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Feature selection

Once we move to a modelbased clustering procedure we can use
BIC to select features as well. An elegant approach to this, which
is an extension of Mclust, is the following (implemented in the
clustvarsel() package.
Consider the following; maybe not all features are relevant for
clustering, either directly or indirectly.



Feature selection

Here’s an example where x1 and x2 are relevant for clustering
(having means 0, 0 and 4,−3 for the two clusters respectively, and
correlation 0.6 and -0.6 between features 1 and 2 in cluster 1 and 2
respectively). Feature x3 is related to the clustering indirectly as
x3 = x1 + e, e ∼ N(0, .5).
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We can of course also have features that are completely unrelated
to the clustering, i.e. not differ in mean for the different clusters
and not correlated with any feature that is mean-shifted between
clusters.



ClustVarSel

ClustVarSel is a procedure that decomposes the likelihood as
follows. Let Z be the cluster labels for the data set:

p(xc , xno−c | Z ) = p(xc | Z )p(xno−c | Z , xc) = p(xc | Z )p(xno−c | xc)

The x-variables are thus partitioned into a set xc that is dependent
on the clustering label, i.e. the multivariate normal distribution for
the xc variables have mean and possibly covariance parameters
that are cluster specific. The variable set xno−c are conditionally
(on xc) independent of the cluster labels. That is, if we know xc
then xno−c | xc distributions are not cluster specific.



ClustVarSel

If xno−c has a distribution that cannot be simplified to remove
cluster-specific distribution parameters by conditioning on xc , then
xno−c is directly related to the clustering.
The ClustVarSel procedure searches for variables to add in either
the c (cluster related) or no − c (not cluster related) set. The
partitioning that is optimal is determined via the BIC.



ClustVarSel

If x1 is in the cluster relevant set already, consider adding x2

Fit the model where both x1, x2 are in the set c.

Fit the model where x1 is in the set c and x2 is not. This is
done via a mixture model fit with x1 and a regression model
for x2 | x1.
Compute BIC for the two alternatives and pick the alternative
that has the smallest BIC.

Considering adding or removing variables from the set c until
no move can be accepted (no smaller BIC alternative).

The search can be done forward (where no variable is in set c to
start with) or backward (where all are in the set c initially).



ClustVarSel

Running clustvarsel on the simulation from figure above:

’clustvarsel’ model object:

Stepwise (forward) greedy search:

Var.proposed BIC BIC diff. TypeStep Decision

1 2 -211.3307 5.255851 Add Accepted

2 1 -377.4739 38.873054 Add Accepted

3 3 -377.4739 -14.769282 Add Rejected

4 1 -377.4739 38.873083 Remove Rejected

Selected subset: 2, 1 }

Clustvarsel picks variables 2 and 1 to be cluster related (correctly)
and does not add variable 3 (also correct decision).



High-dimensional Classification and Clustering

Reduce the number of parameters in the mixture model

Assume classes/clusters live in a lower dimensional space
(intrinsic number of dimensions)

How? Generalize QDA/Mixture model to only utilize the
leading PC components of the class/cluster-specific Σk



High-dimensional Classification and Clustering

Assume Qk are the leading dk components of the
p × p-dimensional Σk

Assume the corresponding leading eigenvalues are
ajk , j = 1, · · · , dk and the remaining eigenvalues are small and
equal bk

Think of the p − dk dimensions corresponding to the small
eigenvalues as noise

Estimate parameters under these restrictions - save a lot of
parameters!

Choose class/cluster-specific complexity (dk) via BIC

R-package HDclassif



Consensus clustering

Any method that comprises many steps is subject to
instability since each step is a source of error

How many features, how many eigenvalues?

In addition, many clustering methods are quite sensitive to
small data perturbations



Consensus clustering

If you can do things once, you can do it 100 times!

Add some randomness to the procedure and run it many times

Retain clusters that are stable across multiple runs!



Consensus clustering

How add randomness?

Resampling of observations... but also

Subset of features

Subset of features + PCA

Random projections

....



Consensus clustering

Each run produces a clustering result

How do we combine these?

Some methods compare the clusters in terms of overlap

Other methods use a similar idea to RF clustering: for each
pair of objects, count how many times they appear in a cluster
together. Use this is a new similarity metric and use e.g.
hierarchical clustering to produce a final result.

I like the latter approach because it gives you a lot of flexibility
in which clustering procedures to compare across runs.



Example of results

Consensus matrices (i.e. proportion of times clusters are in
agreement for all pairs of observations.
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Example of results

CDF of consensus matrices can be used to choose the number of
clusters. Check where adding clusters ”stops paying off” - can be
assessed by comparing the CDF differences (right panel).



Example of results

It can be interesting to look at how clusters are formed as you
increase the number of clusters.



Graphical Lasso

Remember our discussion about the covariance matrix and the
inverse covariance matrix in class

The sparse inverse covariance matrix has non-zero entries
where there is a direct correlation between items

That is, if there is a partial correlation remaining once we
account for all other dependencies.

Can also utilize this for network modeling

Nice visualizations of complex data!

Related to clustering in the sense that....

... observations are represented in a network - neighbors are
more similar.

But also a more complex question - neighbors are close once
dependency on other observations taken into account



Graphical Lasso

Lots of methods for network modeling (Bayesian networks,
information theoretic, directed/mechanistic,...)

Here we will focus on sparse modeling

Assume data comes from a multivariate normal model N(µ,Σ)

The inverse of the covariance matrix Σ, Θ, is called the
precision matrix



Graphical Lasso

The inverse of the covariance matrix Σ, Θ, is called the
precision matrix

Fact: The precision matrix is non-zero for entry i , j only if the
partial correlation between i , j is non-zero

Partial correlation = correlation between i , j once dependency
on all other observations accounted for

θi ,j = Cov(Xi ,Xj | Xk , k ̸= i , j)

Can compute the partial correlation from residual correlation
from regression of i on all other variables and j on all other
variables



Graphical Lasso

In practice, can’t compute the inverse Θ̂ of the p × p Σ̂ if
p > n

Sparse modeling to the rescue - which we will learn more
about after the easter break.

However, what we do is essentially regularize the inverse
estimates, shrinking some elements toward 0.

Specifically: We maximize the gaussian log-likeihood with
penalty λ

∑
j<i |θi ,j |

Methods: gradient based glasso, lasso-regression based
neighborhood selection.

Packages glasso and huge



Graphical Lasso

Does it work?

Like sparse regression, there are some caveats. Too many
highly correlated X s, we cannot identify the network model.

Is the data sparse?

Fixes: randomized lasso. Run glasso many times with random
penalties: check how often a graph-link is selected.

High-dimensional data? First filter. If a set of variables has no
correlation with any member of another set exceeding λ, you
can run glasso separately on the sets (implemented in huge
package).



Examples: Graphical Lasso

Networks at different levels of sparsity regulation.



Examples: Graphical Lasso

Networks on the digits data



Examples: Graphical Lasso

Networks from the cancer data.



Examples: Graphical Lasso

Networks from the cancer data - but now on the genes instead of
the patients.



Take-home message

Clustering - a more difficult task than classification because
there is no ”ground truth”

Remember - clustering algorithms may make implicit
assumptions about the data and what constitutes a good
cluster - i.e. kmeans looking for spherical clusters

Think carefully about scaling/standardizing the data and what
impact this may have

Selecting the number of clusters is another challenge

Resampling can be used for consensus clustering - and also to
select the number of clusters based on stability

Lots of algorithms out there!!! Good idea to compare a few.




