NA

7      NA      NA -4947.190 -4878.445      NA      NA

8      NA      NA -4890.913 -4895.286      NA      NA

9      NA      NA -5007.250 -4919.228      NA      NA

Top 3 models based on the ICL criterion:

   VVV,3   VVE,3    EVE,4

-4776.086 -4793.271 -4809.169

As discussed above for mclustBIC(), the output from a previous call to mclustICL() can be 

provided as input with the argument x to avoid recomputing the ICL for models already 

fitted.

Both criteria can be shown graphically with (see Figure 6):

> plot(BIC)

> plot(ICL)
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In this case BIC and ICL selected the same final model.

Other information criteria are available in the literature. For example, members of the 

Generalised Information Criteria (GIC) family (?) are not computed by the package, but they 

can be easily obtained using the information returned by the Mclust() function.

In addition to the information criteria just mentioned, the choice of the order of a mixture 

model for a specific component-covariances parameterisation can be carried out by 

likelihood ratio testing (LRT). Suppose we want to test the null hypothesis H0 : G = G0 

against the alternative H1 : G = G1 for some G1 > G0; usually, G1 = G0 + 1 as it is a common 

procedure to keep adding components sequentially. Let Ψ̂
Gj be the MLE of Ψ calculated 

under Hj : G = Gj (for j = 0, 1). The likelihood ratio test statistic (LRTS) can be written as

with large values of LRTS which provide evidence against the null hypothesis. However, 

standard regularity conditions do not hold for the null distribution of the LRTS to have its 

usual chi-squared distribution (McLachlan and Peel, 2000, Chap. 6). As consequence, LRT 

significance is often estimated by a resampling approach in order to produce a p-value. 

McLachlan (1987) proposed the using of the bootstrap to obtain the null distribution of the 

LRTS. The bootstrap procedure is the following:

1. a bootstrap sample  is generated by simulating from the fitted model 

under the null hypothesis with G0 components, i.e. from the GMM 

distribution with the vector of unknown parameters replaced by MLEs 

obtained from the original data under H0;

2. the test statistic  is computed for the bootstrap sample  after 

fitting GMMs with G0 and G1 number of components;

3. steps 1. and 2. are replicated several times, say B = 999, to obtain the 

bootstrap null distribution of LRTS*.

A bootstrap-based approximation to the p-value may then be computed as

where LRTSobs is the test statistic computed on the observed sample x, and I(·) denotes the 

indicator function (which is equal to 1 if its argument is true and 0 otherwise).

The above bootstrap procedure is implemented in the mclustBootstrapLRT() function. We 

need to specify at least the input data and the model name we want to test:

> LRT <- mclustBootstrapLRT(X, modelName = “VVV”)
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> LRT

Bootstrap sequential LRT for the number of mixture components

-----------------------------------------------------------------------------

-

Model       = VVV

Replications  =  999

              LRTS bootstrap  p-value

1 vs 2     361.186445            0.001

2 vs 3     114.703559            0.001

3 vs 4       7.437806            0.938

The number of bootstrap resamples can be set by the optional argument nboot; if not 

provided, nboot = 999 is used. The sequential bootstrap procedure terminates when a test is 

not significant at the level specified by level (by default equal to 0.05). There is also the 

option for a user to fix the maximum number of mixture components to test via the argument 

maxG. In the example above the bootstrap p-values clearly indicate the presence of three 

clusters. Note that models fitted on the original data are estimated via the EM algorithm 

initialised by the default model-based hierarchical agglomerative clustering. Then, during 

the bootstrap procedure, models under the null and the alternative hypotheses are fitted on 

bootstrap samples using again the EM algorithm. However, in this case the algorithm starts 

with the E step initialised with the estimated parameters obtained at the convergence of the 

EM algorithm on the original data.

The bootstrap distributions of the LRTS can be shown graphically (see Figure 7) using the 

associated plot method:

> plot(LRT, G = 1)

> plot(LRT, G = 2)

> plot(LRT, G = 3)

Bootstrap inference

There are two main approaches to likelihood-based inference in mixture models, namely 

information-based and resampling methods (McLachlan and Peel, 2000). In information-

based methods, the covariance matrix of the MLE Ψ̂ is approximated by the inverse of the 

observed information matrix I−1(Ψ̂), i.e.

However, “the sample size n has to be very large before the asymptotic theory applies to 

mixture models” (McLachlan and Peel, 2000, p.42). Indeed, Basford et al. (1997) found that 

standard errors obtained using the expected or the observed information matrix are unstable, 

unless the sample size is very large. For these reasons, they advocate the use of a resampling 
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approach based on the bootstrap. For a recent review and comparison of different resampling 

approaches to inference in finite mixture models see O’Hagan et al. (2015).

The bootstrap (Efron, 1979) is a general, widely applicable, powerful technique for 

obtaining an approximation to the sampling distribution of a statistic of interest. The 

bootstrap distribution is approximated by drawing a large number of samples (bootstrap 
samples) from the empirical distribution, i.e. by resampling with replacement from the 

observed data (nonparametric bootstrap), or from a parametric distribution with unknown 

parameters substituted by the corresponding estimates (parametric bootstrap).

Let Ψ̂ be the estimate of a set of GMM parameters Ψ for a given model ℳ, i.e. covariance 

parameterisation, and number of mixture components G. A bootstrap estimate of the 

corresponding standard errors can be obtained using the following procedure:

• Obtain the bootstrap distribution for the parameters of interest by:

1. drawing a sample of size n with replacement from the 

empirical distribution (x1, . . ., xn) to form the bootstrap 

sample ( );

2. fitting a GMM (ℳ, G) to get the bootstrap estimates Ψ*̂;

3. replicating steps 1–2 a large number of times, say B, to 

obtain  estimates from B resamples.

• The bootstrap covariance matrix is then approximated by

where .

• The bootstrap standard errors for the parameter estimates Ψ̂ are computed 

as the square root of the diagonal elements of the bootstrap covariance 

matrix, i.e.

Consider the hemophilia dataset (Habbema et al., 1974) available in the package rrcov, 

which contains two measured variables on 75 women belonging to two groups: 30 of them 

are non-carriers (normal group) and 45 are known hemophilia A carriers (obligatory 

carriers).

> data(hemophilia, package = “rrcov”)

> X <- hemophilia[,1:2]
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> Class <- as.factor(hemophilia$gr)

> plot(X, pch = ifelse(Class == “normal”, 1, 16))

> legend(“bottomright”, legend = levels(Class), pch = c(16,1), inset = 0.03)

The last command plots the observed data marked by the known classification (see Figure 

8a).

In analogy with the analysis of Basford et al. (1997, example II, Sec. 5), we fitted a two-

components GMM with unconstrained covariance matrices:

> mod <- Mclust(X, G = 2, modelName = “VVV”)

> summary(mod, parameters = TRUE)

----------------------------------------------------

Gaussian finite mixture model fitted by EM algorithm

----------------------------------------------------

Mclust VVV (ellipsoidal, varying volume, shape, and orientation) model with 

2 components:

 log.likelihood  n df     BIC     ICL

     77.02852 75 11 106.5647 92.85533

Clustering table:

 1  2

39 36

Mixing probabilities:

        1        2

0.5108084 0.4891916

Means:

                 [,1]         [,2]

AHFactivity -0.11627884 -0.36656353

AHFantigen -0.02457577 -0.04534792

Variances:

[,,1]

         AHFactivity AHFantigen

AHFactivity 0.01137602 0.00659927

AHFantigen 0.00659927 0.01239353

[,,2]

         AHFactivity AHFantigen

AHFactivity 0.01585986 0.01505449

AHFantigen 0.01505449 0.03236079

Note that in the summary() function call we used the optional argument parameters = TRUE 

to retrieve the estimated parameters.

The clustering structure identified is shown in Figure 8b and can be obtained as follows:
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> plot(mod, what = “classification”, main = FALSE)

Bootstrap inference for GMMs is available through the function MclustBootstrap(), which 

requires the user to input an object returned by a call to Mclust(). Optionally, the user can 

also provide the number of bootstrap resamples nboot and the type of bootstrap to perform. 

By default, nboot = 999 and type = “bs” for the nonparametric bootstrap. Thus, a simple call 

for computing the bootstrap distribution of the GMM parameters is the following:

> boot <- MclustBootstrap(mod, nboot = 999, type = “bs”)

Note that for the sake of clarity we have included the arguments nboot and type, but they can 

be omitted since they are set at their defaults.

The function MclustBootstrap() returns an object which can be plotted or summarised. For 

instance, to graph the bootstrap distribution for the mixing proportions and for the 

component means we may use the code:

> par(mfrow = c(1,2))

> plot(boot, what = “pro”)

> par(mfrow = c(2,2))

> plot(boot, what = “mean”)

> par(mfrow = c(1,1))

The resulting plots are shown, respectively, in Figure 9 and 10.

A numerical summary of the bootstrap procedure is available through the summary method, 

which by default returns the standard errors of GMM parameters:

> summary(boot, what = “se”)

----------------------------------------------------------

Resampling standard errors

----------------------------------------------------------

Model                   = VVV

Num. of mixture components = 2

Replications              = 999

Type                    = nonparametric bootstrap

Mixing probabilities:

        1        2

0.1249357 0.1249357

Means:

                   1         2

AHFactivity 0.04028375 0.04137370
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AHFantigen 0.03262182 0.06456482

Variances:

[,,1]

          AHFactivity  AHFantigen

AHFactivity 0.007018580 0.004690481

AHFantigen 0.004690481 0.003155312

[,,2]

          AHFactivity  AHFantigen

AHFactivity 0.005757398 0.005897374

AHFantigen 0.005897374 0.009654623

The summary method can also returns bootstrap percentile confidence intervals. For the 

generic GMM parameter ψ of Ψ, the percentile method yields the intervals [ ], 

where  is the qth quantile (or the 100qth percentile) of the bootstrap distribution 

( ). These can be obtained by specifying in the summary call the argument what = 

“ci” and, optionally, the confidence level of the intervals (by default, conf.level = 0.95). For 

instance:

> summary(boot, what = “ci”)

----------------------------------------------------------

Resampling confidence intervals

----------------------------------------------------------

Model                   = VVV

Num. of mixture components = 2

Replications              = 999

Type                    = nonparametric bootstrap

Confidence level           = 0.95

Mixing probabilities:

            1        2

2.5% 0.3193742 0.1785054

97.5% 0.8214946 0.6806258

Means:

[,,1]

   AHFactivity AHFantigen

2.5% -0.22915526 -0.09784996

97.5% -0.07315876 0.02481681

[,,2]

   AHFactivity AHFantigen

2.5% -0.4573113 -0.1571624

97.5% -0.2747451 0.1318332

Variances:

[,,1]

     AHFactivity  AHFantigen
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2.5% 0.004743597 0.007012672

97.5% 0.032144767 0.019245540

[,,2]

     AHFactivity  AHFantigen

2.5% 0.003981163 0.006049076

97.5% 0.027297495 0.045854646

The function MclustBootstrap() has also the provision for using the weighted likelihood 

bootstrap (Newton and Raftery, 1994). This is a generalisation of the nonparametric 

bootstrap which assigns random (positive) weights to sample observations; it can be viewed 

as a generalized Bayesian bootstrap. The weights are obtained from a uniform Dirichlet 

distribution, i.e. by sampling from n independent standard exponential distributions and then 

rescaling by their average. Then, the function me.weighted() in mclust allows one to apply a 

weighted EM algorithm. This approach may yield benefits when one or more components 

have small mixture proportions. In that case, a nonparametric bootstrap sample may have no 

representatives of them, but the weighted likelihood bootstrap willalways have 

representatives of all groups.

In our data example the weighted likelihood bootstrap can be easily obtained by specifying 

type = “wlbs” in the MclustBootstrap() function call:

> wlboot <- MclustBootstrap(mod, nboot = 999, type = “wlbs”)

> summary(wlboot, what = “se”)

----------------------------------------------------------

Resampling standard errors

----------------------------------------------------------

Model                   = VVV

Num. of mixture components = 2

Replications              = 999

Type                    = weighted likelihood bootstrap

Mixing probabilities:

        1        2

0.1323612 0.1323612

Means:

                   1         2

AHFactivity 0.03977347 0.04192182

AHFantigen 0.02989056 0.06897928

Variances:

[,,1]

          AHFactivity  AHFantigen

AHFactivity 0.007074450 0.004686432

AHFantigen 0.004686432 0.003254011

[,,2]

          AHFactivity   AHFantigen
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AHFactivity 0.005511614 0.005746981

AHFantigen 0.005746981 0.009883791

In this case the differences between the nonparametric and the weighted likelihood bootstrap 

are negligible. We can summarise the inference for the components means obtained under 

the two approaches with the following graphs of bootstrap percentile confidence intervals:

> boot.ci <- summary(boot, what = “ci”)

> wlboot.ci <- summary(wlboot, what = “ci”)

> par(mfrow = c(1,2), mar = c(4,4,1,1))

> for(j in 1:mod$G)

    { plot(1:mod$G, mod$parameters$mean[j,], col = 1:mod$G, pch = 15,

         ylab = colnames(X)[j], xlab = “Mixture component”,

         ylim = range(boot.ci$mean,wlboot.ci$mean),

         xlim = c(.5,mod$G+.5), xaxt = “n”)

     points(1:mod$G+0.2, mod$parameters$mean[j,], col = 1:mod$G, pch = 15)

     axis(side = 1, at = 1:mod$G)

     with(boot.ci, errorBars(1:G, mean[1,j,], mean[2,j,], col = 1:G))

     with(wlboot.ci, errorBars(1:G+0.2, mean[1,j,], mean[2,j,], col = 1:G, 

lty = 2))

  }

> par(mfrow = c(1,1))

Initialisation of the EM algorithm

The EM algorithm is an easy to implement and numerically stable algorithm which has 

reliable global convergence under fairly general conditions. However, the likelihood surface 

in mixture models tends to have multiple modes and thus initialisation of EM is crucial 

because it usually produces sensible results when started from reasonable starting values 

(Wu, 1983).

In mclust the EM algorithm is initialised using the partitions obtained from model-based 

hierarchical agglomerative clustering (MBHAC). In this approach, hierarchical clusters are 

obtained by recursively merging the two clusters that provide the smallest decrease in the 

classification likelihood for Gaussian mixture model (Banfield and Raftery, 1993). Efficient 

numerical algorithms have been discussed by Fraley (1998). Using MBHAC is particularly 

convenient because the underlying probabilistic model is shared by both the initialisation 

step and the model fitting step. Furthermore, MBHAC is also computationally advantageous 

because a single run provides the basis for initialising the EM algorithm for any number of 

mixture components and component-covariances parameterisa-tions. Although there is no 

guarantee that the EM initialized by MBHAC will converge to the global optimum, it often 

provides reasonable starting points.

A problem with the MBHAC approach may arise in the presence of coarse data, resulting 

from the discrete nature of the data or from continuous data that are rounded when 
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measured. In this case, ties must be broken by choosing the pair of entities that will be 

merged. This is often done at random, but regardless of which method is adopted for 

breaking ties, this choice can have important consequences because it changes the clustering 

of the remaining observations. Moreover, the final EM solution may depend on the ordering 

of the variables.

Consider the Flea beetles data available in package tourr. This dataset provides six physical 

measurements for a sample of 72 flea beetles from three species:

> data(flea, package = “tourr”)

> X <- data.matrix(flea[,1:6])

> Class <- factor(flea$species, labels = c(“Concinna”, “Heikertingeri”, 

“Heptapotamica”))

> table(Class)

Class

Concinna Heikertingeri Heptapotamica

         21         31         22

> col <- mclust.options(“classPlotColors”)[1:3]

> clp <- clPairs(X, Class, lower.panel = NULL, gap = 0,

             symbols = c(16,15,17), colors = adjustcolor(col, alpha.f = 0.5))

> clPairsLegend(x = 0.1, y = 0.3, class = clp$class, col = col, pch = clp

$pch,

             title = “Flea beatle species”)

As can be seen from Figure 12, the observed values are rounded (to the nearest integer 

presumably) and there is a large overplotting of points.

> mod1 <- Mclust(X)

> summary(mod1)

----------------------------------------------------

Gaussian finite mixture model fitted by EM algorithm

----------------------------------------------------

Mclust EEE (ellipsoidal, equal volume, shape and orientation) model with 5 

components:

 log.likelihood  n df      BIC      ICL

    -1292.308 74 55 -2821.339 -2825.769

Clustering table:

 1 2  3  4  5

21 2 20 20 11

> adjustedRandIndex(Class, mod1$classification)

[1] 0.7675713

> mod2 <- Mclust(X[,6:1])

> summary(mod2)
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----------------------------------------------------

Gaussian finite mixture model fitted by EM algorithm

----------------------------------------------------

Mclust EEE (ellipsoidal, equal volume, shape and orientation) model with 5 

components:

 log.likelihood   n df      BIC      ICL

    -1287.027 74 55 -2810.777 -2812.702

Clustering table:

 1  2  3 4 5

22 21 22 7 2

> adjustedRandIndex(Class, mod2$classification)

[1] 0.8131206

By reversing the order of the variables in the fit of mod2, the initial partitions differ due to 

ties in the data, so the EM algorithm converges to different solutions of the same EEE model 

with 5 components. The second solution has a higher BIC and better accuracy.

In situations like this we may want to assess the stability of results by randomly starting the 

EM algorithm. The function randomPairs() may be called to obtain a random hierarchical 

structure suitable to be used as initial clustering partition:

> mod3 <- Mclust(X, initialization = list(hcPairs = randomPairs(X, seed = 

123)))

> summary(mod3)

----------------------------------------------------

Gaussian finite mixture model fitted by EM algorithm

----------------------------------------------------

Mclust EEE (ellipsoidal, equal volume, shape and orientation) model with 4 

components:

 log.likelihood   n df      BIC      ICL

    -1298.211 74 48 -2803.017 -2807.713

Clustering table:

 1  2  3  4

16 15 22 21

> adjustedRandIndex(Class, mod3$classification)

[1] 0.7867056

Using a random start we obtain a EEE model with 4 components, which has a higher BIC 

but a lower ARI. However, a better initialisation may be found using the approach discussed 

in Scrucca and Raftery (2015). The main idea is to project the data through a suitable 

transformation which enhances separation among clusters before applying the MBHAC at 

the initialisation step. Once a reasonable hierarchical partition is obtained, the EM algorithm 

is run using the data on the original scale. For instance, a GMM started using the scaled 

SVD transformation is obtained with the following code:
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> mod4 <- Mclust(X, initialization = list(hcPairs = hc(X, use = “SVD”)))

> summary(mod4)

----------------------------------------------------

Gaussian finite mixture model fitted by EM algorithm

----------------------------------------------------

Mclust EEE (ellipsoidal, equal volume, shape and orientation) model with 3 

components:

 log.likelihood  n df      BIC     ICL

   -1304.552 74 41 -2785.572 -2785.574

Clustering table:

 1  2  3

21 31 22

> adjustedRandIndex(Class, mod4$classification)

[1] 1

In this case we achieve both the highest BIC and a perfect classification of the fleas into the 

actual species.

We conclude by noting that in the case of large datasets, i.e. having a large number of 

observations or cases, a subsample of the data can be used in the MBHAC phase before 

applying the EM algorithm to the full data set. This is easily done by providing an optional 

argument to Mclust() or mclustBIC() (as well as many other functions) as a vector, say s, of 

logical values or numerical indices specifying the subset of data to be used in the initial 

hierarchical clustering phase:

> Mclust(X, initialization = list(subset = s))

Density estimation

Density estimation plays an important role in applied statistical data analysis and theoretical 

research. Finite mixture models provide a flexible semi-parametric model-based approach to 

density estimation, which makes it possible to accurately approximate any given probability 

distribution. mclust provides a simple interface to Gaussian mixture models for univariate 

and multivariate density estimation.

Izenman and Sommer (1988) considered the fitting of a Gaussian mixture to the distribution 

of the thickness of stamps in the 1872 Hidalgo stamp issue of Mexico 2. A density estimate 

based on GMM can be obtained using the function densityMclust():

2The Hidalgo stamp data is available at the home page for the book by Izenman (2008) at http://astro.temple.edu/~alan/MMST/
datasets.html, or through the package MMST. The latter has been archived on CRAN, so it must be installed using the following code:

> install.packages(“http://cran.r-project.org/src/contrib/Archive/MMST/
MMST_0.6-1.1.tar.gz”, repos
= NULL, type = “source”)
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> data(Hidalgo1872, package = “MMST”)

> Thickness <- Hidalgo1872$thickness

> Year <- rep(c(“1872”, “1873-74”), c(289, 196))

> dens <- densityMclust(Thickness)

> summary(dens$BIC)

Best BIC values:

             V,3         V,5         V,4

BIC     2983.791 2974.939223   2972.19349

BIC diff    0.000    -8.852019    -11.59775

> summary(dens, parameters = TRUE)

-------------------------------------------------------------------

Density estimation via Gaussian finite mixture modeling

-------------------------------------------------------------------

Mclust V (univariate, unequal variance) model with 3 components:

  log.likelihood   n df     BIC      ICL

     1516.632 485  8 2983.791 2890.914

Clustering table:

  1   2   3

128 171 186

Mixing probabilities:

       1         2         3

0.2661410 0.3011217 0.4327374

Means:

         1          2          3

0.07215458 0.07935341 0.09919740

Variances:

             1              2             3

0.000004814927 0.000003097694 0.000188461484

The model selected is a three-component mixture with different variances. A graph of the 

density estimated is shown in Figure13a and is obtained with the code:

> br <- seq(min(Thickness), max(Thickness), length = 21)

> plot(dens, what = “density”, data = Thickness, breaks = br)

Here a histogram of the observed data is also drawn by providing the optional argument data 

and with breakpoints between histogram cells specified in the argument breaks. From the 

graph, three modes appear at the means of the mixture components: one with larger stamp 

thickness, and two corresponding to thinner stamps.

Additional information can also be used. In particular, thickness measurements can be 

grouped according to the year of consignment; the first 289 stamps refer to the 1872 issue, 

and the remaining 196 stamps to the years 1873–1874. We may draw a (suitable scaled) 
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histogram for each year-of-consignment and then add the estimated components densities as 

follows:

> h1 <- hist(Thickness[Year == “1872”], breaks = br, plot = FALSE)

> h1$density <- h1$density*prop.table(table(Year))[1]

> h2 <- hist(Thickness[Year == “1873-74”], breaks = br, plot = FALSE)

> h2$density <- h2$density*prop.table(table(Year))[2]

> x <- seq(min(Thickness)-diff(range(Thickness))/10,

         max(Thickness)+diff(range(Thickness))/10, length = 200)

> cdens <- predict(dens, x, what = “cdens”)

> cdens <- t(apply(cdens, 1, function(d) d*dens$parameters$pro))

> col <- adjustcolor(mclust.options(“classPlotColors”)[1:2], alpha = 0.3)

> plot(h1, xlab = “Thickness”, freq = FALSE, main = ““, border = FALSE, col 

= col[1],

      xlim = range(x), ylim = range(h1$density, h2$density, cdens))

> plot(h2, add = TRUE, freq = FALSE, border = FALSE, col = col[2])

> matplot(x, cdens, type = “l”, lwd = 1, add = TRUE, lty = 1:3, col = 1)

> box()

The result is shown in Figure 13b. Stamps from 1872 show a two-regime distribution, with 

one corresponding to the component with the largest thickness, and one whose distribution 

essentially overlaps with the bimodal distribution of stamps for the years 1873–1874.

As an example of bivariate density estimation, consider the well-known ‘Old Faithful’ data 

set which provides the waiting time between eruptions (waiting) and the duration of the 

eruptions (eruptions) for the Old Faithful geyser in Yellowstone National Park, Wyoming, 

USA. The dataset can be read and data plotted as follows:

> data(faithful)

> plot(faithful, cex = 0.5)

A bivariate density estimate for the Faithful data is obtained with the commands:

> dens <- densityMclust(faithful)

> summary(dens)

-------------------------------------------------------------------

Density estimation via Gaussian finite mixture modeling

-------------------------------------------------------------------

Mclust EEE (ellipsoidal, equal volume, shape and orientation) model with 3 

components:

 log.likelihood   n df      BIC      ICL

    -1126.361 272 11 -2314.386 -2360.865

Clustering table:
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  1  2  3

130 97 45

Model selection based on the BIC selects a three-component mixture with common 

covariance matrix (EEE). One component is used to model the group of observations having 

both low duration and low waiting times, whereas two components are needed to 

approximate the skewed distribution of the observations with larger duration and waiting 

times.

Figure 14b–d shows some of the available graphs in mclust for a bivariate density estimated 

by GMM. These can be obtained with the commands:

> plot(dens, what = “density”, data = faithful, grid = 200, points.cex = 0.5,

     drawlabels = FALSE)

> plot(dens, what = “density”, type = “image”, col = “steelblue”, grid = 200)

> plot(dens, what = “density”, type = “persp”, theta = -25, phi = 20,

      border = adjustcolor(grey(0.1), alpha.f = 0.3))

Note that the same procedure using the function mclustDensity() can also be used to obtain 

density estimates for higher dimensional datasets.

Supervised classification

In supervised classification or discriminant analysis the aim is to build a classifier (or a 

decision rule) which is able to assign an observation with an unknown class membership to 

one of K known classes.

For building a supervised classifier, a training dataset {(x1, y1), . . ., (xn, yn )} is used for 

which both the features xi and true classes yi ∈ {C1, . . ., CK} are known.

Mixture-based discriminant analysis models assume that the density for each class follows a 

Gaussian mixture distribution

where πgk are the mixing probabilities for class , μgk the means for 

component g within class k, and Σgk the covariance matrix of component g within class k. 

Hastie and Tibshirani (1996) proposed Mixture Discriminant Analysis (MDA) where it is 

assumed that the covariance matrix is the same for all the classes but is otherwise 

unconstrained, i.e. Σgk = Σ for all g and k. The number of mixture components is assumed 

known for each class.
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Bensmail and Celeux (1996) proposed the Eigenvalue Decomposition Discriminant Analysis 

(EDDA) which assumes that the density for each class can be described by a single Gaussian 

component (i.e. Gk = 1 for all k) with the component covariance structure factorised as

Several models can be obtained from the above decomposition. If Σk = λDAD⊤ (model 

EEE), then EDDA is equivalent to linear discriminant analysis (LDA). If 

(model VVV) then EDDA is equivalent to quadratic discriminant analysis (QDA).

Consider the UCI Wisconsin breast cancer diagnostic data available at http://

archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic). This dataset 

provides data for 569 patients on 30 features of the cell nuclei obtained from a digitized 

image of a fine needle aspirate (FNA) of a breast mass (Mangasarian et al., 1995). For each 

patient the cancer was diagnosed as malignant or benign. Following Fraley and Raftery 

(2002) we considered only three attributes: extreme area, extreme smoothness, and mean 

texture. The dataset can be downloaded from the UCI repository using the following 

commands:

> data <- read.csv(“http://archive.ics.uci.edu/ml/machine-learning-databases/

breast-cancer-wisconsin/wdbc.data”, header = FALSE)

> X <- data[,c(4, 26, 27)]

> colnames(X) <- c(“texture.mean”, “area.extreme”, “smoothness.extreme”)

> Class <- data[,2]

Then, we may randomly assign approximately 2/3 of the observations to the training set, and 

the remaining ones to the test set:

> set.seed(123)

> train <- sample(1:nrow(X), size = round(nrow(X)*2/3), replace = FALSE)

> X.train <- X[train,]

> Class.train <- Class[train]

> table(Class.train)

Class.train

  B  M

238 141

> X.test <- X[-train,]

> Class.test <- Class[-train]

> table(Class.test)

Class.test

  B  M

119 7 1
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The function MclustDA() provides fitting capabilities for the EDDA model, but we must 

specify the optional argument modelType = “EDDA”. The function call is thus the 

following:

> mod1 <- MclustDA(X.train, Class.train, modelType = “EDDA”)

> summary(mod1, newdata = X.test, newclass = Class.test)

---------------------------------------------------------

Gaussian finite mixture model for classification

---------------------------------------------------------

EDDA model summary:

  log.likelihood    n  df      BIC

     -2989.967  379  12  -6051.185

Classes   n Model  G

     B 238   VVI  1

     M 141   VVI  1

Training classification summary:

      Predicted

Class    B  M

    B  237   1

   M   19 122

Training error = 0.05277045

Test classification summary:

      Predicted

Class    B  M

   B  116   3

   M    5  66

Test error = 0.04210526

The EDDA mixture model selected by BIC is the VVI model, so each group is described by 

a single Gaussian component with varying volume and shape, but same orientation aligned 

with the coordinate axes. Note that in the summary() function call we also provided the 

features and the known classes for the test set, so both the training error and the test error are 

reported. A cross-validation error can also be computed using the cvMclustDA() function, 

which by default use nfold = 10 for a 10-fold cross-validation:

> cv <- cvMclustDA(mod1)

> unlist(cv[c(“error”, “se”)])

       error         se

0.052770449 0.007930516

EDDA imposes a single mixture component for each group. However, in certain 

circumstances more complexity may improve performance. A more general approach, called 

MclustDA, has been proposed by Fraley and Raftery (2002), where a finite mixture of 
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Gaussian distributions is used within each class, with number of components and covariance 

matrix (expressed following the usual decomposition) which may be different within any 

class. This is the default model fitted by MclustDA:

> mod2 <- MclustDA(X.train, Class.train)

> summary(mod2, newdata = X.test, newclass = Class.test)

---------------------------------------------------------

Gaussian finite mixture model for classification

---------------------------------------------------------

MclustDA model summary:

  log.likelihood    n df     BIC

     -2937.586  379 29 -6047.361

Classes    n  Model  G

     B  238   EEV  2

     M  141    VVI  2

Training classification summary:

        Predicted

Class      B  M

    B    236   2

   M      7 134

Training error = 0.0237467

Test classification summary:

    Predicted

Class   B  M

    B 114   5

   M   2  69

Test error = 0.03684211

A two-component mixture distribution is fitted to both the benign and malignant 

observations, but with different covariance structures within each class. Both the training 

error and the test error are slightly smaller than for EDDA, a fact also confirmed by the 10-

fold cross-validation procedure:

> cv <- cvMclustDA(mod2)

> unlist(cv[c(“error”, “se”)])

       error          se

0.021108179 0.007648168

A plot method which produces a variety of graph is associated with objects returned by 

MclustDA. For instance, pairwise scatterplots between the features, showing both the known 

classes and the estimated mixture components, are drawn as follows (see Figure 15a–c):
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> plot(mod2, what = “scatterplot”, dimens = c(1,2))

> plot(mod2, what = “scatterplot”, dimens = c(2,3))

> plot(mod2, what = “scatterplot”, dimens = c(3,1))

Another interesting graph can be obtained by projecting the data on a dimension reduced 

subspace (Scrucca, 2014) with the commands:

> drmod2 <- MclustDR(mod2)

> summary(drmod2)

-----------------------------------------------------------------------------

--

Dimension reduction for model-based clustering and classification

-----------------------------------------------------------------------------

---

Mixture model type: MclustDA

Classes   n  Model G

     B 238   EEV 2

     M 141   VVI 2

Estimated basis vectors:

                       Dir1        Dir2         Dir3

texture.mean      -0.00935540 -0.044384467 -0.0006607120

area.extreme       0.00049997 0.000071676 -0.0000088494

smoothness.extreme 0.99995611 -0.999014521 0.9999997817

               Dir1     Dir2       Dir3

Eigenvalues   0.67718  0.28159   0.013928

Cum. %     69.61869  98.56810 100.000000

> plot(drmod2, what = “boundaries”, ngrid = 200)

The graph produced by the last command is shown in Figure 15d. The two groups are 

largely separated along the first direction, with the group of malignant cases showing a 

higher variability.

Finally, note that the MDA model is equivalent to MclustDA with Σk = λDAD⊤ (model 

EEE) and fixed Gk ≥ 1 for each k = 1, . . ., K. For instance, a MDA with two mixture 

components for each class can be fitted as:

> mod3 <- MclustDA(X.train, Class.train, G = 2, modelNames = “EEE”)

> summary(mod3, newdata = X.test, newclass = Class.test)

---------------------------------------------------------

Gaussian finite mixture model for classification

---------------------------------------------------------

MclustDA model summary:
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 log.likelihood   n df      BIC

    -2968.077 379 26 -6090.531

Classes   n Model G

     B 238  EEE  2

     M 141  EEE  2

Training classification summary:

     Predicted

Class   B  M

    B 235   3

   M  12 129

Training error = 0.03957784

Test classification summary:

    Predicted

Class   B  M

    B 113   6

   M   2  69

Test error = 0.04210526

Summary

mclust is one of the most popular R package for Gaussian mixture modelling. Since its early 

developments (Banfield and Raftery, 1993; Fraley and Raftery, 1998, 1999), mclust has seen 

major updates through the years, which expanded its capabilities and features, increasing its 

popularity and widening its area of utilisation.

Here we have presented the most salient new features introduced in version ≥5, namely new 

covariance parameterisations, subspace data visualisation, different model selection criteria, 

bootstrap-based inference and EM algorithm initialisation. We showed their application on a 

collection of different datasets, pointing out their utility in different contexts.
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Figure 1. 
Number of weekly downloads from the RStudio CRAN mirror over time for some of R 

packages dealing with Gaussian finite mixture modelling.
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Figure 2. 
Ellipses of isodensity for each of the 14 Gaussian models obtained by eigen-decomposition 

in case of three groups in two dimensions.
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Figure 3. 
BIC plot for models fitted to the wine data.
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Figure 4. 
Contour plot of estimated mixture densities (a) and uncertainty boundaries (b) on the 

projection subspace estimated with MclustDR for the wine dataset.
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Figure 5. 
Pairwise scatterplots for the diabetes data with points marked according to classification.
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Figure 6. 
Plots of BIC and ICL model selection criteria for the diabetes data.
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Figure 7. 
Histograms of LRTS bootstrap distributions for testing the number of mixture components in 

the diabetes data. The dotted vertical lines refer to the sample values of LRTS.
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Figure 8. 
True class membership (a) and estimated classification using GMM (b) for the hemophilia 

dataset.
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Figure 9. 
Bootstrap distribution for the mixture proportions. The vertical dotted lines refer to the 

MLEs for the GMM fitted to the hemophilia data.
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Figure 10. 
Bootstrap distribution for the mixture component means. The vertical dotted lines refer to 

the MLEs for the GMM fitted to the hemophilia data.
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Figure 11. 
Bootstrap percentile intervals for the means of the GMM fitted to the hemophilia dataset. 

Solid lines refer to nonparametric bootstrap, dashed lines to the weighted likelihood 

bootstrap.
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Figure 12. 
Scatterplot matrix for the Flea beetles data with points marked according to the true classes.
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Figure 13. 
(a) Histogram with mixture-based density estimate curve, and (b) histograms by group-year 

with estimated mixture-component densities, for the Hidalgo1872 stamps dataset.
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Figure 14. 
Plot of the Old Faithful data (a), mixture-based density estimate contours (b), image plot of 

density estimate (c) and perspective plot of the bivariate density estimate (d).
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Figure 15. 
Pairwise scatterplots between variables for the Wisconsin breast cancer data (panels a–c). 

Points are marked by cancer diagnosis (benign = , malignant = ), whereas ellipses 

correspond to covariances of mixture components estimated with MclustDA. Plot of data 

projected along the first two estimated directions obtained with MclustDR, and uncertainty 

classification boundaries (d).
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