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Kernel-methods



Kernels

A kernel is a function 𝑘(𝐱, 𝐲) ∶ ℝ𝑝 × ℝ𝑝 → ℝ that maps two elements of the
feature space to a real number, such that

𝑘(𝐱, 𝐲) = 𝑘(𝐲, 𝐱) and 𝑘(𝐱, 𝐲) ≥ 0

Can be seen as a (possibly non-linear) generalized inner product without
bilinearity.

Kernels measure similarity between features vectors.
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Examples of kernels

▶ Linear kernel 𝑘(𝐱, 𝐲) = 𝐱⊤𝐲
▶ Polynomial kernel 𝑘(𝐱, 𝐲) = (𝛾𝐱⊤𝐲 + 𝑟)𝑚
▶ Radial basis function (RBF) kernel 𝑘(𝐱, 𝐲) = exp (−𝛾‖𝐱 − 𝐲‖22)
▶ Laplacian kernel 𝑘(𝐱, 𝐲) = exp(−𝛾‖𝐱 − 𝐲‖1)
▶ Sigmoid kernel 𝑘(𝐱, 𝐲) = tanh(𝛼𝐱⊤𝐲 + 𝑐)
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Mercer/positive definite kernels

For a kernel 𝑘(𝐱, 𝐲), and a set of features 𝐱1,… , 𝐱𝑛 define the so-called Gram
matrix

𝐊 =
⎛
⎜⎜
⎝

𝑘(𝐱1, 𝐱1) ⋯ 𝑘(𝐱1, 𝐱𝑛)
⋮ ⋮

𝑘(𝐱𝑛, 𝐱1) ⋯ 𝑘(𝐱𝑛, 𝐱𝑛)

⎞
⎟⎟
⎠

If 𝐊 is positive semi-definite for all 𝑛 and all possible sets of features, then
𝑘(𝐱, 𝐲) is called a Mercer or positive definite kernel.
Note: All kernels shown on the last slide except for the sigmoid kernel are
positive definite.
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Importance of positive definite kernels

If the gram matrix is positive semi-definite there is an orthogonal matrix
𝐕 ∈ ℝ𝑛×𝑛 and a diagonal matrix 𝚲 ∈ ℝ𝑛×𝑛 such that

𝐊 = 𝐕⊤𝚲𝐕.

Define 𝝓(𝐱𝑙) = 𝚲1/2𝐕(∶,𝑙), then

𝐊(𝑙,𝑘) = 𝝓(𝐱𝑙)⊤𝝓(𝐱𝑘)

A result known as Mercer’s theorem ensures that for every positive definite
kernel 𝑘(𝐱, 𝐲) there is a mapping 𝝓 from the feature space to some 𝑞-dimensional
space (with 𝑞 = ∞ allowed) such that

𝑘(𝐱, 𝐲) = 𝝓(𝐱)⊤𝝓(𝐲)
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Example of Mercer’s theorem

Consider the polynomial kernel for 𝛾 = 𝑟 = 1 and 𝑚 = 2 in a two-dimensional
feature space

𝑘(𝐱, 𝐲) = (𝐱⊤𝐲 + 1)2 = (1 + 𝑥1𝑦1 + 𝑥2𝑦2)2

= 1 + 2𝑥1𝑦1 + 2𝑥2𝑦2 + (𝑥1𝑦1)2 + (𝑥2𝑦2)2 + 2𝑥1𝑦1𝑥2𝑦2

Define
𝝓(𝐱) = (1,√2𝑥1, √2𝑥2, 𝑥21, 𝑥22, √2𝑥1𝑥2)⊤

then
𝑘(𝐱, 𝐲) = 𝝓(𝐱)⊤𝝓(𝐲)

Using this kernel to measure similarity between two-dimensional feature
vectors is therefore equivalent to working in a six-dimensional feature space.
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Advantages of using kernels

Summary
Using a positive definite kernel to measure the similarity between
𝑚-dimensional feature vectors is equivalent to

1. Using a (potentially non-linear) mapping to transform the feature vectors 𝐱
to a 𝑞-dimensional vector 𝝓(𝐱)

2. Using the Euclidean scalar product to measure similarity between
transformed feature vectors 𝝓(𝐱)

Problem: 𝝓(𝐱) might be hard to compute.

The kernel-trick is to replace scalar products with kernel evaluations.
Computations are then done implicitly in the higher-dimensional space of the
𝝓(𝐱), but all we need to do is evalute the kernel.
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Recap: PCA

Recall: In PCA, the goal was to find the directions of maximum variance of the
data matrix 𝐗 ∈ ℝ𝑛×𝑝 by decomposing the covariance matrix

�̂� = 𝐗⊤𝐗
𝑛 − 1 = 𝐕𝐃𝐕⊤

where 𝐕 ∈ ℝ𝑝×𝑝 is orthgonal and 𝐃 ∈ ℝ𝑝×𝑝 is diagonal.

Goals are

▶ Dimension-reduction (e.g. for visualisation)
▶ Finding important directions in the data relevant to e.g. classification or
clustering
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Limitations of PCA

PCA is linear and cannot uncover non-linear structures
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Kernels and PCA (I)

Idea: Use the kernel-trick to define augmentations implicitly and keep
computations manageable.

Given a positive definite kernel 𝑘(𝐱, 𝐲), how can we perform PCA in the
high-dimensional space of 𝝓(𝐱)?

Assume we have access to 𝝓(𝐱𝑙) for 𝑙 = 1,… , 𝑛 and these transformed vectors are
centred. Then we can perform PCA on

�̂�𝝓 = 1
𝑛

𝑛
∑
𝑙=1

𝝓(𝐱𝑙)𝝓(𝐱𝑙)⊤ = 𝐕𝐃𝐕⊤

where 𝐯𝑖 are the principal component axes and 𝑑𝑖 the corresponding variances.
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Kernels and PCA (II)

Note that

�̂�𝝓𝐯𝑖 =
1
𝑛

𝑛
∑
𝑙=1

𝝓(𝐱𝑙)𝝓(𝐱𝑙)⊤𝐯𝑖 = 𝑑𝑖𝐯𝑖

⇔ 𝐯𝑖 =
𝑛
∑
𝑙=1

𝝓(𝐱𝑙)⊤𝐯𝑖
𝑑𝑖𝑛

𝝓(𝐱𝑙) =
𝑛
∑
𝑙=1

𝐚(𝑙)𝑖 𝝓(𝐱𝑙)

Multiplying this presentation of 𝐯𝑖 from the left on both sides with 𝝓(𝐱𝑘)⊤ leads
to (for all 𝑘 = 1,… , 𝑛)

𝑑𝑖𝑛𝐚(𝑘)𝑖 = 𝝓(𝐱𝑘)⊤𝐯𝑖 =
𝑛
∑
𝑙=1

𝐚(𝑙)𝑖 𝝓(𝐱𝑘)⊤𝝓(𝐱𝑙) =
𝑛
∑
𝑙=1

𝐚(𝑙)𝑖 𝑘(𝐱𝑘, 𝐱𝑙)

In total, 𝐚𝑖 is a solution to the eigenvalue problem
𝐊𝐚𝑖 = 𝑑𝑖𝑛𝐚𝑖

10/19



Kernels and PCA (II)

Note that

�̂�𝝓𝐯𝑖 =
1
𝑛

𝑛
∑
𝑙=1

𝝓(𝐱𝑙)𝝓(𝐱𝑙)⊤𝐯𝑖 = 𝑑𝑖𝐯𝑖

⇔ 𝐯𝑖 =
𝑛
∑
𝑙=1

𝝓(𝐱𝑙)⊤𝐯𝑖
𝑑𝑖𝑛

𝝓(𝐱𝑙) =
𝑛
∑
𝑙=1

𝐚(𝑙)𝑖 𝝓(𝐱𝑙)

Multiplying this presentation of 𝐯𝑖 from the left on both sides with 𝝓(𝐱𝑘)⊤ leads
to (for all 𝑘 = 1,… , 𝑛)

𝑑𝑖𝑛𝐚(𝑘)𝑖 = 𝝓(𝐱𝑘)⊤𝐯𝑖 =
𝑛
∑
𝑙=1

𝐚(𝑙)𝑖 𝝓(𝐱𝑘)⊤𝝓(𝐱𝑙) =
𝑛
∑
𝑙=1

𝐚(𝑙)𝑖 𝑘(𝐱𝑘, 𝐱𝑙)

In total, 𝐚𝑖 is a solution to the eigenvalue problem
𝐊𝐚𝑖 = 𝑑𝑖𝑛𝐚𝑖

10/19



Kernels and PCA (II)

Note that

�̂�𝝓𝐯𝑖 =
1
𝑛

𝑛
∑
𝑙=1

𝝓(𝐱𝑙)𝝓(𝐱𝑙)⊤𝐯𝑖 = 𝑑𝑖𝐯𝑖

⇔ 𝐯𝑖 =
𝑛
∑
𝑙=1

𝝓(𝐱𝑙)⊤𝐯𝑖
𝑑𝑖𝑛

𝝓(𝐱𝑙) =
𝑛
∑
𝑙=1

𝐚(𝑙)𝑖 𝝓(𝐱𝑙)

Multiplying this presentation of 𝐯𝑖 from the left on both sides with 𝝓(𝐱𝑘)⊤ leads
to (for all 𝑘 = 1,… , 𝑛)

𝑑𝑖𝑛𝐚(𝑘)𝑖 = 𝝓(𝐱𝑘)⊤𝐯𝑖 =
𝑛
∑
𝑙=1

𝐚(𝑙)𝑖 𝝓(𝐱𝑘)⊤𝝓(𝐱𝑙) =
𝑛
∑
𝑙=1

𝐚(𝑙)𝑖 𝑘(𝐱𝑘, 𝐱𝑙)

In total, 𝐚𝑖 is a solution to the eigenvalue problem
𝐊𝐚𝑖 = 𝑑𝑖𝑛𝐚𝑖

10/19



Kernels and PCA (III)

The coefficients 𝐚𝑖 to determine the principal component directions 𝐯𝑖 in the
space of the 𝝓(𝐱𝑖) can therefore be found by

▶ Solving the eigenvalue problem for 𝐊𝐚𝑖 = 𝑑𝑖𝑛𝐚𝑖 requiring that

1 = 𝐯⊤𝑖 𝐯𝑖 =
𝑛
∑
𝑙,𝑘=1

𝐚(𝑙)𝑖 𝐚(𝑘)𝑖 𝝓(𝐱𝑙)⊤𝝓(𝐱𝑘) = 𝐚⊤𝑖 𝐊𝐚𝑖

▶ This is the Rayleigh quotient problem for the matrix 𝐾. Note that both 𝐚𝑖 and
𝑑𝑖 have to be determined.

The 𝑖-th principal component projection of an arbitrary mapped feature vector
𝝓(𝐱) is therefore

𝝓(𝐱)⊤𝐯𝑖 =
𝑛
∑
𝑙=1

𝐚(𝑙)𝑖 𝑘(𝐱, 𝐱𝑙)

This procedure is called kernel-PCA (kPCA).
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Centring and kernel PCA

▶ The derivation assumed that the implicitly defined feature vectors 𝝓(𝐱𝑙)
were centred. What if they are not?

▶ In the derivation we look at scalar products 𝝓(𝐱𝑖)⊤𝝓(𝐱𝑙). Centring in the
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General algorithm for kPCA

1. Choose a kernel 𝑘(⋅, ⋅) and possible hyper-parameters
2. Compute the Gram matrix 𝐊 ∈ ℝ𝑛×𝑛 for the data 𝐱1,… , 𝐱𝑛
3. Centre 𝐊 using 𝐉 = 𝐈𝑛 −

1
𝑛
𝟏𝟏⊤ to get

𝐊′ = 𝐉𝐊𝐉

4. Perform a normal linear PCA on 𝐊′ = 𝐀𝚲𝐀⊤.
5. The columns of 𝐀 are the vectors 𝐚𝑖 and set 𝑑𝑖 = 𝜆𝑖/𝑛.
6. The projection of the 𝑙-th observation onto the 𝑖-th principal component
axis is computed as

𝜼(𝑖)𝑙 = 𝐊′(𝑙,∶)𝐚𝑖 ∈ ℝ
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Example: kPCA
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Kernel trick in other algorithms



Recap: Ridge regression

Ridge regression solves the problem

𝜷 = arg min
𝜷

‖𝐲 − 𝐗𝜷‖22 + 𝜆‖𝜷‖22

with analytical solution
𝜷 = (𝐗⊤𝐗 + 𝜆𝐈𝑝)−1𝐗⊤𝐲.

The kernel trick requires scalar products between feature vectors. Note that

(𝐗𝐗⊤)(𝑖,𝑗) = 𝐱⊤𝑖 𝐱𝑗

but here we have 𝐗⊤𝐗.
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Woodbury matrix identity

Assume that matrices 𝐀 ∈ ℝ𝑝×𝑝 and 𝐂 ∈ ℝ𝑛×𝑛 are invertible and let 𝐔 ∈ ℝ𝑝×𝑛

and 𝐕 ∈ ℝ𝑛×𝑝. The Woodbury matrix identity then holds
(𝐀 + 𝐔𝐂𝐕)−1 = 𝐀−1 − 𝐀−1𝐔(𝐂−1 + 𝐕𝐀−1𝐔)−1𝐕𝐀−1

For a data matrix 𝐗 ∈ ℝ𝑛×𝑝, let 𝐔 = 𝐗⊤, 𝐕 = 𝐗, 𝐀 = 𝜆𝐈𝑝 for 𝜆 > 0, and 𝐂 = 𝐈𝑛.

(𝐗⊤𝐗 + 𝜆𝐈𝑝)
−1 𝐗⊤ = (1𝜆𝐈𝑝 −

1
𝜆𝐈𝑝𝐗

⊤ (𝐈𝑛 + 𝐗1𝜆𝐈𝑝𝐗
⊤)

−1
𝐗1𝜆𝐈𝑝)𝐗

⊤

= 1
𝜆𝐗

⊤ (𝐈𝑛 − (𝜆𝐈𝑛 + 𝐗𝐗⊤)−1 𝐗𝐗⊤)

= 1
𝜆𝐗

⊤ ((𝜆𝐈𝑛 + 𝐗𝐗⊤)−1 (𝜆𝐈𝑛 + 𝐗𝐗⊤) − (𝜆𝐈𝑛 + 𝐗𝐗⊤)−1 𝐗𝐗⊤)

= 1
𝜆𝐗

⊤ ((𝜆𝐈𝑛 + 𝐗𝐗⊤)−1 (𝜆𝐈𝑛 + 𝐗𝐗⊤ − 𝐗𝐗⊤))

= 𝐗⊤ (𝜆𝐈𝑛 + 𝐗𝐗⊤)−1
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Kernel ridge regression

Using the Woodbury matrix regression we get that

𝜷 = 𝐗⊤(𝐗𝐗⊤ + 𝜆𝐈𝑛)−1𝐲.
We can now replace 𝐗𝐗⊤ with a Gram matrix 𝐊 for an arbitrary kernel 𝑘(⋅, ⋅).

The variables 𝜷 are called the primal variables. Define the dual variables

𝜶 = (𝐊 + 𝜆𝐈𝑛)−1𝐲 ⇒ 𝜷 = 𝐗⊤𝜶 =
𝑛
∑
𝑙=1

𝜶(𝑙)𝐱𝑙

.

Using the dual variables, computed with a chosen kernel, as weights for the
observations to compute the primal variables is called kernel ridge regression.

Standard ridge regression is recovered when using the linear kernel

𝑘(𝐱, 𝐲) = 𝐱⊤𝐲.
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Prediction in kernel ridge regression

In normal ridge ression, we predict for unseen test data 𝐱 as

𝑓(𝐱) = 𝜷⊤𝐱 =
𝑛
∑
𝑙=1

𝜶(𝑙)𝐱⊤𝑙 𝐱

Using the kernel trick and replacing scalar products with kernel evaluations
leads to

𝑓(𝐱) =
𝑛
∑
𝑙=1

𝜶(𝑙)𝑘(𝐱𝑙, 𝐱)

for kernel ridge regression.

18/19



Prediction in kernel ridge regression

In normal ridge ression, we predict for unseen test data 𝐱 as

𝑓(𝐱) = 𝜷⊤𝐱 =
𝑛
∑
𝑙=1

𝜶(𝑙)𝐱⊤𝑙 𝐱

Using the kernel trick and replacing scalar products with kernel evaluations
leads to

𝑓(𝐱) =
𝑛
∑
𝑙=1

𝜶(𝑙)𝑘(𝐱𝑙, 𝐱)

for kernel ridge regression.

18/19



Take-home message

▶ Kernels in combination with Mercer’s theorem are a powerful tool to make
high-dimensional computation manageable

▶ kPCA is a first example demonstrating the power of kernels
▶ The kernel trick can also be used in other established methods like ridge
regression
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