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The lasso is a popular technique for simultaneous estimation and variable selection. Lasso variable selection has been shown to be consistent
under certain conditions. In this work we derive a necessary condition for the lasso variable selection to be consistent. Consequently, there
exist certain scenarios where the lasso is inconsistent for variable selection. We then propose a new version of the lasso, called the adaptive
lasso, where adaptive weights are used for penalizing different coefficients in the �1 penalty. We show that the adaptive lasso enjoys the
oracle properties; namely, it performs as well as if the true underlying model were given in advance. Similar to the lasso, the adaptive lasso
is shown to be near-minimax optimal. Furthermore, the adaptive lasso can be solved by the same efficient algorithm for solving the lasso.
We also discuss the extension of the adaptive lasso in generalized linear models and show that the oracle properties still hold under mild
regularity conditions. As a byproduct of our theory, the nonnegative garotte is shown to be consistent for variable selection.
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1. INTRODUCTION

There are two fundamental goals in statistical learning: en-
suring high prediction accuracy and discovering relevant pre-
dictive variables. Variable selection is particularly important
when the true underlying model has a sparse representation.
Identifying significant predictors will enhance the prediction
performance of the fitted model. Fan and Li (2006) gave a com-
prehensive overview of feature selection and proposed a uni-
fied penalized likelihood framework to approach the problem
of variable selection.

Let us consider model estimation and variable selection in
linear regression models. Suppose that y = (y1, . . . , yn)

T is
the response vector and xj = (x1j, . . . , xnj)

T , j = 1, . . . ,p, are
the linearly independent predictors. Let X = [x1, . . . ,xp] be
the predictor matrix. We assume that E[y|x] = β∗

1 x1 + · · · +
β∗

p xp. Without loss of generality, we assume that the data are
centered, so the intercept is not included in the regression func-
tion. Let A = { j :β∗

j �= 0} and further assume that |A| = p0 < p.
Thus the true model depends only on a subset of the predictors.
Denote by β̂(δ) the coefficient estimator produced by a fitting
procedure δ. Using the language of Fan and Li (2001), we call δ

an oracle procedure if β̂(δ) (asymptotically) has the following
oracle properties:

• Identifies the right subset model, { j : β̂j �= 0} = A
• Has the optimal estimation rate,

√
n(β̂(δ)A − β∗

A) →d
N(0,�∗), where �∗ is the covariance matrix knowing the
true subset model.

It has been argued (Fan and Li 2001; Fan and Peng 2004) that
a good procedure should have these oracle properties. How-
ever, some extra conditions besides the oracle properties, such
as continuous shrinkage, are also required in an optimal proce-
dure.

Ordinary least squares (OLS) gives nonzero estimates to all
coefficients. Traditionally, statisticians use best-subset selection
to select significant variables, but this procedure has two fun-
damental limitations. First, when the number of predictors is
large, it is computationally infeasible to do subset selection.
Second, subset selection is extremely variable because of its in-
herent discreteness (Breiman 1995; Fan and Li 2001). Stepwise
selection is often used as a computational surrogate to subset
selection; nevertheless, stepwise selection still suffers from the
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high variability and in addition is often trapped into a local op-
timal solution rather than the global optimal solution. Further-
more, these selection procedures ignore the stochastic errors or
uncertainty in the variable selection stage (Fan and Li 2001;
Shen and Ye 2002).

The lasso is a regularization technique for simultaneous esti-
mation and variable selection (Tibshirani 1996). The lasso esti-
mates are defined as

β̂(lasso) = arg min
β

∥
∥
∥
∥
∥

y −
p

∑

j=1

xjβj

∥
∥
∥
∥
∥

2

+ λ

p
∑

j=1

|βj|, (1)

where λ is a nonnegative regularization parameter. The sec-
ond term in (1) is the so-called “�1 penalty,” which is crucial
for the success of the lasso. The �1 penalization approach is
also called basis pursuit in signal processing (Chen, Donoho,
and Saunders 2001). The lasso continuously shrinks the co-
efficients toward 0 as λ increases, and some coefficients are
shrunk to exact 0 if λ is sufficiently large. Moreover, contin-
uous shrinkage often improves the prediction accuracy due to
the bias–variance trade-off. The lasso is supported by much the-
oretical work. Donoho, Johnstone, Kerkyacharian, and Picard
(1995) proved the near-minimax optimality of soft threshold-
ing (the lasso shrinkage with orthogonal predictors). It also
has been shown that the �1 approach is able to discover the
“right” sparse representation of the model under certain condi-
tions (Donoho and Huo 2002; Donoho and Elad 2002; Donoho
2004). Meinshausen and Bühlmann (2004) showed that vari-
able selection with the lasso can be consistent if the underlying
model satisfies some conditions.

It seems safe to conclude that the lasso is an oracle pro-
cedure for simultaneously achieving consistent variable selec-
tion and optimal estimation (prediction). However, there are
also solid arguments against the lasso oracle statement. Fan
and Li (2001) studied a class of penalization methods includ-
ing the lasso. They showed that the lasso can perform auto-
matic variable selection because the �1 penalty is singular at
the origin. On the other hand, the lasso shrinkage produces
biased estimates for the large coefficients, and thus it could
be suboptimal in terms of estimation risk. Fan and Li conjec-
tured that the oracle properties do not hold for the lasso. They
also proposed a smoothly clipped absolute deviation (SCAD)
penalty for variable selection and proved its oracle properties.
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Meinshausen and Bühlmann (2004) also showed the conflict
of optimal prediction and consistent variable selection in the
lasso. They proved that the optimal λ for prediction gives in-
consistent variable selection results; in fact, many noise features
are included in the predictive model. This conflict can be easily
understood by considering an orthogonal design model (Leng,
Lin, and Wahba 2004).

Whether the lasso is an oracle procedure is an important
question demanding a definite answer, because the lasso has
been used widely in practice. In this article we attempt to pro-
vide an answer. In particular, we are interested in whether the
�1 penalty could produce an oracle procedure and, if so, how.
We consider the asymptotic setup where λ in (1) varies with n
(the sample size). We first show that the underlying model must
satisfy a nontrivial condition if the lasso variable selection is
consistent. Consequently, there are scenarios in which the lasso
selection cannot be consistent. To fix this problem, we then pro-
pose a new version of the lasso, the adaptive lasso, in which
adaptive weights are used for penalizing different coefficients
in the �1 penalty. We show that the adaptive lasso enjoys the
oracle properties. We also prove the near-minimax optimality
of the adaptive lasso shrinkage using the language of Donoho
and Johnstone (1994). The adaptive lasso is essentially a con-
vex optimization problem with an �1 constraint. Therefore, the
adaptive lasso can be solved by the same efficient algorithm
for solving the lasso. Our results show that the �1 penalty is at
least as competitive as other concave oracle penalties and also
is computationally more attractive. We consider this article to
provide positive evidence supporting the use of the �1 penalty
in statistical learning and modeling.

The nonnegative garotte (Breiman 1995) is another popu-
lar variable selection method. We establish a close relation be-
tween the nonnegative garotte and a special case of the adaptive
lasso, which we use to prove consistency of the nonnegative
garotte selection.

The rest of the article is organized as follows. In Section 2 we
derive the necessary condition for the consistency of the lasso
variable selection. We give concrete examples to show when the
lasso fails to be consistent in variable selection. We define the
adaptive lasso in Section 3, and then prove its statistical prop-
erties. We also show that the nonnegative garotte is consistent
for variable selection. We apply the LARS algorithm (Efron,
Hastie, Johnstone, and Tibshirani 2004) to solve the entire so-
lution path of the adaptive lasso. We use a simulation study to
compare the adaptive lasso with several popular sparse model-
ing techniques. We discuss some applications of the adaptive
lasso in generalized liner models in Section 4, and give con-
cluding remarks in Section 5. We relegate technical proofs to
the Appendix.

2. THE LASSO VARIABLE SELECTION COULD
BE INCONSISTENT

We adopt the setup of Knight and Fu (2000) for the asymp-
totic analysis. We assume two conditions:

(a) yi = xiβ
∗ + εi, where ε1, . . . , εn are independent identi-

cally distributed (iid) random variables with mean 0 and vari-
ance σ 2

(b) 1
n XTX → C, where C is a positive definite matrix.

Without loss of generality, assume that A = {1,2, . . . ,p0}. Let

C =
[

C11 C12
C21 C22

]

,

where C11 is a p0 × p0 matrix.
We consider the lasso estimates, β̂(n),

β̂(n) = arg min
β

∥
∥
∥
∥
∥

y −
p

∑

j=1

xjβj

∥
∥
∥
∥
∥

2

+ λn

p
∑

j=1

|βj|, (2)

where λn varies with n. Let An = { j : β̂(n)
j �= 0}. The lasso vari-

able selection is consistent if and only if limn P(An = A) = 1.

Lemma 1. If λn/n → λ0 ≥ 0, then β̂(n) →p arg min V1,
where

V1(u) = (u − β∗)T C(u − β∗) + λ0

p
∑

j=1

|uj|.

Lemma 2. If λn/
√

n → λ0 ≥ 0, then
√

n(β̂(n) − β∗) →d

arg min(V2), where

V2(u) = −2uTW + uTCu

+ λ0

p
∑

j=1

[

uj sgn(β∗
j )I(β∗

j �= 0) + |uj|I(β∗
j = 0)

]

,

and W has a N(0, σ 2C) distribution.

These two lemmas are quoted from Knight and Fu (2000).
From an estimation standpoint, Lemma 2 is more interesting,
because it shows that the lasso estimate is root-n consistent.
In Lemma 1, only λ0 = 0 guarantees estimation consistency.
However, when considering the asymptotic behavior of variable
selection, Lemma 2 actually implies that when λn = O(

√
n ),

An basically cannot be A with a positive probability.

Proposition 1. If λn/
√

n → λ0 ≥ 0, then lim supn P(An =
A) ≤ c < 1, where c is a constant depending on the true model.

Based on Proposition 1, it seems interesting to study the as-
ymptotic behavior of β̂(n) when λ0 = ∞, which amounts to
considering the case where λn/n → 0 and λn/

√
n → ∞. We

provide the following asymptotic result.

Lemma 3. If λn/n → 0 and λn/
√

n → ∞, then n
λn

(β̂(n) −
β∗) →p arg min(V3), where

V3(u) = uTCu +
p

∑

j=1

[

uj sgn(β∗
j )I(β∗

j �= 0) + |uj|I(β∗
j = 0)

]

.

Two observations can be made from Lemma 3. The conver-
gence rate of β̂(n) is slower than

√
n. The limiting quantity is

nonrandom. Note that the optimal estimation rate is available
only when λn = O(

√
n ), but it leads to inconsistent variable

selection.
Then we would like to ask whether the consistency in vari-

able selection could be achieved if we were willing to sacrifice
the rate of convergence in estimation. Unfortunately, this is not
always guaranteed either. The next theorem presents a neces-
sary condition for consistency of the lasso variable selection.
[After finishing this work, we learned, through personal com-
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munication that Yuan and Lin (2005) and Zhao and Yu (2006)
also obtained a similar conclusion about the consistency of the
lasso selection.]

Theorem 1 (Necessary condition). Suppose that limn P(An =
A) = 1. Then there exists some sign vector s = (s1, . . . , sp0)

T ,
sj = 1 or −1, such that

|C21C−1
11 s| ≤ 1. (3)

The foregoing inequality is understood componentwise.

Immediately, we conclude that if condition (3) fails, then the
lasso variable selection is inconsistent. The necessary condi-
tion (3) is nontrivial. We can easily construct an interesting ex-
ample as follows.

Corollary 1. Suppose that p0 = 2m + 1 ≥ 3 and p = p0 + 1,
so there is one irrelevant predictor. Let C11 = (1 − ρ1)I +
ρ1J1, where J1 is the matrix of 1’s and C12 = ρ2�1 and
C22 = 1. If − 1

p0−1 < ρ1 < − 1
p0

and 1 + (p0 − 1)ρ1 < |ρ2| <√
(1 + (p0 − 1)ρ1)/p0, then condition (3) cannot be satisfied.

Thus the lasso variable selection is inconsistent.

In many problems the lasso has shown its good performance
in variable selection. Meinshausen and Bühlmann (2004)
showed that the lasso selection can be consistent if the underly-
ing model satisfies some conditions. A referee pointed out that
assumption (6) of Meinshausen and Bühlmann (2004) is re-
lated to the necessary condition (3), and it cannot be further
relaxed, as indicated in their proposition 3. There are some
simple settings in which the lasso selection is consistent and
the necessary condition (3) is satisfied. For instance, orthogo-
nal design guarantees the necessary condition and consistency
of the lasso selection. It is also interesting to note that when
p = 2, the necessary condition is always satisfied, because
|C21C−1

11 sgn(β∗
A)| reduces to |ρ|, the correlation between the

two predictors. Moreover, by taking advantage of the closed-
form solution of the lasso when p = 2 (Tibshirani 1996), we
can show that when p = 2, the lasso selection is consistent with
a proper choice of λn.

Given the facts shown in Theorem 1 and Corollary 1, a more
important question for lasso enthusiasts is that whether the lasso
could be fixed to enjoy the oracle properties. In the next section
we propose a simple and effective remedy.

3. ADAPTIVE LASSO

3.1 Definition

We have shown that the lasso cannot be an oracle procedure.
However, the asymptotic setup is somewhat unfair, because it
forces the coefficients to be equally penalized in the �1 penalty.
We can certainly assign different weights to different coeffi-
cients. Let us consider the weighted lasso,

arg min
β

∥
∥
∥
∥
∥

y −
p

∑

j=1

xjβj

∥
∥
∥
∥
∥

2

+ λ

p
∑

j=1

wj|βj|,

where w is a known weights vector. We show that if the weights
are data-dependent and cleverly chosen, then the weighted lasso
can have the oracle properties. The new methodology is called
the adaptive lasso.

We now define the adaptive lasso. Suppose that β̂ is a root-
n–consistent estimator to β∗; for example, we can use β̂(ols).
Pick a γ > 0, and define the weight vector ŵ = 1/|β̂|γ . The
adaptive lasso estimates β̂∗(n) are given by

β̂∗(n) = arg min
β

∥
∥
∥
∥
∥

y −
p

∑

j=1

xjβj

∥
∥
∥
∥
∥

2

+ λn

p
∑

j=1

ŵj|βj|. (4)

Similarly, let A∗
n = { j : β̂∗(n)

j �= 0}.
It is worth emphasizing that (4) is a convex optimization

problem, and thus it does not suffer from the multiple local min-
imal issue, and its global minimizer can be efficiently solved.
This is very different from concave oracle penalties. The adap-
tive lasso is essentially an �1 penalization method. We can use
the current efficient algorithms for solving the lasso to compute
the adaptive lasso estimates. The computation details are pre-
sented in Section 3.5.

3.2 Oracle Properties

In this section we show that with a proper choice of λn, the
adaptive lasso enjoys the oracle properties.

Theorem 2 (Oracle properties). Suppose that λn/
√

n → 0
and λnn(γ−1)/2 → ∞. Then the adaptive lasso estimates must
satisfy the following:

1. Consistency in variable selection: limn P(A∗
n = A) = 1

2. Asymptotic normality:
√

n(β̂
∗(n)

A − β∗
A) →d N(0, σ 2 ×

C−1
11 ).

Theorem 2 shows that the �1 penalty is at least as good as
any other “oracle” penalty. We have several remarks.

Remark 1. β̂ is not required to be root-n consistent for the
adaptive lasso. The condition can be greatly weakened. Suppose
that there is a sequence of {an} such that an → ∞ and an(β̂ −
β∗) = Op(1). Then the foregoing oracle properties still hold if
we let λn = o(

√
n ) and aγ

n λn/
√

n → ∞.

Remark 2. The data-dependent ŵ is the key in Theorem 2. As
the sample size grows, the weights for zero-coefficient predic-
tors get inflated (to infinity), whereas the weights for nonzero-
coefficient predictors converge to a finite constant. Thus we can
simultaneously unbiasedly (asymptotically) estimate large co-
efficient and small threshold estimates. This, in some sense, is
the same rationale behind the SCAD. As pointed out by Fan
and Li (2001), the oracle properties are closely related to the
super-efficiency phenomenon (Lehmann and Casella 1998).

Remark 3. From its definition, we know that the adaptive
lasso solution is continuous. This is a nontrivial property. With-
out continuity, an oracle procedure can be suboptimal. For ex-
ample, bridge regression (Frank and Friedman 1993) uses the
Lq penalty. It has been shown that the bridge with 0 < q < 1
has the oracle properties (Knight and Fu 2000). But the bridge
with q < 1 solution is not continuous. Because the discontinuity
results in instability in model prediction, the Lq (q < 1) penalty
is considered less favorable than the SCAD and the �1 penalty
(see Fan and Li 2001 for a more detailed explanation). The dis-
continuity of the bridge with 0 < q < 1 can be best demon-
strated with orthogonal predictors, as shown in Figure 1.
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(a) (b)

(c) (d)

(e) (f)

Figure 1. Plot of Thresholding Functions With λ = 2 for (a) the Hard; (b) Bridge L.5; (c) the Lasso; (d) the SCAD; (e) the Adaptive Lasso γ = .5;
and (f) the Adaptive Lasso, γ = 2.

3.3 Oracle Inequality and Near-Minimax Optimality

As shown by Donoho and Johnstone (1994), the �1 shrinkage
leads to the near–minimax-optimal procedure for estimating
nonparametric regression functions. Because the adaptive lasso
is a modified version of the lasso with subtle and important dif-
ferences, it would be interesting to see whether the modification
affects the minimax optimality of the lasso. In this section we
derive a new oracle inequality to show that the adaptive lasso
shrinkage is near-minimax optimal.

For the minimax arguments, we consider the same multi-
ple estimation problem discussed by Donoho and Johnstone
(1994). Suppose that we are given n independent observations
{yi} generated from

yi = µi + zi, i = 1,2, . . . ,n,

where the zi’s are iid normal random variables with mean 0
and known variance σ 2. For simplicity, let us assume that
σ = 1. The objective is to estimate the mean vector (µi) by
some estimator (µ̂i), and the quality of the estimator is mea-
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sured by �2 loss, R(µ̂) = E[∑n
i (µ̂i − µi)

2]. The ideal risk is
R(ideal) = ∑n

i min(µ2
i ,1) (Donoho and Johnstone 1994). The

soft-thresholding estimates µ̂i(soft) are obtained by solving the
lasso problems:

µ̂i(soft) = arg min
u

(
1

2
(yi − u)2 + λ|u|

)

for i = 1,2, . . . ,n.

The solution is µ̂i(soft) = (|yi|−λ)+ sgn(yi), where z+ denotes
the positive part of z; it equals z for z > 0 and 0 otherwise.
Donoho and Johnstone (1994) proved that the soft-thresholding
estimator achieves performance differing from the ideal perfor-
mance by at most a 2 log n factor, and that the 2 log n factor is a
sharp minimax bound.

The adaptive lasso concept suggests using different weights
for penalizing the naive estimates (yi). In the foregoing setting,
we have only one observation for each µi. It is reasonable to
define the weight vectors as |yi|−γ , γ > 0. Thus the adaptive
lasso estimates for (µi) are obtained by

µ̂∗
i = arg min

u

(
1

2
(yi − u)2 + λ

1

|yi|γ |u|
)

for i = 1,2, . . . ,n.

(5)
Therefore, µ̂∗

i (λ) = (|yi| − λ
|yi|γ )+ sgn(yi).

Antoniadis and Fan (2001) considered thresholding estimates
from penalized linear squares,

arg min
u

(
1

2
(yi − u)2 + λJ(|u|)

)

for i = 1,2, . . . ,n,

where J is the penalty function. The L0 penalty leads to
the hard-thresholding rule, whereas the lasso penalty yields
the soft-thresholding rule. Bridge thresholding comes from
J(|u|) = |u|q (0 < q < 1). Figure 1 compares the adaptive lasso
shrinkage with other popular thresholding rules. Note that the
shrinkage rules are discontinuous in hard thresholding and the
bridge with an L.5 penalty. The lasso shrinkage is continuous
but pays a price in estimating the large coefficients due to a
constant shift. As continuous thresholding rules, the SCAD and
the adaptive lasso are able to eliminate the bias in the lasso. We
establish an oracle inequality on the risk bound of the adaptive
lasso.

Theorem 3 (Oracle inequality). Let λ = (2 log n)(1+γ )/2,
then

R(µ̂∗(λ)) ≤
(

2 log n + 5 + 4

γ

)

×
(

R(ideal) + 1

2
√

π
(log n)−1/2

)

. (6)

By theorem 3 of Donoho and Johnstone (1994, sec. 2.1), we
know that

inf
µ̂

sup
µ

R(µ̂)

1 + R(ideal)
∼ 2 log n.

Therefore, the oracle inequality (6) indicates that the adaptive
lasso shrinkage estimator attains the near-minimax risk.

3.4 γ = 1 and the Nonnegative Garotte

The nonnegative garotte (Breiman 1995) finds a set of non-
negative scaling factors {cj} to minimize
∥
∥
∥
∥
∥

y −
p

∑

j=1

xjβ̂j(ols)cj

∥
∥
∥
∥
∥

2

+ λn

p
∑

j=1

cj

subject to cj ≥ 0 ∀ j. (7)

The garotte estimates are β̂j(garotte) = cjβ̂j(ols). A sufficiently
large λn shrinks some cj to exact 0. Because of this nice prop-
erty, the nonnegative garotte is often used for sparse modeling.
Studying the consistency of the garotte selection is of interest.
To the best of our knowledge, no answer has yet been reported
in the literature. In this section we show that variable selection
by the nonnegative garotte is indeed consistent. [Yuan and Lin
(2005) independently proved the consistency of the nonnegative
garotte selection.]

We first show that the nonnegative garotte is closely related to
a special case of the adaptive lasso. Suppose that γ = 1 and we
choose the adaptive weights ŵ = 1/|β̂(ols)|; then the adaptive
lasso solves

arg min
β

∥
∥
∥
∥
∥

y −
p

∑

j=1

xjβj

∥
∥
∥
∥
∥

2

+ λn

p
∑

j=1

|βj|
|β̂j(ols)| . (8)

We see that (7) looks very similar to (8). In fact, they are almost
identical. Because cj = β̂j(garotte)/β̂j(ols), we can equivalently
reformulate the garotte as

arg min
β

∥
∥
∥
∥
∥

y −
p

∑

j=1

xjβj

∥
∥
∥
∥

2

+ λn

p
∑

j=1

|βj|
|β̂j(ols)| ,

subject to βjβ̂j(ols) ≥ 0 ∀ j. (9)

Hence the nonnegative garotte can be considered the adaptive
lasso (γ = 1) with additional sign constraints in (9). Further-
more, we can show that with slight modifications (see the App.),
the proof of Theorem 2 implies consistency of the nonnegative
garotte selection.

Corollary 2. In (7), if we choose a λn such that λn/
√

n → 0
and λn → ∞, then the nonnegative garotte is consistent for vari-
able selection.

3.5 Computations

In this section we discuss the computational issues. First, the
adaptive lasso estimates in (4) can be solved by the LARS algo-
rithm (Efron et al. 2004). The computation details are given in
Algorithm 1, the proof of which is very simple and so is omit-
ted.

Algorithm 1 (The LARS algorithm for the adaptive lasso).

1. Define x∗∗
j = xj/ŵj, j = 1,2, . . . ,p.

2. Solve the lasso problem for all λn,

β̂
∗∗ = arg min

β

∥
∥
∥
∥
∥

y −
p

∑

j=1

x∗∗
j βj

∥
∥
∥
∥
∥

2

+ λn

p
∑

j=1

|βj|.

3. Output β̂
∗(n)
j = β̂∗∗

j /ŵj, j = 1,2, . . . ,p.
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The LARS algorithm is used to compute the entire solution
path of the lasso in step (b). The computational cost is of or-
der O(np2), which is the same order of computation of a single
OLS fit. The efficient path algorithm makes the adaptive lasso
an attractive method for real applications.

Tuning is an important issue in practice. Suppose that we
use β̂(ols) to construct the adaptive weights in the adaptive
lasso; we then want to find an optimal pair of (γ,λn). We can
use two-dimensional cross-validation to tune the adaptive lasso.
Note that for a given γ , we can use cross-validation along with
the LARS algorithm to exclusively search for the optimal λn. In
principle, we can also replace β̂(ols) with other consistent esti-
mators. Hence we can treat it as the third tuning parameter and
perform three-dimensional cross-validation to find an optimal
triple (β̂, γ, λn). We suggest using β̂(ols) unless collinearity is
a concern, in which case we can try β̂(ridge) from the best ridge
regression fit, because it is more stable than β̂(ols).

3.6 Standard Error Formula

We briefly discuss computing the standard errors of the adap-
tive lasso estimates. Tibshirani (1996) presented a standard er-
ror formula for the lasso. Fan and Li (2001) showed that local
quadratic approximation (LQA) can provide a sandwich for-
mula for computing the covariance of the penalized estimates
of the nonzero components. The LQA sandwich formula has
been proven to be consistent (Fan and Peng 2004).

We follow the LQA approach to derive a sandwich formula
for the adaptive lasso. For a nonzero βj, consider the LQA of
the adaptive lasso penalty,

|βj|ŵj ≈ |βj0|ŵj + 1

2

ŵj

|βj0| (β
2
j − β2

j0).

Suppose that the first d components of β are nonzero. Then let
�(β) = diag( ŵ1|β1| , . . . ,

ŵd|βd | ). Let Xd denote the first d columns
of X. By the arguments of Fan and Li (2001), the adaptive lasso
estimates can be solved by iteratively computing the ridge re-
gression,

(β1, . . . , βd)
T = (

XT
d Xd + λn�(β0)

)−1XT
d y,

which leads to the estimated covariance matrix for the nonzero
components of the adaptive lasso estimates β̂∗(n),

ĉov
(

β̂
∗(n)

A∗
n

) = σ 2(XT
A∗

n
XA∗

n
+ λn�

(

β̂
∗(n)

A∗
n

))−1

× XT
A∗

n
XA∗

n

(

XT
A∗

n
XA∗

n
+ λn�

(

β̂
∗(n)

A∗
n

))−1
.

If σ 2 is unknown, then we can replace σ 2 with its estimates
from the full model. For variables with β̂

∗(n)
j = 0, the estimated

standard errors are 0 (Tibshirani 1996; Fan and Li 2001).

3.7 Some Numerical Experiments

In this section we report a simulation study done to com-
pare the adaptive lasso with the lasso, the SCAD, and the non-
negative garotte. In the simulation we considered various linear
models, y = xTβ + N(0, σ 2). In all examples, we computed the
adaptive weights using OLS coefficients. We used the LARS
algorithm to compute the lasso and the adaptive lasso. We im-
plemented the LQA algorithm of Fan and Li (2001) to compute

the SCAD estimates and used quadratic programming to solve
the nonnegative garotte. For each competitor, we selected its
tuning parameter by fivefold cross-validation. In the adaptive
lasso, we used two-dimensional cross-validation and selected γ

from {.5,1,2}; thus the difference between the lasso and the
adaptive lasso must be contributed by the adaptive weights.

We first show a numerical demonstration of Corollary 1.

Model 0 (Inconsistent lasso path). We let y = xTβ + N(0,

σ 2), where the true regression coefficients are β = (5.6,5.6,

5.6,0). The predictors xi (i = 1, . . . ,n) are iid N(0,C), where
C is the C matrix in Corollary 1 with ρ1 = −.39 and ρ2 = .23.

In this model we chose ρ1 = −.39 and ρ2 = .23 such that the
conditions in Corollary 1 are satisfied. Thus the design matrix C
does not allow consistent lasso selection. To show this numeri-
cally, we simulated 100 datasets from the foregoing model for
three different combinations of sample size (n) and error vari-
ance (σ 2). On each dataset, we computed the entire solution
path of the lasso, then estimated the probability of the lasso so-
lution path containing the true model. We repeated the same
procedure for the adaptive lasso. As n increases and σ de-
creases, the variable selection problem is expected to become
easier. However, as shown in Table 1, the lasso has about a
50% chance of missing the true model regardless of the choice
of (n, σ ). In contrast, the adaptive lasso is consistent in variable
selection.

We now compare the prediction accuracy of the lasso, the
adaptive lasso, the SCAD, and the nonnegative garotte. Note
that E[(ŷ−ytest)

2] = E[(ŷ−xTβ)2]+σ 2. The second term is the
inherent prediction error due to the noise. Thus for comparison,
we report the relative prediction error (RPE), E[(ŷ−xTβ)2]/σ 2.

Model 1 (A few large effects). In this example, we let β =
(3,1.5,0,0,2,0,0,0). The predictors xi (i = 1, . . . ,n) were
iid normal vectors. We set the pairwise correlation between
xj1 and xj2 to be cor( j1, j2) = (.5)| j1−j2|. We also set σ = 1,3,6
such that the corresponding signal-to-noise ratio (SNR) was
about 21.25, 2.35, and .59. We let n be 20 and 60.

Model 2 (Many small effects). We used the same model as
in model 1 but with βj = .85 for all j. We set σ = 1,3,6, and
the corresponding SNR is 14.46, 1.61, and .40. We let n = 40
and n = 80.

In both models we simulated 100 training datasets for each
combination of (n, σ 2). All of the training and tuning were
done on the training set. We also collected independent test
datasets of 10,000 observations to compute the RPE. To esti-
mate the standard error of the RPE, we generated a bootstrapped
sample from the 100 RPEs, then calculated the bootstrapped

Table 1. Simulation Model 0: The Probability of Containing
the True Model in the Solution Path

n = 60, σ = 9 n = 120, σ = 5 n = 300, σ = 3

lasso .55 .51 .53
adalasso(γ = .5) .59 .68 .93
adalasso(γ = 1) .67 .89 1
adalasso(γ = 2) .73 .97 1
adalasso(γ by cv) .67 .91 1

NOTE: In this table “adalasso” is the adaptive lasso, and “γ by cv” means that γ was selected
by five-fold cross-validation from three choices: γ = .5, γ = 1, and γ = 2.
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Table 2. Simulation Models 1 and 2, Comparing the Median RPE
Based on 100 Replications

σ = 1 σ = 3 σ = 6

Model 1 (n = 20)
Lasso .414(.046) .395(.039) .275(.026)
Adaptive lasso .261(.023) .369(.029) .336(.031)
SCAD .218(.029) .508(.044) .428(.019)
Garotte .227(.007) .488(.043) .385(.030)

Model 1 (n = 60)
Lasso .103(.008) .102(.008) .107(.012)
Adaptive lasso .073(.004) .094(.012) .117(.008)
SCAD .053(.008) .104(.016) .119(.014)
Garotte .069(.006) .102(.008) .118(.009)

Model 2 (n = 40)
Lasso .205(.015) .214(.014) .161(.009)
Adaptive lasso .203(.015) .237(.016) .190(.008)
SCAD .223(.018) .297(.028) .230(.009)
Garotte .199(.018) .273(.024) .219(.019)

Model 2 (n = 80)
Lasso .094(.008) .096(.008) .091(.008)
Adaptive lasso .093(.007) .094(.007) .104(.009)
SCAD .096(.104) .099(.012) .138(.014)
Garotte .095(.006) .111(.007) .119(.006)

NOTE: The numbers in parentheses are the corresponding standard errors (of RPE).

sample median. We repeated this process 500 times. The esti-
mated standard error was the standard deviation of the 500 boot-
strapped sample medians.

Table 2 summarizes the simulation results. Several observa-
tions can be made from this table. First, we see that the lasso
performs best when the SNR is low but the oracle methods
tend to be more accurate when the SNR is high. This phenom-
enon is more evident in model 1. Second, the adaptive lasso
seems to be able to adaptively combine the strength of the lasso
and the SCAD. With a medium or low level of SNR, the adap-
tive lasso often outperforms the SCAD and the garotte. With a
high SNR, the adaptive lasso significantly dominates the lasso
by a good margin. The adaptive lasso tends to be more stable
than the SCAD. The overall performance of the adaptive lasso
appears to be the best. Finally, our simulations also show that
each method has its unique merits; none of the four methods
can universally dominate the other three competitors. We also
considered model 2 with β∗

j = .25 and obtained the same con-
clusions.

Table 3 presents the performance of the four methods in vari-
able selection. All the four methods can correctly identify the
three significant variables (1, 2, and 5). The lasso tends to se-
lect two noise variables into the final model. The other three
methods select less noise variables. It is worth noting that these
good variable selection results are achieved with very moderate
sample sizes.

Table 3. Median Number of Selected Variables for Model 1 With n = 60

σ = 1 σ = 3

C I C I

Truth 3 0 3 0
Lasso 3 2 3 2
Adaptive lasso 3 1 3 1
SCAD 3 0 3 1
Garotte 3 1 3 1.5

NOTE: The column labeled “C” gives the number of selected nonzero components, and the
column labeled “I” presents the number of zero components incorrectly selected into the final
model.

Table 4. Standard Errors of the Adaptive Lasso Estimates for Model 1
With n = 60 and σ = 1

β̂1 β̂2 β̂5

SDtrue SDest SDtrue SDest SDtrue SDest

.153 .152(.016) .167 .154(.019) .159 .135(.018)

We now test the accuracy of the standard error formula.
Table 4 presents the results for nonzero coefficients when
n = 60 and σ = 1. We computed the true standard errors, de-
noted by SDtrue, by the 100 simulated coefficients. We denoted
by SDest the average of estimated standard errors in the 100 sim-
ulations; the simulation results indicate that the standard error
formula works quite well for the adaptive lasso.

4. FURTHER EXTENSIONS

4.1 The Exponential Family and Generalized
Linear Models

Having shown the oracle properties of the adaptive lasso in
linear regression models, we would like to further extend the
theory and methodology to generalized linear models (GLMs).
We consider the penalized log-likelihood estimation using the
adaptively weighted �1 penalty, where the likelihood belongs to
the exponential family with canonical parameter θ . The generic
density form can be written as (McCullagh and Nelder 1989)

f (y|x, θ) = h(y) exp(yθ − φ(θ)). (10)

Generalized linear models assume that θ = xTβ∗.
Suppose that β̂(mle) is the maximum likelihood estimates in

the GLM. We construct the weight vector ŵ = 1/|β̂(mle)|γ for
some γ > 0. The adaptive lasso estimates β̂∗(n)(glm) are given
by

β̂∗(n)(glm) = arg min
β

n
∑

i=1

(−yi(xT
i β) + φ(xT

i β)
)

+ λn

p
∑

j=1

ŵj|βj|. (11)

For logistic regression, the foregoing equation becomes

β̂∗(n)(logistic) = arg min
β

n
∑

i=1

(−yi(xT
i β) + log

(

1 + exT
i β

))

+ λn

p
∑

j=1

ŵj|βj|. (12)

In Poisson log-linear regression models, (11) can be written as

β̂∗(n)(poisson) = arg min
β

n
∑

i=1

(−yi(xT
i β) + exp(xT

i β)
)

+ λn

p
∑

j=1

ŵj|βj|. (13)

Assume that the true model has a sparse representation. With-
out loss of generality, let A = { j :β∗

j �= 0} = {1,2, . . . ,p0} and
p0 < p. We write the Fisher information matrix

I(β∗) =
[

I11 I12
I21 I22

]

,
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where I11 is a p0 × p0 matrix. Then I11 is the Fisher informa-
tion with the true submodel known. We show that under some
mild regularity conditions (see the App.), the adaptive lasso es-
timates β̂∗(n)(glm) enjoys the oracle properties if λn is chosen
appropriately.

Theorem 4. Let A∗
n = { j : β̂∗(n)

j (glm) �= 0}. Suppose that

λn/
√

n → 0 and λnn(γ−1)/2 → ∞; then, under some mild reg-
ularity conditions, the adaptive lasso estimates β̂∗(n)(glm) must
satisfy the following:

1. Consistency in variable selection: limn P(A∗
n = A) = 1

2. Asymptotic normality:
√

n(β̂
∗(n)

A (glm) − β∗
A) →d N(0,

I−1
11 ).

The solution path of (11) is no longer piecewise linear, be-
cause the negative log-likelihood is not piecewise quadratic
(Rosset and Zhu 2004). However, we can use the Newton–
Raphson method to solve β̂

∗(n)

A (glm). Note that the LQA of
the adaptive lasso penalty is given in Section 3.6. Then an it-
erative LQA algorithm for solving (11) can be constructed by
following the generic recipe of Fan and Li (2001). Because
the negative log-likelihood in GLM is convex, the convergence
analysis of the LQA of Hunter and Li (2005) indicates that the
iterative LQA algorithm is able to find the unique minimizer
of (11).

We illustrate the methodology using the logistic regression
model of Hunter and Li (2005). In this example, we simulated
100 datasets consisting of 200 observations from the model
y ∼ Bernoulli{p(xTβ)}, where p(u) = exp(u)/(1 + exp(u)) and
β = (3,0,0,1.5,0,0,7,0,0). The components of x are stan-
dard normal, where the correlation between xi and xj is ρ = .75.
We compared the lasso, the SCAD, and the adaptive lasso.
We computed the misclassification error of each competitor by
Monte Carlo using a test dataset consisting of 10,000 obser-
vations. Because the Bayes error is the lower bound for the
misclassification error, we define the RPE of a classifier δ as
RPE(δ) = (misclassification error of δ)/(Bayes error)−1. Fig-
ure 2 compares the RPEs of the lasso, the SCAD, and the adap-
tive lasso over 100 simulations. The adaptive lasso does the
best, followed by the SCAD and then the lasso. The lasso and
the adaptive lasso seem to be more stable than the SCAD. Over-
all, all three methods have excellent prediction accuracy.

4.2 High-Dimensional Data

We have considered the typical asymptotic setup in which the
number of predictors is fixed and the sample size approaches
infinity. The asymptotic theory with p = pn → ∞ seems to
be more applicable to problems involving a huge number of
predictors, such as microarrays analysis and document/image
classification. In Section 3.3 we discussed the near-minimax
optimality of the adaptive lasso when pn = n and the predic-
tors are orthogonal. In other high-dimensional problems (e.g.,
microarrays), we may want to consider pn > n → ∞; then it
is nontrivial to find a consistent estimate for constructing the
weights in the adaptive lasso. A practical solution is to use the
�2 penalized estimator. Thus the adaptive lasso can be well de-
fined. Note that one more tuning parameter—the �2 regular-
ization parameter—is included in the procedure. It remains to
show that the �2-penalized estimates are consistent and that the

Figure 2. Simulation Example: Logistic Regression Model.

corresponding adaptive lasso estimates have the desired asymp-
totic properties. In ongoing work, we plan to investigate the as-
ymptotic property of the adaptive lasso in the high-dimensional
setting. There is some related work in the literature. Donoho
(2004) studied the minimum �1 solution for large underde-
termined systems of equations, Meinshausen and Bühlmann
(2004) considered the high-dimensional lasso, and Fan and
Peng (2004) proved the oracle properties of the SCAD estima-
tor with a diverging number of predictors. These results should
prove very useful in the investigation of the asymptotic proper-
ties of the adaptive lasso with a diverging number of predictors.
It is also worth noting that when considering pn � n → ∞,
we can allow the magnitude of the nonzero coefficients to vary
with n; however, to keep the oracle properties, we cannot let the
magnitude go to 0 too fast. Fan and Peng (2004) discussed this
issue [see their condition (H)].

5. CONCLUSION

In this article we have proposed the adaptive lasso for si-
multaneous estimation and variable selection. We have shown
that although the lasso variable selection can be inconsistent in
some scenarios, the adaptive lasso enjoys the oracle properties
by utilizing the adaptively weighted �1 penalty. The adaptive
lasso shrinkage also leads to a near–minimax-optimal estima-
tor. Owing to the efficient path algorithm, the adaptive lasso en-
joys the computational advantage of the lasso. Our simulation
has shown that the adaptive lasso compares favorably with other
sparse modeling techniques. It is worth emphasizing that the or-
acle properties do not automatically result in optimal prediction
performance. The lasso can be advantageous in difficult predic-
tion problems. Our results offer new insights into the �1-related
methods and support the use of the �1 penalty in statistical mod-
eling.

APPENDIX: PROOFS

Proof of Proposition 1

Note that An = A implies that β̂j = 0 for all j /∈ A. Let u∗ =
arg min(V2(u)). Note that P(An = A) ≤ P(

√
nβ̂j = 0 ∀ j /∈ A).
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Lemma 2 shows that
√

nβ̂A →d u∗
A; thus the weak convergence re-

sult indicates that lim supn P(
√

nβ̂j = 0 ∀ j /∈ A) ≤ P(u∗
j = 0 ∀ j /∈A).

Therefore, we need only show that c = P(u∗
j = 0 ∀ j /∈ A) < 1. There

are two cases:

Case 1. λ0 = 0. Then it is easy to see that u∗ = C−1W ∼
N(0, σ 2C−1), and so c = 0.

Case 2. λ0 > 0. Then V2(u) is not differentiable at uj = 0 ∀ j ∈ A.
By the Karush–Kuhn–Tucker (KKT) optimality condition, we have

−2Wj + 2(Cu∗)j + λ0 sgn(β∗
j ) = 0 ∀ j ∈A (A.1)

and

|−2Wj + 2(Cu∗)j| ≤ λ0 ∀ j /∈A. (A.2)

If u∗
j = 0 for all j /∈A, then (A.1) and (A.2) become

−2WA + 2C11u∗
A + λ0 sgn(β∗

A) = 0 (A.3)

and

|−2WAc + 2C21u∗
A| ≤ λ0 componentwise. (A.4)

Combining (A.3) and (A.4) gives
∣
∣−2WAc + C21C−1

11 (2WA − λ0 sgn(β∗
A)

∣
∣ ≤ λ0 componentwise.

Thus c ≤ P(|−2WAc + C21C−1
11 (2WA − λ0 sgn(β∗

A)| ≤ λ0) < 1.

Proof of Lemma 3

Let β = β∗ + λn
n u. Define

�(u) =
∥
∥
∥
∥
∥

y −
p

∑

j=1

xj

(

β∗
j + λn

n
uj

)
∥
∥
∥
∥
∥

2

+ λn

p
∑

j=1

∣
∣
∣
∣
β∗

j + λn

n
uj

∣
∣
∣
∣
.

Suppose that ûn = arg min�(u); then β̂(n) = β∗ + λn
n ûn or ûn =

n
λn

(β(n) − β∗). Note that �(u) − �(0) = λ2
n

n V(n)
3 (u), where

V(n)
3 (u)

≡ uT
(

1

n
XT X

)

u − 2
εT X√

n

√
n

λn
u +

p
∑

j=1

n

λn

(∣
∣
∣
∣
β∗

j + λn

n
uj

∣
∣
∣
∣
− |β∗

j |
)

.

Hence ûn = arg min V(n)
3 . Because 1

n XT X → C, εT X√
n

is Op(1). Then
λn√

n
→ ∞ implies that εT X√

n

√
n

λn
u →p 0 by Slutsky’s theorem. If βj �= 0,

then n
λn

(|β∗
j + λn

n uj| − |β∗
j |) converges to uj sgn(βj); it equals |uj|

otherwise. Therefore, we have V(n)
3 (u) →p V3(u) for every u. Be-

cause C is a positive definite matrix, V3(u) has a unique minimizer.

V(n)
3 is a convex function. Then it follows (Geyer 1994) that ûn =

arg min(V(n)
3 ) →p arg min(V3).

Proof of Theorem 1

We first assume that the limits of λn/
√

n and λn/n exist. In Proposi-
tion 1 we showed that if λn/

√
n → λ0 ≥ 0, then the lasso selection can-

not be consistent. If the lasso selection is consistent, then one of three
scenarios must occur: (1) λn/n → ∞; (2) λn/n → λ0, 0 < λ0 < ∞; or
(3) λn/n → 0 but λn/

√
n → ∞.

If scenario (1) occurs, then it is easy to check that β̂
(n)
j →p 0 for

all j = 1,2, . . . ,p, which obviously contradicts the consistent selection
assumption.

Suppose that scenario (2) occurs. By Lemma 1, β̂(n) →p β∗, and
β∗ is a nonrandom vector. Because P(An = A) → 1, we must have
β∗j = 0 for all j /∈ A. Pick a j ∈ A and consider the event j ∈ An. By
the KKT optimality conditions, we have

−2xT
j
(

y − Xβ̂(n)
) + λn sgn

(

β̂
(n)
j

) = 0.

Hence P( j ∈An) ≤ P(|−2xT
j (y − Xβ̂

(n)
)/n| = λn/n). Moreover, note

that

−2
xT

j (y − Xβ̂(n))

n
= −2

xT
j X(β∗ − β̂(n))

n
− 2

xT
j ε

n

→p −2(C(β∗ − β∗))j.

Thus P( j ∈ An) → 1 implies that |2(C(β∗ − β∗))j| = λ0. Similarly,
pick a j′ /∈A; then P( j′ /∈An) → 1. Consider the event j′ /∈An. By the
KKT conditions, we have

∣
∣−2xT

j′
(

y − Xβ̂(n)
)∣
∣ ≤ λn.

So P( j′ /∈ An) ≤ P(|−2xT
j′ (y − Xβ̂(n))/n| ≤ λn/n). Thus

P( j′ /∈An) → 1 implies that |2(C(β∗ − β∗))j′ | ≤ λ0. Observe that

C(β∗ − β∗) =
[

C11(β∗
A − β∗A)

C21(β∗
A − β∗A)

]

.

We have

C11(β∗
A − β∗A) = λ0

2
s∗ (A.5)

and

|C21(β∗
A − β∗A)| ≤ λ0

2
, (A.6)

where s∗ is the sign vector of C11(β∗
A − β∗A). Combining (A.5)

and (A.6), we have |C21C−1
11

λ0
2 s∗| ≤ λ0

2 or, equivalently,

|C21C−1
11 s∗| ≤ 1. (A.7)

If scenario (3) occurs, then, by Lemma 3, n
λn

(β̂(n) − β∗) →p u∗ =
arg min(V3), and u∗ is a nonrandom vector. Pick any j /∈ A. Because

P(β̂
(n)
j = 0) → 1 and n

λn
β̂

(n)
j →p u∗

j , we must have u∗
j = 0. On the

other hand, note that

V3(u) = uT Cu +
∑

j∈A
[ujs

∗
j ] +

∑

j/∈A
|uj|,

where s∗ = sgn(β∗
A). We get u∗

A = −C−1
11 (C12u∗

Ac + 1
2 s∗). Then it is

straightforward to verify that u∗
Ac = arg min(Z), where

Z(r) = rT (C22 − C21C−1
11 C12)r − rtC21C−1

11 s∗ +
∑

i

|ri|.

But u∗
Ac = 0. By the KKT optimality conditions, we must have

|C21C−1
11 s∗| ≤ 1. (A.8)

Together (A.7) and (A.8) prove (3).
Now we consider the general sequences of {λn/

√
n } and {λn/n}.

Note that there is a subsequence {nk} such that the limits of {λnk /
√

nk }
and {λnk /nk} exist (with the limits allowed to be infinity). Then we

can apply the foregoing proof to the subsequence {β̂∗(nk)} to obtain
the same conclusion.

Proof of Corollary 1

Note that C−1
11 = 1

1−ρ1
(I − ρ1

1+(p0−1)ρ1
J1) and C21C−1

11 =
ρ2

1+(p0−1)ρ1
(�1)T . Thus C21C−1

11 s = ρ2
1+(p0−1)ρ1

(
∑p0

j sj)�1. Then con-
dition (3) becomes

∣
∣
∣
∣

ρ2

1 + (p0 − 1)ρ1

∣
∣
∣
∣
·
∣
∣
∣
∣
∣

p0∑

j

sj

∣
∣
∣
∣
∣
≤ 1. (A.9)

Observe that when p0 is an odd number, |∑p0
j sj| ≥ 1. If

| ρ2
1+(p0−1)ρ1

| > 1, then (A.9) cannot be satisfied for any sign vec-
tor s. The choice of (ρ1, ρ2) in Corollary 1 ensures that C is a positive
definite matrix and | ρ2

1+(p0−1)ρ1
| > 1.
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Proof of Theorem 2

We first prove the asymptotic normality part. Let β = β∗ + u√
n

and


n(u) =
∥
∥
∥
∥
∥

y −
p

∑

j=1

xj

(

β∗
j + uj√

n

)
∥
∥
∥
∥
∥

2

+ λn

p
∑

j=1

ŵj

∣
∣
∣
∣
β∗

j + uj√
n

∣
∣
∣
∣
.

Let û(n) = arg min
n(u); then β̂∗(n) = β∗ + û(n)√
n

or û(n) = √
n ×

(β∗(n) − β∗). Note that 
n(u) − 
n(0) = V(n)
4 (u), where

V(n)
4 (u) ≡ uT

(
1

n
XT X

)

u − 2
εT X√

n
u

+ λn√
n

p
∑

j=1

ŵj
√

n

(∣
∣
∣
∣
β∗

j + uj√
n

∣
∣
∣
∣
− |β∗

j |
)

.

We know that 1
n XT X → C and εT X√

n
→d W = N(0, σ 2C). Now

consider the limiting behavior of the third term. If β∗
j �= 0, then

ŵj →p |β∗
j |−γ and

√
n(|β∗

j + uj√
n
|− |β∗

j |) → uj sgn(β∗
j ). By Slutsky’s

theorem, we have λn√
n

ŵj
√

n(|β∗
j + uj√

n
| − |β∗

j |) →p 0. If β∗
j = 0,

then
√

n(|β∗
j + uj√

n
| − |β∗

j |) = |uj| and λn√
n

ŵj = λn√
n

nγ /2(|√nβ̂j|)−γ ,

where
√

nβ̂j = Op(1). Thus, again by Slutsky’s theorem, we see that

V(n)
4 (u) →d V4(u) for every u, where

V4(u) =
{

uT
AC11uA − 2uT

AWA if uj = 0 ∀ j /∈A
∞ otherwise.

V(n)
4 is convex, and the unique minimum of V4 is (C−1

11 WA,0)T . Fol-
lowing the epi-convergence results of Geyer (1994) and Knight and Fu
(2000), we have

û(n)
A →d C−1

11 WA and û(n)
Ac →d 0. (A.10)

Finally, we observe that WA = N(0, σ 2C11); then we prove the as-
ymptotic normality part.

Now we show the consistency part. ∀ j ∈ A, the asymptotic nor-

mality result indicates that β̂
(n)
j →p β∗

j ; thus P( j ∈ A∗
n) → 1. Then

it suffices to show that ∀ j′ /∈ A, P( j′ ∈ A∗
n) → 0. Consider the event

j′ ∈ A∗
n . By the KKT optimality conditions, we know that 2xT

j′ (y −
Xβ̂∗(n)) = λnŵj′ . Note that λnŵj′/

√
n = λn√

n
nγ /2 1

|√nβ̂j′ |γ
→p ∞,

whereas

2
xT

j′ (y − Xβ̂∗(n))
√

n
= 2

xT
j′ X

√
n(β∗ − β̂∗(n))

n
+ 2

xT
j′ ε√
n

.

By (A.10) and Slutsky’s theorem, we know that 2xT
j′ X

√
n(β∗ −

β̂∗(n))/n →d some normal distribution and 2xT
j′ ε/

√
n →d N(0,

4‖xj′ ‖2σ 2). Thus

P( j′ ∈A∗
n) ≤ P

(

2xT
j′
(

y − Xβ̂∗(n)
) = λnŵj′

) → 0.

Proof of Theorem 3

We first show that for all i,

E
[

(µ̂∗
i (λ) − µi)

2]

≤
(

λ2/(1+γ ) + 5 + 4

γ

)
(

min(µ2
i ,1) + q

(

λ1/(1+γ )
))

, (A.11)

where q(t) = 1√
2π t

e−t2/2. Then, by (A.11), we have

R(µ̂∗
i (λ)) ≤

(

λ2/(1+γ ) + 5 + 4

γ

)
(

R(ideal) + nq
(

λ1/(1+γ )
))

.

(A.12)

Observe that when λ = (2 log n)(1+γ )/2, λ2/(1+γ ) = 2 log n, and
nq(λ1/(1+γ )) ≤ 1

2
√

π
(log n)−1/2; thus Theorem 3 is proven.

To show (A.11), consider the decomposition

E
[

(µ̂∗
i (λ) − µi)

2] = E
[

(µ̂∗
i (λ) − yi)

2] + E[(yi − µi)
2]

+ 2E[µ̂∗
i (λ)(yi − µi)] − 2E[yi(yi − µi)]

= E
[

(µ̂∗
i (λ) − yi)

2] + 1 + E

[
dµ̂∗

i (λ)

dyi

]

− 2,

where we have applied Stein’s lemma (Stein 1981) to E[µ̂∗
i (λ)(yi −

µi)]. Note that

(µ̂∗
i (λ) − yi)

2 =







y2
i if |yi| < λ1/(1+γ )

λ2

|yi|2γ
if |yi| > λ1/(1+γ )

and

dµ̂∗
i (λ)

dyi
=







0 if |yi| < λ1/(1+γ )

1 + λ

γ |yi|1+γ
if |yi| > λ1/(1+γ ).

Thus we get

E
[

(µ̂∗
i (λ) − µi)

2]

= E
[

y2
i I

(|yi| < λ1/(1+γ )
)]

+ E

[(
λ2

|yi|2γ
+ 2λ

γ |yi|1+γ
+ 2

)

I
(|yi| > λ1/(1+γ )

)
]

− 1.

(A.13)

So it follows that

E
[

(µ̂∗
i (λ) − µi)

2] ≤ λ2/(1+γ )P
(|yi| < λ1/(1+γ )

)

+
(

2 + 2

γ
+ λ2/(1+γ )

)

P
(|yi| > λ1/(1+γ )

) − 1

= λ2/(1+γ ) +
(

2 + 2

γ

)

P
(|yi| > λ1/(1+γ )

) − 1

≤ λ2/(1+γ ) + 5 + 4

γ
. (A.14)

By the identity (A.13), we also have that

E
[

(µ̂∗
i (λ) − µi)

2]

= E[y2
i ]

+ E

[(
λ2

|yi|2γ
+ 2λ

γ |yi|1+γ
+ 2 − y2

i

)

I
(|yi| > λ1/(1+γ )

)
]

− 1

= E

[(
λ2

|yi|2γ
+ 2λ

γ |yi|1+γ
+ 2 − y2

i

)

I
(|yi| > λ1/(1+γ )

)
]

+ µ2
i

≤
(

2 + 2

γ

)

P
(|yi| > λ1/(1+γ )

) + µ2
i .

Following Donoho and Johnstone (1994), we let g(µi) = P(|yi| > t)

and g(µi) ≤ g(0) + 1
2 | sup g′′|µ2

i . Note that g(0) = 2
∫ ∞

t e−z2/2/√
2π dz ≤ 2

∫ ∞
t ze−z2/2/(t

√
2π)dz = 2/(

√
2π t)e−t2/2 and

|g′′(µi = a)| =
∣
∣
∣
∣
2
∫ ∞

t

(z − a)2
√

2π
e−(z−a)2/2 dz − 2

∫ ∞
t

e−(z−a)2/2
√

2π

∣
∣
∣
∣

≤ 2

∣
∣
∣
∣

∫ ∞
t

(z − a)2
√

2π
e−(z−a)2/2 dz

∣
∣
∣
∣
+ 2

∣
∣
∣
∣

∫ ∞
t

e−(z−a)2/2
√

2π

∣
∣
∣
∣

≤ 4.
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Thus we have P(|yi| > t) ≤ 2√
2π t

e−t2/2 + 2µ2
i . Then it follows that

E
[

(µ̂∗
i (λ) − µi)

2] ≤
(

4 + 4

γ

)

q
(

λ1/(1+γ )
) +

(

5 + 4

γ

)

µ2
i

≤
(

λ2/(1+γ ) + 5 + 4

γ

)
(

µ2
i + q

(

λ1/(1+γ )
))

.

(A.15)

Combining (A.14) and (A.15), we prove (A.11).

Proof of Corollary 2

Let β̂∗(n)(γ = 1) be the adaptive lasso estimates in (8). By The-
orem 2, β̂∗(n)(γ = 1) is an oracle estimator if λn/

√
n → 0 and

λn → ∞. To show the consistency of the garotte selection, it suffices
to show that β̂∗(n)(γ = 1) satisfies the sign constraint with probabil-
ity tending to 1. Pick any j. If j ∈ A, then β̂∗(n)(γ = 1)jβ̂(ols)j →p

(β∗
j )2 > 0; thus P(β̂∗(n)(γ = 1)jβ̂(ols)j ≥ 0) → 1. If j /∈ A, then

P(β̂∗(n)(γ = 1)jβ̂(ols)j ≥ 0) ≥ P(β̂∗(n)(γ = 1)j = 0) → 1. In either

case, P(β̂∗(n)(γ = 1)jβ̂(ols)j ≥ 0) → 1 for any j = 1,2, . . . ,p.

Proof of Theorem 4

For the proof, we assume the following regularity conditions:

1. The Fisher information matrix is finite and positive definite,

I(β∗) = E[φ′′(xTβ∗)xxT ].
2. There is a sufficiently large enough open set O that contains β∗

such that ∀β ∈O,

|φ′′′(xTβ)| ≤ M(x) < ∞
and

E
[

M(x)|xjxkx�|
]

< ∞
for all 1 ≤ j, k, � ≤ p.

We first prove the asymptotic normality part. Let β = β∗ + u√
n

.

Define

�n(u) =
n

∑

i=1

(

−yi

(

xT
i

(

β∗ + u√
n

))

+ φ

(

xT
i

(

β∗ + u√
n

)))

+ λn

p
∑

j=1

ŵj

∣
∣
∣
∣
β∗

j + uj√
n

∣
∣
∣
∣
.

Let û(n) = arg minu �n(u); then û(n) = √
n(β∗(n)(glm) − β∗). Using

the Taylor expansion, we have �n(u) − �n(0) = H(n)(u), where

H(n)(u) ≡ A(n)
1 + A(n)

2 + A(n)
3 + A(n)

4 ,

with

A(n)
1 = −

n
∑

i=1

[yi − φ′(xT
i β∗)]xT

i u√
n

,

A(n)
2 =

n
∑

i=1

1

2
φ′′(xT

i β∗)uT (xixT
i )

n
u,

A(n)
3 = λn√

n

p
∑

j=1

ŵj
√

n

(∣
∣
∣
∣
β∗

j + uj√
n

∣
∣
∣
∣
− |β∗

j |
)

,

and

A(n)
4 = n−3/2

n
∑

i=1

1

6
φ′′′(xT

i β̃∗)(xT
i u)3,

where β̃∗ is between β∗ and β∗+ u√
n

. We analyze the asymptotic limit
of each term. By the familiar properties of the exponential family, we
observe that

Eyi,xi

([yi − φ′(xT
i β∗)](xT

i u)
) = 0

and

varyi,xi

([yi −φ′(xT
i β∗)](xT

i u)
) = Exi [φ′′(xT

i β∗)(xT
i u)2] = uT I(β∗)u.

Then the central limit theorem says that A(n)
1 →d uT N(0, I(β∗)). For

the second term A(n)
2 , we observe that

n
∑

i=1

φ′′(xT
i β∗)

(xixT
i )

n
→p I(β∗).

Thus A(n)
2 →p

1
2 uT I(β∗)u. The limiting behavior of the third term

is discussed in the proof of Theorem 2. We summarize the results as
follows:

λn√
n

ŵj
√

n

(∣
∣
∣
∣
β∗

j + uj√
n

∣
∣
∣
∣
− |β∗

j |
)

→p







0 if β∗
j �= 0

0 if β∗
j = 0 and uj = 0

∞ if β∗
j = 0 and uj �= 0.

By the regularity condition 2, the fourth term can be bounded as

6
√

nA(n)
4 ≤

n
∑

i=1

1

n
M(xT

i )|xT
i u|3 →p E[M(x)|xT u|3] < ∞.

Thus, by Slutsky’s theorem, we see that H(n)(u) →d H(u) for every
u, where

H(u) =
{

uT
AI11uA − 2uT

AWA if uj = 0 ∀ j /∈ A
∞ otherwise,

where W = N(0, I(β∗)). H(n) is convex and the unique minimum of
H is (I−1

11 WA,0)T . Then we have

û(n)
A →d I−1

11 WA and û(n)
Ac →d 0. (A.16)

Because WA = N(0, I11), the asymptotic normality part is proven.
Now we show the consistency part. ∀ j ∈A, the asymptotic normal-

ity indicates that P( j ∈ A∗
n) → 1. Then it suffices to show that ∀ j′ /∈A,

P( j′ ∈ A∗
n) → 0. Consider the event j′ ∈ A∗

n . By the KKT optimality
conditions, we must have

n
∑

i

xij′
(

yi − φ′(xT
i β̂∗(n)(glm)

)) = λnŵj′ ;

thus P( j′ ∈ A∗
n) ≤ P(

∑n
i xij′(yi − φ′(xT

i β̂∗(n)(glm))) = λnŵj′). Note
that

n
∑

i

xij′
(

yi − φ′(xT
i β̂∗(n)(glm)

))

/
√

n = B(n)
1 + B(n)

2 + B(n)
3 ,

with

B(n)
1 =

n
∑

i

xij′(yi − φ′(xT
i β̂∗))/

√
n,

B(n)
2 =

(

1

n

n
∑

i

xij′φ
′′(xT

i β̂∗)xT
i

)

√
n
(

β∗ − β̂∗(n)(glm)
)

,

and

B(n)
3 = 1

n

n
∑

i

xij′φ
′′′(xT

i β̃∗∗)
(

xT
i
√

n
(

β∗ − β̂∗(n)(glm)
))2

/
√

n,

where β∗∗ is between β̂∗(n)(glm) and β∗. By the previous arguments,

we know that B(n)
1 →d N(0, I(β)). Observe that 1

n
∑n

i xij′φ′′(xT
i β̂∗)×
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xT
i →p Ij′ , where Ij′ is the j′th row of I. Thus (A.16) implies that B(n)

2
converges to some normal random variable. It follows the regularity
condition 2 and (A.16) that B(n)

3 = Op(1/
√

n ). Meanwhile, we have

λnŵj′√
n

= λn√
n

nγ /2 1

|√nβ̂j′(glm)|γ →p ∞.

Thus P( j′ ∈A∗
n) → 0. This completes the proof.

[Received September 2005. Revised May 2006.]
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