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Goals of modelling

1. Predictive strength: How well can we reconstruct the observed data? Has
been most important so far.
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Goals of modelling

1. Predictive strength: How well can we reconstruct the observed data? Has
been most important so far.

2. Model/variable selection: Which variables are part of the true model? This
is about uncovering structure to allow for mechanistic understanding.
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Feature Selection



Remember ordinary least-squares (OLS)

Consider the model
y=XB+¢
where

> y € R" is the outcome, X € R™(P+D js the design matrix, § € RP*! are the
regression coefficients, and ¢ € R" is the additive error
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Remember ordinary least-squares (OLS)

Consider the model
y=XB+¢
where

> y € R" is the outcome, X € R™(P+D js the design matrix, § € RP*! are the
regression coefficients, and ¢ € R" is the additive error
» Five basic assumptions have to be checked
Underlying relationship is linear (1)
Zero mean (2), uncorrelated (3) errors with constant variance (4) which are
(roughly) normally distributed (5)
> Centring (% >, x1j = 0) and standardisation (% P x}; = 1) of predictors
simplifies interpretation
» Centring the outcome (l Z?zl y; = 0) and features removes the need to
estimate the intercept ! 2025



Feature selection as motivation

Analytical solution exists when XX is invertible

BoLs = XTX)XTy
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Feature selection as motivation

Analytical solution exists when XX is invertible
Bors = XTX)'XTy
The solution can be unstable or impossible to compute if

» there is high correlation between predictors, or

> if p>n.

Solutions: Regularisation or feature selection
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Filtering for feature selection

» Choose features through pre-processing
» Features with maximum variance
» Use only the first k PCA components
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» Choose features through pre-processing
» Features with maximum variance
» Use only the first k PCA components
» Examples of other useful measures
» Use a univariate criterion, e.g. F-score: Features that correlate most with the
response
» Mutual Information: Reduction in uncertainty about x after observing y
» Variable importance: Determine variable importance with random forests
» Summary
» Pro: Fast and easy
» Con: Filtering mostly operates on single features and is not geared towards a
certain method
» Care with cross-validation and multiple testing necessary
» Filtering is often more of a pre-processing step and less of a proper feature

selection step
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Wrapping for feature selection

» Idea: Determine the best set of features by fitting models of different
complexity and comparing their performance
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Wrapping for feature selection

» Idea: Determine the best set of features by fitting models of different
complexity and comparing their performance

> Best subset selection: Try all possible (exponentially many) subsets of
features and compare model performance with e.g. cross-validation

» Forward selection: Start with just an intercept and add in each step the
variable that improves fit the most (greedy algorithm)

» Backward selection: Start with all variables included and then remove
sequentially the one with the least impact (greedy algorithm)

» As discreet procedures, all of these methods exhibit high variance (small
changes could lead to different predictors being selected, resulting in a
potentially very different model)
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Embedding for feature selection

» Embed/include the feature selection into the model estimation procedure
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Embedding for feature selection

» Embed/include the feature selection into the model estimation procedure
» Ideally, penalization on the number of included features

1(B; #0)

p
B = argmin |y — Xg|3 + 4
B =il

J

However, discrete optimization problems are hard to solve
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Embedding for feature selection

» Embed/include the feature selection into the model estimation procedure

» Ideally, penalization on the number of included features

1(B; #0)

1

p
J:

B = argmin |y — XB|3 + 4
4

However, discrete optimization problems are hard to solve

» Softer regularisation methods can help

ﬁ=a@;mwy—xm@+mmﬁ

where 1 is a tuning parameter and g > 1 or q = co.

6/25



Feature selection

Feature selection can be addressed in multiple ways

» Filtering: Remove variables before the actual model for the data is built
» Often crude but fast
» Typically only pays attention to one or two features at a time (e.g. F-Score, MIC)
or does not take the outcome variable into consideration (e.g. PCA)
» Wrapping: Consider the selected features as an additional hyper-parameter
» computationally very heavy
» most approximations are greedy algorithms
» Embedding: Include feature selection into parameter estimation through
penalisation of the model coefficients
» Naive form is equally computationally heavy as wrapping
» Soft-constraints create biased but useful approximations
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Regularised regression



Constrained and regularised regression

The optimization problem

argmin [ly —Xg|3 subjectto [B]q <t
4

for g > 0 is equivalent to
B = argﬁmm ly — XB1% + AllBIIE

when g > 1.
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Constrained and regularised regression

The optimization problem

argmin [ly —Xg|3 subjectto [B]q <t
4

for g > 0 is equivalent to
B = argﬁmm ly — XB1% + AllBIIE

when g > 1. This is the Lagrangian of the constrained problem.

Note: Constraints are convex for all g > 1 but not differentiable in 8 = 0 forq = 1.
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Ridge regression

For g = 2 the constrained problem is ridge regression (Tikhonov regularisation)

Briage(d) = argﬁmm ly — XBI% + AllBI13

p
where 83 = ¥°_, 47
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Ridge regression

For g = 2 the constrained problem is ridge regression (Tikhonov regularisation)

Briage(d) = argﬁmm ly — XBI% + AllBI13

2 _ p 2)
where [|8]z = j=1 Bj.
An analytical solution exists if X"X + I, is invertible
BridgeD) = XX + A1, Xy
If X"X = I,,, then
2 _ Bovs
ﬁridge(l) - 1 +l’

i.e. Eridge(/l) is biased but has lower variance.
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SVD and ridge regression

Recall: The SVD of a matrix X € R™P was

X =UDV'
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SVD and ridge regression

Recall: The SVD of a matrix X € R™*P was
X =UDV'
The analytical solution for ridge regression becomes (n > p)
Briage() = XTX +21,)'XTy
= (VD?*V'T + 11,)"'VDUy
= V(D? + 1I,)"'DUTy

= 2
L2

T
viu;y

Ridge regression acts strongest on principal components with lower
eigenvalues, e.g. in presence of correlation between features.
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Effective degrees of freedom

Recall the hat matrix H = X(X"X)~!XT in OLS. The trace of H
tr(H) = tr(XX'X)7'XT) = tr(XTXXX)™) = tr(I,) = p

is equal to the trace of £ and the degrees of freedom for the regression
coefficients.
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Effective degrees of freedom

Recall the hat matrix H = X(X"X)~!XT in OLS. The trace of H
tr(H) = tr(XX'X)7'XT) = tr(XTXXX)™) = tr(I,) = p

is equal to the trace of £ and the degrees of freedom for the regression
coefficients.

In analogy define for ridge regression
H(1) := XXX + AL,)7'XT

and
P 4?2
df(d) 1= tr(HQ) = Y —-~2

=y

the effective degrees of freedom.
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Lasso regression

For g = 1 the constrained problem is known as the lasso

Blasso) = arg;nin ly — X812 + 2llBllx

» Smallest g in penalty such that constraint is still convex

» Produces sparse solutions (many coefficients exactly equal to zero) and
therefore performs feature selection
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Intuition for the penalties (1)

Assume the OLS solution B¢ exists and set
r=y—XBors
it follows for the residual sum of squares (RSS) that

ly —XBII5 = (XBors + 1) — XAl
= [|X(B — Bors) — I'||%
= (B —Bors)"X"X(B — Bors) — 2r'X(B — Bors) +1'r

which is an ellipse (at least in 2D) centred on Bos.

13/25



Intuition for the penalties (11)

The least squares RSS is minimized for Bop¢. If a constraint is added (||g]d < t)
then the RSS is minimized by the closest 8 possible that fulfills the constraint.

Lasso
B

BOLS

Brasso

B2

Ridge

B

BDLS

The blue lines are the contour lines for the RSS

B2
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Intuition for the penalties (llI)

q:0.7

a:

B

1

Depending on q the different
constraints lead to different
solutions. If By is in one of
the coloured areas or on a line,
the constrained solution will
be at the corresponding dot. By

Sparsity only forg <1
Convexity only for g > 1

B2

P

s Inf

B2

B2

B2
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Computational aspects of the Lasso (1)

What estimates does the lasso produce?
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Computational aspects of the Lasso (1)

What estimates does the lasso produce?

Target function
1
arg Imin 5 lly — X815 + AllBllx

Special case: X'X = I,. Then

2y — X613 + I8l = 5y7y — yTX B+ 2678+ 26l = (6)

—gT
_ﬁOLS

How do we find the solution 8 in presence of the non-differentiable
penalisation ||B]|,?
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Computational aspects of the Lasso (Il)

ForX'™X = I, the target function can be written as
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j=1
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Computational aspects of the Lasso (Il)

ForX'™X = I, the target function can be written as
b 1
arg min 21 —Bos,jBj + 55}2 + 1B,
J:
This results in p uncoupled optimization problems.

» If Bors,j > 0, then B; > 0 to minimize the target
» If Bors,j < 0,then§; <0

Each case results in

B\lasso,j = sign(Bors,j)1BoLs,jl — D+ = ST(BoLs,j» )

where

» x, =xif x > 0or 0 otherwise,
» and ST is called the soft-thresholding operator 17/25



Relation to OLS estimates

Both ridge regression and the lasso estimates can be written as functions of B¢
ifXTX =1,

Bots,j A .
Bridge,j = T2 and  Blasso,j = sign(Bors,j)Bors,jl — D+

Ridae Lasso
/7 /7
/7 /7
/7 /7
/, 7/
V/ 7/
Y. A
p 4 /7 l)\
—>
' 4 /7
7 /7
/4 /7
7/ /7
/7 /7
/7 /7
/7 /7

Visualisation of the transformations applied to the OLS estimates. 18/25



Shrinkage and effective degrees of freedom

When A is fixed, the shrinkage of the lasso estimate B,,..,(4) compared to the OLS

estimate By is defined as
_ ”ﬁlasso(/‘l)lll

s(A) =
lBorsl
Note: s(1) € [0,1] with s(1) — 0 for increasing A and s(1) =1if1=0

19/25



Shrinkage and effective degrees of freedom

When A is fixed, the shrinkage of the lasso estimate B,,..,(4) compared to the OLS
estimate By is defined as

”ﬁlasso(/‘l)lll
s(A) = ==
D= bosly
Note: s(1) € [0,1] with s(1) — 0 for increasing A and s(1) =1if1=0

Recall: For ridge regression define

H(1) :=X(XTX + AL,)'XT

and
p df
df(A) :=tr(HQQ)) = —_
) r(H(4)) J-Zzldfwl

the effective degrees of freedom.
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Prostate cancer dataset

Prostate cancer dataset

Data to examine the correlation between the level of a prostate cancer-specific
substance and a number of clinical measurements in men who just before partial
or full removal of the prostate in patients.

» n =67 samples
» A continuous response on the log-scale

» p = 8 features
» e.g. log cancer volume, log prostate weight or age of patient
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Regularisation paths for varying 1

Red dashed lines indicate the A selected by cross-validation

Ridge Lasso
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Notes on the lasso

» In the general case, i.e. XTX # L, there is no explicit solution.
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Notes on the lasso

» Inthe general case, i.e. XTX # L, there is no explicit solution.

» Numerical solution possible, e.g. with coordinate descent where each §; is
updated separately with the remaining 8; with i # j fixed

» As for ridge regression, estimates are biased
» Degrees of freedom are equal to the number of non-zero coefficients
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Potential caveats of the lasso (1)

> Sparsity of the true model:

» The lasso only works if the data is generated from a sparse process.
» However, a dense process with many variables and not enough data or high
correlation between predictors can be unidentifiable either way
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Potential caveats of the lasso (1)

> Sparsity of the true model:

» The lasso only works if the data is generated from a sparse process.
» However, a dense process with many variables and not enough data or high
correlation between predictors can be unidentifiable either way

» Correlations: Many non-relevant variables correlated with relevant variables
can lead to the selection of the wrong model, even for large n

» Irrepresentable condition: Split X such that X; contains all relevant
variables and X, contains all irrelevant variables. If

IXIX)XX) ! <1-79
for some 5 > 0 then the lasso is (almost) guaranteed to pick the true model

23/25



Potential caveats of the lasso (Il)

In practice, both the sparsity of the true model and the irrepresentable
condition cannot be checked.

» Assumptions and domain knowledge have to be used
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Take-home message

» Filtering and wrapping methods useful for feature selection in practice but
can be unprincipled or have high variance

» Regularised regression can help in numerically unstable situations (such as
in ridge regression)

» The lasso can in addition perform variable selection

25/25
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