## **Lecture 11: Data representations - Linear methods**

Rebecka Jörnsten, Mathematical Sciences

MSA220/MVE441 Statistical Learning for Big Data

29 April 2022



# Goals of data representation

Dimension reduction while retaining important aspects of the data

## Goals of data representation

## Dimension reduction while retaining important aspects of the data

#### Goals can be

- ▶ Visualisation
- ► Interpretability/Variable selection
- ▶ Data compression
- ► Finding a representation of the data that is more suitable to the posed question

# Goals of data representation

### Dimension reduction while retaining important aspects of the data

#### Goals can be

- ▶ Visualisation
- ► Interpretability/Variable selection
- ▶ Data compression
- ► Finding a representation of the data that is more suitable to the posed question

Let us start with linear dimension reduction.

## Re-cap: SVD

The singular value decomposition (SVD) of a matrix  $X \in \mathbb{R}^{n \times p}$ ,  $n \ge p$ , is

$$X = UDV^{T}$$

where  $\mathbf{U} \in \mathbb{R}^{n \times p}$  and  $\mathbf{V} \in \mathbb{R}^{p \times p}$  with

$$\mathbf{U}^{\mathsf{T}}\mathbf{U} = \mathbf{I}_p$$
 and  $\mathbf{V}^{\mathsf{T}}\mathbf{V} = \mathbf{V}\mathbf{V}^{\mathsf{T}} = \mathbf{I}_p$ 

and  $\mathbf{D} \in \mathbb{R}^{p \times p}$  is diagonal.

Usually the diagonal elements of  ${\bf D}$  are sorted such that

$$d_{11} \ge d_{22} \ge \cdots \ge d_{pp}.$$

# SVD and best rank-q-approximation (I)

Write  $\mathbf{u}_j$  and  $\mathbf{v}_j$  for the columns of  $\mathbf{U}$  and  $\mathbf{V}$ , respectively. Then

$$\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top} = \sum_{j=1}^{p} d_{jj} \underbrace{\mathbf{u}_{j}\mathbf{v}_{j}^{\top}}_{\text{rank-1-matrix}}$$

**Best rank**-q-approximation: For q < p

$$\mathbf{X}_{\boldsymbol{q}} = \sum_{j=1}^{\boldsymbol{q}} d_{jj} \mathbf{u}_j \mathbf{v}_j^{\mathsf{T}}$$

approximates X as a sum of layers with approximation error

$$\left\|\mathbf{X} - \mathbf{X}_q \right\|_F^2 = \left\| \sum_{j=q+1}^p d_{jj} \mathbf{u}_j \mathbf{v}_j^\top \right\|_F^2 = \sum_{j=q+1}^p d_{jj}^2$$

# Alternative view of best rank-q-approximation

Using only the first  $q < \min(p, n)$  columns of **V** and **U**, and the first q rows and columns of **D**, leads to

$$\mathbf{X}_q = \mathbf{U}_q \mathbf{D}_q \mathbf{V}_q^{\mathsf{T}}.$$

According to the **Eckart-Young-Mirsky theorem**, the matrix  $\mathbf{X}_q$  is a solution to the following minimization problem (see website for proof)

$$\underset{\text{rank}(\mathbf{M})=q}{\arg\min} \|\mathbf{X} - \mathbf{M}\|_F^2.$$

The solution is unique if the q+1-th singular value is different from the the q-th singular value.

# Alternative view of the Eckart-Young-Mirsky problem

For  $q < \min(p, n)$ , set  $\mathbf{L} := \mathbf{U}_q \mathbf{D}_q \in \mathbb{R}^{n \times q}$  and  $\mathbf{F} = \mathbf{V}_q^{\top} \in \mathbb{R}^{q \times p}$ .

# Alternative view of the Eckart-Young-Mirsky problem

For 
$$q < \min(p, n)$$
, set  $\mathbf{L} := \mathbf{U}_q \mathbf{D}_q \in \mathbb{R}^{n \times q}$  and  $\mathbf{F} = \mathbf{V}_q^{\top} \in \mathbb{R}^{q \times p}$ .  
Then  $\mathbf{X}_q = \mathbf{L}\mathbf{F}$  is a solution of

$$\mathop{\arg\min}_{\mathbf{L} \in \mathbb{R}^{n \times q}, \mathbf{F} \in \mathbb{R}^{q \times p}} \|\mathbf{X} - \mathbf{L}\mathbf{F}\|_F^2$$

# Alternative view of the Eckart-Young-Mirsky problem

For  $q < \min(p, n)$ , set  $\mathbf{L} := \mathbf{U}_q \mathbf{D}_q \in \mathbb{R}^{n \times q}$  and  $\mathbf{F} = \mathbf{V}_q^{\mathsf{T}} \in \mathbb{R}^{q \times p}$ .

Then  $\mathbf{X}_q = \mathbf{LF}$  is a solution of

$$\mathop{\arg\min}_{\mathbf{L} \in \mathbb{R}^{n \times q}, \mathbf{F} \in \mathbb{R}^{q \times p}} \|\mathbf{X} - \mathbf{L}\mathbf{F}\|_F^2$$

#### **Notes:**

- ▶ Whereas  $X_q$  can be the unique minimizer for the original minimisation problem, the matrices F and L are not unique.
- ▶ This is just PCA: When using SVD to compute the PCA of X, then the columns of V contain the PC directions and the rows of F the first q of them. Projecting the data onto the PCs but then reconstructing it means to compute  $(\mathbf{X}\mathbf{V}_q)\mathbf{V}_q^{\mathsf{T}} = (\mathbf{U}\mathbf{D}\mathbf{V}^{\mathsf{T}}\mathbf{V}_q)\mathbf{V}_q^{\mathsf{T}} = (\mathbf{U}\mathbf{D}\mathbf{I}_{p\times q})\mathbf{V}_q^{\mathsf{T}} = (\mathbf{U}_q\mathbf{D}_q)\mathbf{V}_q^{\mathsf{T}} = \mathbf{L}\mathbf{F}$ .

### **Low-rank matrix factorisation**

Let 
$$q < \min(p,n)$$
 
$$\mathop{\arg\min}_{\mathbf{L} \in \mathbb{R}^{n \times q}, \mathbf{F} \in \mathbb{R}^{q \times p}} \|\mathbf{X} - \mathbf{L}\mathbf{F}\|_F^2$$

## Interpretation

► The rows of **F** can be seen as **basis vectors** or **coordinates** of a subspace in feature space

### Low-rank matrix factorisation

Let 
$$q < \min(p,n)$$
 
$$\mathop{\arg\min}_{\mathbf{L} \in \mathbb{R}^{n \times q}, \mathbf{F} \in \mathbb{R}^{q \times p}} ||\mathbf{X} - \mathbf{L}\mathbf{F}||_F^2$$

## Interpretation

- ► The rows of **F** can be seen as **basis vectors** or **coordinates** of a subspace in feature space
- ► The rows of **L** provide **coefficients** that combine the basis vectors in **F** to the closest *q*-dimensional approximation of the respective observation

### Low-rank matrix factorisation

Let 
$$q < \min(p,n)$$
 
$$\mathop{\arg\min}_{\mathbf{L} \in \mathbb{R}^{n \times q}, \mathbf{F} \in \mathbb{R}^{q \times p}} ||\mathbf{X} - \mathbf{L}\mathbf{F}||_F^2$$

### Interpretation

- ► The rows of **F** can be seen as **basis vectors** or **coordinates** of a subspace in feature space
- ► The rows of **L** provide **coefficients** that combine the basis vectors in **F** to the closest *q*-dimensional approximation of the respective observation
- ► In the framework of **factor analysis** the rows of **F** are called **factors** and the rows of **L** are called **(latent) loadings**

 Originated in psychometrics with the idea that factors could describe unobservable (latent) properties (e.g. intelligence)

- ➤ Originated in psychometrics with the idea that factors could describe unobservable (latent) properties (e.g. intelligence)
- $\blacktriangleright$  A typical assumption is that the rows of F are orthogonal, i.e.  $\mathbf{F}\mathbf{F}^\top=\mathbf{I}_q$

- Originated in psychometrics with the idea that factors could describe unobservable (latent) properties (e.g. intelligence)
- lacktriangle A typical assumption is that the rows of  ${f F}$  are orthogonal, i.e.  ${f F}{f F}^{ op}={f I}_q$
- ▶ But even row orthogonality of **F** does not ensure **identifiability** (uniqueness of the solution) since for a orthogonal matrix  $\mathbf{R} \in \mathbb{R}^{q \times q}$

$$\mathbf{L}'\mathbf{F}' := (\mathbf{L}\mathbf{R})(\mathbf{R}^{\mathsf{T}}\mathbf{F}) = \mathbf{L}\mathbf{F}$$

and  $\mathbf{F}'$  is orthogonal if  $\mathbf{F}$  is

- Originated in psychometrics with the idea that factors could describe unobservable (latent) properties (e.g. intelligence)
- lacktriangle A typical assumption is that the rows of  ${f F}$  are orthogonal, i.e.  ${f F}{f F}^{ op}={f I}_q$
- ▶ But even row orthogonality of **F** does not ensure **identifiability** (uniqueness of the solution) since for a orthogonal matrix  $\mathbf{R} \in \mathbb{R}^{q \times q}$

$$\mathbf{L}'\mathbf{F}' := (\mathbf{L}\mathbf{R})(\mathbf{R}^{\mathsf{T}}\mathbf{F}) = \mathbf{L}\mathbf{F}$$

and F' is orthogonal if F is

 Every orthogonal matrix describes a rotation and when applied to factors and loadings it is called a factor rotation

- Originated in psychometrics with the idea that factors could describe unobservable (latent) properties (e.g. intelligence)
- lacktriangle A typical assumption is that the rows of  ${f F}$  are orthogonal, i.e.  ${f F}{f F}^{ op}={f I}_q$
- ▶ But even row orthogonality of **F** does not ensure **identifiability** (uniqueness of the solution) since for a orthogonal matrix  $\mathbf{R} \in \mathbb{R}^{q \times q}$

$$\mathbf{L}'\mathbf{F}' := (\mathbf{L}\mathbf{R})(\mathbf{R}^{\mathsf{T}}\mathbf{F}) = \mathbf{L}\mathbf{F}$$

and F' is orthogonal if F is

- ► Every orthogonal matrix describes a rotation and when applied to factors and loadings it is called a **factor rotation**
- ► Through optimization of **R**, we can make either factors (varimax rotation) or loadings (quartimax rotation) sparse

▶ The SVD-based approach is provably best in the Frobenius norm

- ▶ The SVD-based approach is provably best in the Frobenius norm
- ightharpoonup Best q can be easily chosen by observing the approximation error

- ▶ The SVD-based approach is provably best in the Frobenius norm
- ightharpoonup Best q can be easily chosen by observing the approximation error

#### **However:**

▶ Interpretation is difficult since layers both add and subtract information

$$(d_{ii}\mathbf{u}_i\mathbf{v}_i^{\mathsf{T}})^{(r,s)} = d_{ii}\mathbf{u}_i^{(r)}\mathbf{v}_i^{(s)}$$

- ▶ The SVD-based approach is provably best in the Frobenius norm
- ightharpoonup Best q can be easily chosen by observing the approximation error

#### **However:**

▶ Interpretation is difficult since layers both add and subtract information

$$(d_{ii}\mathbf{u}_i\mathbf{v}_i^{\mathsf{T}})^{(r,s)} = d_{ii}\mathbf{u}_i^{(r)}\mathbf{v}_i^{(s)}$$

► U and V, respectively L and F, are not unique and usually dense (no zero entries)

**Idea:** We can add constraints to the low-rank matrix factorisation problem.

Non-negative matrix factorisation (NMF): Let  $q < \min(p, n)$ 

$$\mathop{\arg\min}_{\mathbf{L} \in \mathbb{R}^{n \times q}, \mathbf{F} \in \mathbb{R}^{q \times p}} \|\mathbf{X} - \mathbf{L}\mathbf{F}\|_F^2 \quad \text{such that} \quad \mathbf{L} \geq 0, \ \mathbf{F} \geq 0$$

Sum of positive layers:  $\mathbf{X} \approx \sum_{j=1}^{q} \mathbf{L}^{(:,j)} \mathbf{F}^{(j,:)}$ 

**Idea:** We can add constraints to the low-rank matrix factorisation problem.

Non-negative matrix factorisation (NMF): Let  $q < \min(p, n)$ 

$$\mathop{\arg\min}_{\mathbf{L} \in \mathbb{R}^{n \times q}, \mathbf{F} \in \mathbb{R}^{q \times p}} \|\mathbf{X} - \mathbf{L}\mathbf{F}\|_F^2 \quad \text{such that} \quad \mathbf{L} \geq 0, \ \mathbf{F} \geq 0$$

Sum of positive layers:  $\mathbf{X} \approx \sum_{j=1}^{q} \mathbf{L}^{(:,j)} \mathbf{F}^{(j,:)}$ 

**Idea:** We can add constraints to the low-rank matrix factorisation problem.

$$\mathop{\arg\min}_{\mathbf{L} \in \mathbb{R}^{n \times q}, \mathbf{F} \in \mathbb{R}^{q \times p}} \|\mathbf{X} - \mathbf{L}\mathbf{F}\|_F^2 \quad \text{such that} \quad \mathbf{L} \geq 0, \ \mathbf{F} \geq 0$$

- Sum of positive layers:  $X \approx \sum_{j=1}^{q} L^{(:,j)} F^{(j,:)}$
- ▶ No fast specialised algorithm or analytic solution exists (NP-hard problem)

**Idea:** We can add constraints to the low-rank matrix factorisation problem.

$$\mathop{\arg\min}_{\mathbf{L} \in \mathbb{R}^{n \times q}, \mathbf{F} \in \mathbb{R}^{q \times p}} \|\mathbf{X} - \mathbf{L}\mathbf{F}\|_F^2 \quad \text{such that} \quad \mathbf{L} \geq 0, \ \mathbf{F} \geq 0$$

- Sum of positive layers:  $X \approx \sum_{j=1}^{q} L^{(:,j)} F^{(j,:)}$
- ▶ No fast specialised algorithm or analytic solution exists (NP-hard problem)
- Requires that the data X has to be non-negative

Idea: We can add constraints to the low-rank matrix factorisation problem.

$$\mathop{\arg\min}_{\mathbf{L} \in \mathbb{R}^{n \times q}, \mathbf{F} \in \mathbb{R}^{q \times p}} \|\mathbf{X} - \mathbf{L}\mathbf{F}\|_F^2 \quad \text{such that} \quad \mathbf{L} \geq 0, \ \mathbf{F} \geq 0$$

- Sum of positive layers:  $\mathbf{X} \approx \sum_{j=1}^{q} \mathbf{L}^{(:,j)} \mathbf{F}^{(j,:)}$
- ▶ No fast specialised algorithm or analytic solution exists (NP-hard problem)
- ▶ Requires that the data **X** has to be non-negative
- L and F are again not uniquely identifiable.

**Idea:** We can add constraints to the low-rank matrix factorisation problem.

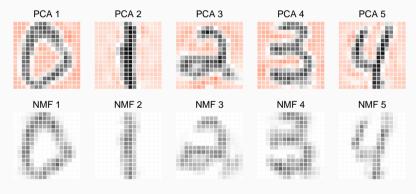
$$\mathop{\arg\min}_{\mathbf{L} \in \mathbb{R}^{n \times q}, \mathbf{F} \in \mathbb{R}^{q \times p}} \|\mathbf{X} - \mathbf{L}\mathbf{F}\|_F^2 \quad \text{such that} \quad \mathbf{L} \geq 0, \ \mathbf{F} \geq 0$$

- Sum of positive layers:  $X \approx \sum_{j=1}^{q} L^{(:,j)} F^{(j,:)}$
- ▶ No fast specialised algorithm or analytic solution exists (NP-hard problem)
- ► Requires that the data X has to be non-negative
- L and F are again not uniquely identifiable.
- ► Choice of *q* not as straight-forward as for SVD

## **SVD vs NMF – Example: Reconstruction**

### MNIST-derived zip code digits (n = 1000, p = 256)

100 samples are drawn randomly from each class to keep the problem balanced.



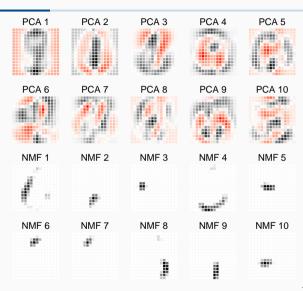
Red-ish colours are for negative values, white is around zero and dark stands for positive values. Reconstructions are done using 50 first PCs / q = 50.

## **SVD vs NMF - Example: Basis Components**

Large difference between principal components (columns of **V**) and NMF basis components (rows of **F**)

The non-negativity constraint leads to **sparsity** in the **basis** (in **F**) and **coefficients** (in **L**, next slide).

Therefore, NMF captures **sparse characteristic parts** while PCA components capture more global features.



# SVD vs NMF - Example: Coefficients ()

#### SVD coefficients



#### NMF coefficients



Note the additional **sparsity** in the NMF coefficients.

# How to solve the NMF problem?

The NMF problem is

$$\mathop{\arg\min}_{\mathbf{L}\in\mathbb{R}^{n\times q},\mathbf{F}\in\mathbb{R}^{q\times p}}\|\mathbf{X}-\mathbf{L}\mathbf{F}\|_F^2\quad\text{such that}\quad\mathbf{L}\geq0,\mathbf{F}\geq0$$

## How to solve the NMF problem?

The NMF problem is

$$\mathop{\arg\min}_{\mathbf{L}\in\mathbb{R}^{n\times q},\mathbf{F}\in\mathbb{R}^{q\times p}}\|\mathbf{X}-\mathbf{LF}\|_F^2\quad\text{such that}\quad\mathbf{L}\geq0,\mathbf{F}\geq0$$

Most algorithms use two-block coordinate descent and solve

$$\mathbf{L}^{[t]} = \operatorname*{arg\,min}_{\mathbf{L} \geq \mathbf{0}} \|\mathbf{X} - \mathbf{L}\mathbf{F}^{[t-1]}\|_F^2 \quad \text{and} \quad \mathbf{F}^{[t]} = \operatorname*{arg\,min}_{\mathbf{F} \geq \mathbf{0}} \|\mathbf{X} - \mathbf{L}^{[t]}\mathbf{F}\|_F^2$$

iteratively.

## How to solve the NMF problem?

The NMF problem is

$$\mathop{\arg\min}_{\mathbf{L}\in\mathbb{R}^{n\times q},\mathbf{F}\in\mathbb{R}^{q\times p}}\|\mathbf{X}-\mathbf{LF}\|_F^2\quad\text{such that}\quad\mathbf{L}\geq0,\mathbf{F}\geq0$$

Most algorithms use two-block coordinate descent and solve

$$\mathbf{L}^{[t]} = \mathop{\arg\min}_{\mathbf{L} \geq 0} \|\mathbf{X} - \mathbf{L}\mathbf{F}^{[t-1]}\|_F^2 \quad \text{and} \quad \mathbf{F}^{[t]} = \mathop{\arg\min}_{\mathbf{F} \geq 0} \|\mathbf{X} - \mathbf{L}^{[t]}\mathbf{F}\|_F^2$$

iteratively.

Note that the problem is **symmetric** in **L** and **F** since

$$||\mathbf{X} - \mathbf{L}\mathbf{F}||_F^2 = ||\mathbf{X}^\top - \mathbf{F}^\top \mathbf{L}^\top||_F^2.$$

No separate algorithms needed for  ${f L}$  and  ${f F}$ .

### **Short note on cost functions**

Our derviation was based on Frobenius norm and inspired by the SVD-based approach of the best rank-q approximation. However, other cost functions are possible.

#### **Short note on cost functions**

Our derviation was based on Frobenius norm and inspired by the SVD-based approach of the best rank-q approximation. However, other cost functions are possible.

▶ **Note:** Cost functions determine the distribution of noise

#### **Short note on cost functions**

Our derviation was based on Frobenius norm and inspired by the SVD-based approach of the best rank-q approximation. However, other cost functions are possible.

- ▶ **Note:** Cost functions determine the distribution of noise
- ► Frobenius norm implies Gaussian distribution

#### **Short note on cost functions**

Our derviation was based on Frobenius norm and inspired by the SVD-based approach of the best rank-q approximation. However, other cost functions are possible.

- ▶ **Note:** Cost functions determine the distribution of noise
- ► Frobenius norm implies Gaussian distribution
- ► An alternative for Poisson distributed data (count data)

$$D(\mathbf{X}||\mathbf{LF}) = \sum_{i=1}^{p} \sum_{j=1}^{n} \left( \mathbf{X}^{(i,j)} \log \frac{\mathbf{X}^{(i,j)}}{(\mathbf{LF})^{(i,j)}} - \mathbf{X}^{(i,j)} + (\mathbf{LF})^{(i,j)} \right)$$

Resembles the Kullback-Leibler divergence and the log-likelihood of Poisson-distributed data with mean  $(\mathbf{LF})^{(i,j)}$  for  $\mathbf{X}^{(i,j)}$ .

#### Alternating least squares updates for NMF

A simple update rule is **alternating least squares (ALS)**: Solve the unconstrained least squares problem

$$\mathbf{Z}^{[t]} = \underset{\mathbf{Z} \in \mathbb{R}^{q \times p}}{\operatorname{arg \, min}} \|\mathbf{X} - \mathbf{L}^{[t-1]}\mathbf{Z}\|_F^2$$

and set elementwise  $\mathbf{F}^{[t]} = \max(\mathbf{Z}^{[t]}, 0)$ . Analogous for  $\mathbf{L}^{[t]}$ .

#### Alternating least squares updates for NMF

A simple update rule is **alternating least squares (ALS)**: Solve the unconstrained least squares problem

$$\mathbf{Z}^{[t]} = \arg\min_{\mathbf{Z} \in \mathbb{R}^{q \times p}} \|\mathbf{X} - \mathbf{L}^{[t-1]}\mathbf{Z}\|_F^2$$

and set elementwise  $\mathbf{F}^{[t]} = \max(\mathbf{Z}^{[t]}, 0)$ . Analogous for  $\mathbf{L}^{[t]}$ .

▶ The method is cheap but can have convergence issues.

# Alternating least squares updates for NMF

A simple update rule is **alternating least squares (ALS)**: Solve the unconstrained least squares problem

$$\mathbf{Z}^{[t]} = \underset{\mathbf{Z} \in \mathbb{R}^{q \times p}}{\operatorname{arg \, min}} \|\mathbf{X} - \mathbf{L}^{[t-1]}\mathbf{Z}\|_F^2$$

and set elementwise  $\mathbf{F}^{[t]} = \max(\mathbf{Z}^{[t]}, 0)$ . Analogous for  $\mathbf{L}^{[t]}$ .

- ▶ The method is cheap but can have convergence issues.
- Can be useful for initialisation (some steps of ALS first, then another algorithm)

# Alternating non-negative least squares updates for NMF

It holds that

$$\|\mathbf{X} - \mathbf{L}\mathbf{F}\|_F^2 = \sum_{i=1}^p \|\mathbf{X}^{(:,i)} - \mathbf{L}\mathbf{F}^{(:,i)}\|_2^2$$

$$= \sum_{i=1}^p \mathbf{F}^{(:,i)^\top} (\underbrace{\mathbf{L}^\top \mathbf{L}}_{=\mathbf{Q}}) \mathbf{F}^{(:,i)} + (\underbrace{-\mathbf{L}^\top \mathbf{X}^{(:,i)}}_{=\mathbf{c}})^\top \mathbf{F}^{(:,i)} + \|\mathbf{X}^{(:,i)}\|_2^2$$

Minimizing over  $\mathbf{F}^{(:,i)} \ge 0$ , this is a sum of p independent non-negative least squares (NNLS) problems. The resulting update rule is called alternating NNLS.

NNLS problems are equivalent to quadratic programming problems of the form

$$\underset{\mathbf{x} \ge 0}{\arg\min} \, \frac{1}{2} \mathbf{x}^{\mathsf{T}} \mathbf{Q} \mathbf{x} + \mathbf{c}^{\mathsf{T}} \mathbf{x}$$

for positive semi-definite Q.

#### **Multiplicative updates for NMF**

Multiplicative updates (MU) have been popularized by Lee and Seung (1999).

Their form depends on the cost function. In the following  $\mathbf{A} \circ \mathbf{B}$  denotes elementwise multiplication of matrices and division is also meant elementwise.

1. Frobenius norm:

$$\mathbf{L} \leftarrow \mathbf{L} \circ \frac{\mathbf{X}\mathbf{F}^\top}{\mathbf{L}\mathbf{F}\mathbf{F}^\top} \quad \text{and} \quad \mathbf{F} \leftarrow \mathbf{F} \circ \frac{\mathbf{L}^\top\mathbf{X}}{\mathbf{L}^\top\mathbf{L}\mathbf{F}}$$

2. KL divergence:

$$\mathbf{L}^{(l,k)} \leftarrow \mathbf{L}^{(l,k)} \frac{\sum_{i=1}^{p} \mathbf{F}^{(k,i)} \mathbf{X}^{(l,i)} / (\mathbf{L}\mathbf{F})^{(l,i)}}{\sum_{i=1}^{p} \mathbf{F}^{(k,i)}} \quad \text{and} \quad \mathbf{F}^{(k,i)} \leftarrow \mathbf{F}^{(k,i)} \frac{\sum_{l=1}^{n} \mathbf{L}^{(l,k)} \mathbf{X}^{(l,i)} / (\mathbf{L}\mathbf{F})^{(l,i)}}{\sum_{l=1}^{n} \mathbf{L}^{(l,k)}}$$

Multiplicative updates are a special case of **gradient descent**. Let  $J(\mathbf{L}, \mathbf{F}) = \frac{1}{2} ||\mathbf{X} - \mathbf{L}\mathbf{F}||_F^2$  then

$$\nabla_{\mathbf{I}} J = \mathbf{L} \mathbf{F} \mathbf{F}^{\top} - \mathbf{X} \mathbf{F}^{\top}$$

$$\nabla_{\mathbf{F}} J = \mathbf{L}^{\!\top} \mathbf{L} \mathbf{F} - \mathbf{L}^{\!\top} \mathbf{X}$$

Multiplicative updates are a special case of **gradient descent**. Let  $I(I,E) = \frac{1}{2} ||E||^2$  then

$$J(\mathbf{L}, \mathbf{F}) = \frac{1}{2} ||\mathbf{X} - \mathbf{L}\mathbf{F}||_F^2$$
 then

$$\nabla_{\mathbf{I}}J = \mathbf{L}\mathbf{F}\mathbf{F}^{\mathsf{T}} - \mathbf{X}\mathbf{F}^{\mathsf{T}}$$

$$\nabla_{\mathbf{F}}J = \mathbf{L}^{\!\top}\mathbf{L}\mathbf{F} - \mathbf{L}^{\!\top}\mathbf{X}$$

Gradient descent in  ${f L}$  for step-length  ${f lpha}$  performs

$$\mathbf{L} \leftarrow \mathbf{L} - \alpha \nabla_{\mathbf{L}} J$$

Multiplicative updates are a special case of gradient descent. Let

$$J(\mathbf{L}, \mathbf{F}) = \frac{1}{2} ||\mathbf{X} - \mathbf{L}\mathbf{F}||_F^2$$
 then

$$\nabla_{\mathbf{I}} J = \mathbf{L} \mathbf{F} \mathbf{F}^{\mathsf{T}} - \mathbf{X} \mathbf{F}^{\mathsf{T}}$$

$$\nabla_{\mathbf{F}}J = \mathbf{L}^{\!\top}\mathbf{L}\mathbf{F} - \mathbf{L}^{\!\top}\mathbf{X}$$

Gradient descent in  ${f L}$  for step-length lpha performs

$$\mathbf{L} \leftarrow \mathbf{L} - \alpha \nabla_{\mathbf{L}} J$$

It can be shown that

$$\alpha = \frac{\mathbf{L}}{\mathbf{L}\mathbf{F}\mathbf{F}^{\top}} \in \mathbb{R}^{n \times q},$$

where division is element-wise, is an admissible step length. Element-wise multiplication of  $\alpha$  and  $\nabla_{\mathbf{L}}J$  yields the MU for  $\mathbf{L}$ . Analogously for  $\mathbf{F}$ .

Multiplicative updates are a special case of gradient descent. Let

$$J(\mathbf{L}, \mathbf{F}) = \frac{1}{2} ||\mathbf{X} - \mathbf{L}\mathbf{F}||_F^2$$
 then

$$\nabla_{\mathbf{I}}J = \mathbf{L}\mathbf{F}\mathbf{F}^{\mathsf{T}} - \mathbf{X}\mathbf{F}^{\mathsf{T}}$$

$$\nabla_{\mathbf{F}} J = \mathbf{L}^{\!\top} \mathbf{L} \mathbf{F} - \mathbf{L}^{\!\top} \mathbf{X}$$

Gradient descent in  ${f L}$  for step-length lpha performs

$$\mathbf{L} \leftarrow \mathbf{L} - \alpha \nabla_{\mathbf{L}} J$$

It can be shown that

$$\alpha = \frac{\mathbf{L}}{\mathbf{L}\mathbf{F}\mathbf{F}^{\top}} \in \mathbb{R}^{n \times q},$$

where division is element-wise, is an admissible step length. Element-wise multiplication of  $\alpha$  and  $\nabla_{\mathbf{L}}J$  yields the MU for  $\mathbf{L}$ . Analogously for  $\mathbf{F}$ .

**Note:** Analogous results hold for the KL divergence.

# **Advantages of NMF**

▶ Interpretability: As in the case of truncated SVD we are adding layers, but now all layers are positive and each layer adds information

#### **Advantages of NMF**

- ▶ Interpretability: As in the case of truncated SVD we are adding layers, but now all layers are positive and each layer adds information
- **▶** Clustering interpretation:
  - ▶ The rows of **F** can be interpreted as cluster centroids
  - ▶ Cluster membership of each observation is determined by the rows of L
  - ▶ Observation j is assigned to the cluster k if  $\mathbf{L}^{(j,k)} > \mathbf{L}^{(j,i)}$  for all  $i \neq k$

#### **Initialising NMF**

#### NMF can be initialised in multiple ways

- ▶ Random initialisation: Uniformly distributed entries in [0,1] for L and F
- ▶ Clustering techniques: Run k-means with q clusters on data, store cluster centroids in rows of  $\mathbf{F}$  and  $\mathbf{L}^{(l,k)} \neq 0 \Leftrightarrow \mathbf{X}^{(l,:)}$  belongs to cluster k
- **SVD**: Determine best rank-q-approximation  $\sum_{i=1}^q d_{ii} \mathbf{v}_i \mathbf{u}_i^\mathsf{T}$ , note that

$$d_{ii}\mathbf{u}_{i}\mathbf{v}_{i}^{\top} = ([+d_{ii}\mathbf{u}_{i}]_{+}[+\mathbf{v}_{i}^{\top}]_{+} + [-d_{ii}\mathbf{u}_{i}]_{+}[-\mathbf{v}_{i}^{\top}]_{+})$$
$$-([+d_{ii}\mathbf{u}_{i}]_{+}[-\mathbf{v}_{i}^{\top}]_{+} + [-d_{ii}\mathbf{u}_{i}]_{+}[+\mathbf{v}_{i}^{\top}]_{+})$$

and initialize NMF by summing only the positive parts or the larger of the positive parts.

#### Take-home message

- ► Linear dimension reduction approximates matrices through additive layers (hence linear).
- ► The SVD-based approach leads to factor analysis, built on the intuition that there are underlying factors describing the data and the intensity of their presence in a sample is quantified in the loadings
- ▶ By adding non-negativity constraints to the matrix factorisation problem, NMF creates more interpretable results and can be used for clustering at the same time