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Kernels

A kernel is a function k(x,y) : R? x R? — R that maps two elements of the
feature space to a real number, such that

k(x,y) = k(y,x) and k(x,y)>0

Can be seen as a (possibly non-linear) generalized inner product without
bilinearity.

Kernels measure similarity between features vectors.
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Examples of kernels

» Linear kernel k(x,y) = x"y

» Polynomial kernel k(x,y) = (yx"y + r)™

» Radial basis function (RBF) kernel k(x,y) = exp (=[x — y|3)
» Laplacian kernel k(x,y) = exp(—y|x — yl|;)

» Sigmoid kernel k(x,y) = tanh(ax "y + )
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Mercer/positive definite kernels

For a kernel k(x,y), and a set of features x, ..., x,, define the so-called Gram

matrix

k(Xl’Xl) k(Xlaxn)

K= : :
k(xn’xl) o k(Xn’Xn)
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Mercer/positive definite kernels

For a kernel k(x,y), and a set of features x, ..., x,, define the so-called Gram

matrix
k(xy,x1) - k(x1,xy)

K= : e
k(Xpx1) -+ k(Xp, Xy)

If K is positive semi-definite for all n and all possible sets of features, then
k(x,y) is called a Mercer or positive definite kernel.
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Mercer/positive definite kernels

For a kernel k(x,y), and a set of features x, ..., x,, define the so-called Gram

matrix
k(xy,%x1) - k(x1,X%y)

K= . :
k(Xp,%1) - k(Xp, Xp)
If K is positive semi-definite for all n and all possible sets of features, then
k(x,y) is called a Mercer or positive definite kernel.
Note: All kernels shown on the last slide except for the sigmoid kernel are
positive definite.
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Importance of positive definite kernels

If the gram matrix is positive semi-definite there is an orthogonal matrix
V € R™" and a diagonal matrix A € R™" such that

K=VTAV.
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Importance of positive definite kernels

If the gram matrix is positive semi-definite there is an orthogonal matrix
V € R™" and a diagonal matrix A € R™" such that

K=VTAV.
Define ¢(x;) = AY2VC-D, then
KGR = (x) T(xy)

A result known as Mercer’s theorem ensures that for every positive definite
kernel k(x,y) there is a mapping ¢ from the feature space to some g-dimensional
space (with g = co allowed) such that

k(x,y) = ¢(x)" ¢(y)
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Example of Mercer’s theorem

Consider the polynomial kernel fory =r =1 and m = 2 in a two-dimensional
feature space

k(x,y) = (xTy +1)* = (1 + x191 + X2),)?
=14 2x1y; 42X, + (X101)* + (6202)% + 2x1Y1%,);
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Example of Mercer’s theorem

Consider the polynomial kernel fory =r =1 and m = 2 in a two-dimensional
feature space
k(x,y) = X"y + 1% = A+ x1y + %02)
=1+ 2x1)1 + 25 + (X131)% + (X22)* + 2X191%,)5

Define
$(x) = (1,V2x1, V2x,, %2, 52,V 2x, %) T

then
k(x,y) = ¢(x)T¢(y)
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Example of Mercer’s theorem

Consider the polynomial kernel fory =r =1 and m = 2 in a two-dimensional
feature space
k(x,y) = X"y + 1% = A+ x1y + %02)
=1+ 2x1)1 + 25 + (X131)% + (X22)* + 2X191%,)5

Define
p(x) = (1,\/§x1,\/5x2,x%,x%,\/§x1x2)1-
then
k(x,y) = ¢(x)T$(y)

Using this kernel to measure similarity between two-dimensional feature
vectors is therefore equivalent to working in a six-dimensional feature space.
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Advantages of using kernels

Summary
Using a positive definite kernel to measure the similarity between
m-dimensional feature vectors is equivalent to

1. Using a (potentially non-linear) mapping to transform the feature vectors x
to a g-dimensional vector ¢(x)

2. Using the Euclidean scalar product to measure similarity between
transformed feature vectors ¢(x)
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Advantages of using kernels

Summary
Using a positive definite kernel to measure the similarity between
m-dimensional feature vectors is equivalent to

1. Using a (potentially non-linear) mapping to transform the feature vectors x
to a g-dimensional vector ¢(x)

2. Using the Euclidean scalar product to measure similarity between
transformed feature vectors ¢(x)

Problem: ¢(x) might be hard to compute.

The kernel-trick is to replace scalar products with kernel evaluations.
Computations are then done implicitly in the higher-dimensional space of the
#(x), but all we need to do is evalute the kernel.
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Recap: PCA

Recall: In PCA, the goal was to find the directions of maximum variance of the
data matrix X € R"*P by decomposing the covariance matrix

XX

=VDV'
n—1

s =

where V € RP*P is orthgonal and D € RP*P is diagonal.
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» Dimension-reduction (e.g. for visualisation)

7/19



Recap: PCA

Recall: In PCA, the goal was to find the directions of maximum variance of the
data matrix X € R"*P by decomposing the covariance matrix

XX

=VDV'
n—1

s =

where V € RP*P is orthgonal and D € RP*P is diagonal. Goals are

» Dimension-reduction (e.g. for visualisation)

» Finding important directions in the data relevant to e.g. classification or
clustering
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Limitations of PCA

PCA is linear and cannot uncover non-linear structures

Raw data Transformed with PCA
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Limitations of PCA

PCA is linear and cannot uncover non-linear structures

Raw data Transformed with PCA

-4 -2 0 2 4 6 -5.0 -25

Augmentation of features can help

Raw data Augmented data with z = x2 + y2

a*f‘""\i
>*!

PC2
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Kernels and PCA (1)

Idea: Use the kernel-trick to define augmentations implicitly and keep
computations manageable.
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Idea: Use the kernel-trick to define augmentations implicitly and keep
computations manageable.

Given a positive definite kernel k(x,y), how can we perform PCA in the
high-dimensional space of ¢(x)?
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Kernels and PCA (1)

Idea: Use the kernel-trick to define augmentations implicitly and keep
computations manageable.

Given a positive definite kernel k(x,y), how can we perform PCA in the
high-dimensional space of ¢(x)?

Assume we have access to ¢(x;) for I =1, ...,n and these transformed vectors are
centred. Then we can perform PCA on

£ = 13 $(x)¢(x)T = VDVT
I=1

where v; are the principal component axes and d; the corresponding variances.
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Kernels and PCA (Il)

Note that
~ 1&
v, = = > x)P(x) v = dyv;
=1

n T n
& vi=), ¢(};l?n Yigx) = >, al(x)
I=1 L I=1
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Kernels and PCA (Il)

Note that
~ 1&
v, = = > x)P(x) v = dyv;
=1

n T n
& vi=), ¢(};l?n Yigx) = >, al(x)
I=1 L I=1

Multiplying this presentation of v; from the left on both sides with ¢(x;)T leads
to (forallk=1,...,n)

n n
dina® = ¢(x) v, = > aP¢(x) Te(x) = > alk(xy %))
=i =1
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Kernels and PCA (Il)

Note that
~ 1&
v, = = > x)P(x) v = dyv;
=1

n T n
& vi=), ¢(};l?n Yigx) = >, al(x)
I=1 L I=1

Multiplying this presentation of v; from the left on both sides with ¢(x;)T leads
to (forallk=1,...,n)

n n
dina® = ¢(x) v, = > aP¢(x) Te(x) = > alk(xy %))
=i =1

In total, a; is a solution to the eigenvalue problem

Kal- = dinai
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Kernels and PCA (Il1)

The coefficients a; to determine the principal component directions v; in the
space of the ¢(x;) can therefore be found by

» Solving the eigenvalue problem for Ka; = d;na; requiring that

1=v]v, = Z a(l)a(k)qS(x )Té(x;) = a Ka;
Lk=1

» This is the Rayleigh quotient problem for the matrix K. Note that both a; and
d; have to be determined.
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Kernels and PCA (Il1)

The coefficients a; to determine the principal component directions v; in the
space of the ¢(x;) can therefore be found by

» Solving the eigenvalue problem for Ka; = d;na; requiring that

1=v]v, = Z a(l)a(k)qS(x )Té(x;) = a Ka;
Lk=1

» This is the Rayleigh quotient problem for the matrix K. Note that both a; and
d; have to be determined.

The i-th principal component projection of an arbitrary mapped feature vector
$(x) is therefore

3V, = alk(x, x))
=1

This procedure is called kernel-PCA (kPCA). n/9



Centring and kernel PCA

» The derivation assumed that the implicitly defined feature vectors ¢(x;)
were centred. What if they are not?
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Centring and kernel PCA

» The derivation assumed that the implicitly defined feature vectors ¢(x;)
were centred. What if they are not?

» In the derivation we look at scalar products ¢(x;)"¢(x;). Centring in the
implicit space leads to
.

(¢(xi) - % ¢<xj)> (¢(xl> - % ¢(xj>) -

n

K(i,z)_EZK(11>__ZK(JI)+%Z > KU

j=1 j=1m=1

S
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Centring and kernel PCA

» The derivation assumed that the implicitly defined feature vectors ¢(x;)
were centred. What if they are not?

» In the derivation we look at scalar products ¢(x;)"¢(x;). Centring in the
implicit space leads to

]
(¢(xi) ) ¢<xj)> (¢(xl> -y ¢(xj>) -

Jj=1 Jj=1
K(ll)__ZK(lJ)__ZK(Jl)+_Z ZK(Jm)
Jj=1 j=1m=1

» Using the centring matrixJ =1,, — T, centring in the implicit space is
n
equivalent to transforming K as

K' =JKJ
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General algorithm for kPCA

1. Choose a kernel k(-,-) and possible hyper-parameters
2. Compute the Gram matrix K € R™" for the data x4, ..., x,
3. Centre K usingJ =1, — %11T to get

K' =JKJ

4, Perform a normal linear PCA on K’ = AAAT.
5. The columns of A are the vectors a; and set d; = 4;/n.

6. The projection of the I-th observation onto the i-th principal component
axis is computed as
1751) = K'(l’:)ai eR
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Example: kPCA

Raw data Transformed with PCA

=, ;*. o .‘ .o

Transformed with kKPCA
RBF kernel, y=0.7

’ "A’f
0 5 10

10

PC2
o

e =

-5 w
o

-10

-10 -5
PC1
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Kernel trick in other algorithms




Recap: Ridge regression

Ridge regression solves the problem
B = arg min |y ~ X[ + 21613

with analytical solution
f=X"X+L,)'Xy.

The kernel trick requires scalar products between feature vectors. Note that
D) T
XX = X; X;

but here we have XTX.
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Woodbury matrix identity

Assume that matrices A € RP*P and C € R™" are invertible and let U € RP*"
and V € R™P, The Woodbury matrix identity then holds

(A+UCV)l=AT1T-_AUCT+VAIU) VAT
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Woodbury matrix identity

Assume that matrices A € RP*P and C € R™" are invertible and let U € RP*"
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Woodbury matrix identity

Assume that matrices A € RP*P and C € R™" are invertible and let U € RP*"
and V € R™P, The Woodbury matrix identity then holds

(A+UCV)l=AT1T-_AUCT+VAIU) VAT
For a data matrixX € R™P, letU=X", V=X, A = AL, for > 0,and C =1,,.

T Lot _(1; _li et 1wt - 1 T
X™X+11,) X L - -LX" (I, +X-LX") X-I,|X
p y AP e 1P Y
_ /lle (1, - (AT, +XXT) " XX

= 2XT (10, + 2XT) (21, + XXT) - (a1, + XXT) ' xX)
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Woodbury matrix identity

Assume that matrices A € RP*P and C € R™" are invertible and let U € RP*"
and V € R™P, The Woodbury matrix identity then holds

(A+UCV)l=AT1T-_AUCT+VAIU) VAT
For a data matrixX € R™P, letU=X", V=X, A = AL, for > 0,and C =1,,.

T Lot _(1; _li et 1 T\ 1 T
X™X+11,) X L - -LX" (I, +X-LX") X-I,|X
2 1 1P nT a9 1P
1 -1
= 2XT (L, - (A1, + XXT) XX
ZXT (AL, +XXT) ™ (A, + XXT) - (A1, + XXT) " XXT)
Lem((

= X7 (A1, + XXT) " (A1, + XXT - XX"))
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Woodbury matrix identity

Assume that matrices A € RP*P and C € R™" are invertible and let U € RP*"
and V € R™P, The Woodbury matrix identity then holds

(A+UCV)l=AT1T-_AUCT+VAIU) VAT

For a data matrixX € R™P, letU=X", V=X, A = AL, for > 0,and C =1,,.

(XTX + A1) XT =

1. 1 7 1o\ ol Vot
(ZI - LXT (T, + X71,XT) lep)x
1 —

X (I, - (A1, + XXT)” XX)

all

(A1, + XXT) " (AL, +XXT) - (AL, + XX")” XX")
/lle (A1, +XXT)"" (a1, + XXT - XXT))

= XT (AL, + XXT) "
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Kernel ridge regression

Using the Woodbury matrix regression we get that
B =XT(XXT + A1) ly.

We can now replace XX with a Gram matrix K for an arbitrary kernel k(-, -).
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Kernel ridge regression

Using the Woodbury matrix regression we get that
B =XT(XXT + A1) ly.
We can now replace XX T with a Gram matrix K for an arbitrary kernel k(-, -).

The variables f§ are called the primal variables. Define the dual variables
n
a=K+1L,)y => f=X'a=) abx.
(=i
Using the dual variables, computed with a chosen kernel, as weights for the

observations to compute the primal variables is called kernel ridge regression.

Standard ridge regression is recovered when using the linear kernel

k(x,y) =x"y.
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Prediction in kernel ridge regression

In normal ridge ression, we predict for unseen test data x as
n

f(x) =] Erx =] Z &\(l)xirx
(=il
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Prediction in kernel ridge regression

In normal ridge ression, we predict for unseen test data x as

n
fx) = BTx = Z abx]x
=1

Using the kernel trick and replacing scalar products with kernel evaluations
leads to

fx = aDk(x;,x)
=1

for kernel ridge regression.
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Take-home message

» Kernels in combination with Mercer’s theorem are a powerful tool to make
high-dimensional computation manageable

» kPCA is a first example demonstrating the power of kernels

» The kernel trick can also be used in other established methods like ridge
regression
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