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Goals of data representation

Dimension reduction while retaining important aspects of the data

Goals can be

» Visualisation

» Interpretability/Variable selection

» Data compression

» Finding a representation of the data that is more suitable to the posed
question

Let us start with linear dimension reduction.
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Re-cap: SVD

The singular value decomposition (SVD) of a matrix X € R"™*P, n > p, is
X =UDV'
where U € R™P and V € RP*P with
U'U=1, and V'V=VV' =],

and D € RP*P is diagonal.

Usually the diagonal elements of D are sorted such that

dll 2 d22 22 dpp-
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SVD and best rank-g-approximation (1)

Write u; and v; for the columns of U and V, respectively. Then

b
X=UDV'=>d; wyv]

rank-1-matrix

Best rank-g-approximation: For g < p

q

_ T

Xy = Z djju;v;
j=1

approximates X as a sum of layers with approximation error

2 p
||X_Xq||F =l 2 djuv] Z
Jj=q+1 F Jj=q+1
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Alternative view of best rank-g-approximation

Using only the first ¢ < min(p, n) columns of V and U, and the first g rows and
columns of D, leads to
X, =U,D,Vy,.

According to the Eckart-Young-Mirsky theorem, the matrix X, is a solution to the
following minimization problem (see website for proof)

argmin ||X — M]||3.
rank(M)=q

The solution is unique if the g + 1-th singular value is different from the the g-th
singular value.
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Alternative view of the Eckart-Young-Mirsky problem

For g < min(p,n), setL :=U,D, € R™4 and F =V € R?*P,

5/21



Alternative view of the Eckart-Young-Mirsky problem

For g < min(p,n), setL :=U,D, € R™4 and F =V € R?*P,
Then X, = LF is a solution of

argmin || X — LF||%
LeR™<4,FERI*P

5/21



Alternative view of the Eckart-Young-Mirsky problem

For g < min(p,n), setL :=U,D, € R™4 and F =V € R?*P,
Then X, = LF is a solution of
argmin || X — LF||%
LeR"*q, FERI*P

Notes:

» Whereas X, can be the unique minimizer for the original minimisation
problem, the matrices F and L are not unique.

» This is just PCA: When using SVD to compute the PCA of X, then the columns
of V contain the PC directions and the rows of F the first q of them.
Projecting the data onto the PCs but then reconstructing it means to
compute (XV,)V, = (UDV'V,)V, = (UDL,,,)V, = (U;D,)V, =LF.
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Low-rank matrix factorisation

Let g < min(p, n)

argmin || X — LF||%
LeR"™ 4 FERI*P

Interpretation

» The rows of F can be seen as basis vectors or coordinates of a subspace in
feature space
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Low-rank matrix factorisation

Let g < min(p, n)
argmin || X — LF||%

LeR"™ 4 FERI*P

Interpretation

» The rows of F can be seen as basis vectors or coordinates of a subspace in
feature space

» The rows of L provide coefficients that combine the basis vectors in F to the
closest g-dimensional approximation of the respective observation

» In the framework of factor analysis the rows of F are called factors and the
rows of L are called (latent) loadings
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Notes on factor analysis

» Originated in psychometrics with the idea that factors could describe
unobservable (latent) properties (e.g. intelligence)
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Notes on factor analysis

>

Originated in psychometrics with the idea that factors could describe
unobservable (latent) properties (e.g. intelligence)

A typical assumption is that the rows of F are orthogonal, i.e. FF' =1,

But even row orthogonality of F does not ensure identifiability (uniqueness
of the solution) since for a orthogonal matrix R € R?4

LF :=(LR)R'F) =LF

and F’ is orthogonal if F is

Every orthogonal matrix describes a rotation and when applied to factors
and loadings it is called a factor rotation

Through optimization of R, we can make either factors (varimax rotation) or
loadings (quartimax rotation) sparse
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Conclusions from Factor Analysis/SVD-based approach

» The SVD-based approach is provably best in the Frobenius norm
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Conclusions from Factor Analysis/SVD-based approach

» The SVD-based approach is provably best in the Frobenius norm

» Best g can be easily chosen by observing the approximation error
However:
» Interpretation is difficult since layers both add and subtract information
(diu, v = dyufv

» U andV, respectively L and F, are not unique and usually dense (no zero
entries)
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Non-negative Matrix Factorization (NMF)

Idea: We can add constraints to the low-rank matrix factorisation problem.

Non-negative matrix factorisation (NMF): Let g < min(p, n)

argmin |[X —LF||% suchthat L>0,F>0
LeR"™4 FERI*P

q
> Sum of positive layers: X ~ )" LEDFU:)
j=1
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Non-negative Matrix Factorization (NMF)

Idea: We can add constraints to the low-rank matrix factorisation problem.

Non-negative matrix factorisation (NMF): Let g < min(p, n)

argmin |[X —LF||% suchthat L>0,F>0
LeR"™4 FERI*P

g
> Sum of positive layers: X ~ )" LEDFU:)
Jj=1
» No fast specialised algorithm or analytic solution exists (NP-hard problem)
» Requires that the data X has to be non-negative
» L and F are again not uniquely identifiable.

» Choice of g not as straight-forward as for SVD
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SVD vs NMF - Example: Reconstruction

MNIST-derived zip code digits (n = 1000, p = 256)
100 samples are drawn randomly from each class to keep the problem balanced.
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Red-ish colours are for negative values, white is around zero and dark stands for
positive values. Reconstructions are done using 50 first PCs / g = 50. 10/21



SVD vs NMF - Example: Basis Components

PCA 1

Large difference between principal
components (columns of V) and
NMF basis components (rows of F)

The non-negativity constraint

leads to sparsity in the basis (in F) H
and coefficients (in L, next slide). NMF 1
Therefore, NMF captures sparse
characteristic parts while PCA "
components capture more global NMF 6

features.

PCA 2

PCA7

NMF 3

NMF 8

NMF 10
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SVD vs NMF - Example: Coefficients ()

SVD coefficients

i
il i, .

NMF coefficients
il nh e

Note the additional sparsity in the NMF coefficients. 12/21



How to solve the NMF problem?

The NMF problem is

argmin  |[X —LF||%# suchthat L>0,F>0
LeR"™4, FERI*P
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How to solve the NMF problem?

The NMF problem is

argmin  |[X —LF||%# suchthat L>0,F>0
LeR"™4, FERI*P

Most algorithms use two-block coordinate descent and solve

Ll = argmin || X — LF!-Y)2 and  FlY) = argmin ||X — LIF| 2
L>0 F>0

iteratively.

Note that the problem is symmetric in L and F since
X — LF||% = [ X" — FTLT||3.

No separate algorithms needed for L and F.
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Short note on cost functions

Our derviation was based on Frobenius norm and inspired by the SVD-based
approach of the best rank-g approximation. However, other cost functions are
possible.
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Short note on cost functions

Our derviation was based on Frobenius norm and inspired by the SVD-based
approach of the best rank-g approximation. However, other cost functions are

possible.

» Note: Cost functions determine the distribution of noise
» Frobenius norm implies Gaussian distribution
» An alternative for Poisson distributed data (count data)

D(X||LF) = Z Z (X(l D log

i=1j=1

— x@@p (.J)
(LF)(’ 5 X)) + (LF) )

Resembles the Kullback-Leibler divergence and the log-likelihood of
Poisson-distributed data with mean (LF){J) for X)),
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Alternating least squares updates for NMF

A simple update rule is alternating least squares (ALS): Solve the unconstrained
least squares problem

Z!" = argmin || X — L1172
ZERIXP

and set elementwise Fl!! = max(Z!!l,0). Analogous for L1,
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Alternating least squares updates for NMF

A simple update rule is alternating least squares (ALS): Solve the unconstrained
least squares problem

Z!" = argmin || X — L1172
ZERIXP

and set elementwise Fl!! = max(Z!!l,0). Analogous for L1,

» The method is cheap but can have convergence issues.

» Can be useful for initialisation (some steps of ALS first, then another
algorithm)
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Alternating non-negative least squares updates for NMF

It holds that

p
|IX — LF|j = > XY — LFGD| 3
i=1

P T » . s s
= Z FGD (LTQL)F(.,I) + (= LTXG)TEGD || xGD)|12
i=1 = =c

Minimizing over FCG-) > 0, this is a sum of p independent non-negative least

squares (NNLS) problems. The resulting update rule is called alternating NNLS.

NNLS problems are equivalent to quadratic programming problems of the form

1
argmin =x' Qx 4+ ¢'x
x>0

for positive semi-definite Q.
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Multiplicative updates for NMF

Multiplicative updates (MU) have been popularized by Lee and Seung (1999).
Their form depends on the cost function. In the following A o B denotes
elementwise multiplication of matrices and division is also meant elementwise.

1. Frobenius norm:

XFT L'X
and F <« Fo

L<L
T~ LFFT LTLF

2. KL divergence:
F(k,i)X(l,i)/(LF)(l,i)
p .
Zi=1 F(k,l)
L(l,k)x(l,i)/(LF)(l,i)
n
zl=1 Lk

p
L&k LK) i1 and

n
F(k,i) a F(k,i) Zl:l
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Multiplicative updates for NMF and gradient descent

Multiplicative updates are a special case of gradient descent. Let
J(L,F) = §||x — LF| then

ViJ = LFFT — XFT

VgJ =L'LF - L'X
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Multiplicative updates for NMF and gradient descent

Multiplicative updates are a special case of gradient descent. Let
J(L,F) = §||x — LF| then

ViJ = LFFT — XFT

VgJ =L'LF - L'X
Gradient descent in L for step-length a performs

L & L —_ CCVLJ
It can be shown that "
— nxq
=R €N

where division is element-wise, is an admissible step length. Element-wise
multiplication of « and VJ yields the MU for L. Analogously for F.

Note: Analogous results hold for the KL divergence. /
18/21



Advantages of NMF

» Interpretability: As in the case of truncated SVD we are adding layers, but
now all layers are positive and each layer adds information
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Advantages of NMF

» Interpretability: As in the case of truncated SVD we are adding layers, but
now all layers are positive and each layer adds information
» Clustering interpretation:

» The rows of F can be interpreted as cluster centroids
» Cluster membership of each observation is determined by the rows of L
» Observation j is assigned to the cluster k if LU-K) > LUD for alli # k
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Initialising NMF

NMF can be initialised in multiple ways

» Random initialisation: Uniformly distributed entries in [0,1] for L and F

» Clustering techniques: Run k-means with g clusters on data, store cluster
centroids in rows of F and L% £ 0 < X&) belongs to cluster k

» SVD: Determine best rank-g-approximation Z‘i]:l d;;v;u], note that

diwpvi = ((+dyw ] [+v] 14 + [—dyw] [-v]]4)
- ([+diiui]+[_vgr]+ + [_diiui]+[+vz—]+)
and initialize NMF by summing only the positive parts or the larger of the
positive parts.
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Take-home message

» Linear dimension reduction approximates matrices through additive layers
(hence linear).

» The SVD-based approach leads to factor analysis, built on the intuition that
there are underlying factors describing the data and the intensity of their
presence in a sample is quantified in the loadings

» By adding non-negativity constraints to the matrix factorisation problem,
NMF creates more interpretable results and can be used for clustering at the
same time
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