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Dimension reduction while
preserving distances



Preserving distance

When creating a map, the goal is to project the three-dimensional earth onto a
two-dimensional paper. It is desirable to retain certain properties of the
projected areas, e.g. size of countries or length of coast lines. Keeping all
properties is not possible and the field of cartography (and differential
geometry) deals with the possible options.

Like in cartography, the goal of dimension reduction can be subject to different
criteria, e.g. PCA preserves the directions of largest variance.

What if we want to approximately preserve the relative positions of feature
vectors while reducing the dimension?

For given vectors 𝐱1,… , 𝐱𝑛 ∈ ℝ𝑝 we want to find 𝐲1,… , 𝐲𝑛 ∈ ℝ𝑞 where 𝑞 < 𝑝 such
that

‖𝐱𝑖 − 𝐱𝑙‖2 ≈ ‖𝐲𝑖 − 𝐲𝑙‖2
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Distance matrices and the linear kernel

Given a data matrix 𝐗 ∈ ℝ𝑛×𝑝, note that

𝐗𝐗⊤ =
⎛
⎜⎜
⎝

𝐱⊤1 𝐱1 ⋯ 𝐱⊤1 𝐱𝑛
⋮ ⋮

𝐱⊤𝑛𝐱1 ⋯ 𝐱⊤𝑛𝐱𝑛

⎞
⎟⎟
⎠
= 𝐊

is the Gram matrix 𝐊 of the linear kernel.

Let 𝐃(𝑙,𝑚) = ‖𝐱𝑙 − 𝐱𝑚‖2 be the distance matrix in the Euclidean norm. Note that
‖𝐱𝑙 − 𝐱𝑚‖22 = 𝐱⊤𝑙 𝐱𝑙 − 2𝐱⊤𝑙 𝐱𝑚 + 𝐱⊤𝑚𝐱𝑚

and (with element-wise exponentiation)

−12𝐃
2 = 𝐗𝐗⊤ − 1

2𝟏diag(𝐗𝐗⊤)⊤ − 1
2 diag(𝐗𝐗⊤)𝟏⊤.

Through calculation it can be shown that with 𝐉 = 𝐈𝑛 −
1
𝑛
𝟏𝟏⊤

𝐊 = 𝐉 (−12𝐃
2) 𝐉
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Finding an embedding from a distance matrix

1. Let 𝐃 ∈ ℝ𝑛×𝑛
+ be a given distance matrix in the Euclidean norm

2. Compute 𝐊 = 𝐉 (− 1
2
𝐃2) 𝐉 = 𝐗𝐗⊤. Then there exists an exact embedding in

𝑞 = rank(𝐊) ≤ rank(𝐗) ≤ min(𝑛, 𝑝) dimensions.
2.1 Perform PCA on 𝐊 = 𝐔𝚲𝐔⊤

2.2 If 𝑞 = rank(𝐊), set
𝐘 = 𝐔𝑞𝚲1/2

𝑞 = (√𝜆1𝐮1,… ,√𝜆𝑞𝐮𝑞) ∈ ℝ𝑛×𝑞.

All other 𝜆𝑞+1,… , 𝜆min(𝑛,𝑝) are equal to zero.
2.3 The rows of 𝐘 are the sought-after embedding, i.e. for 𝐲𝑙 = 𝐘(𝑙,∶) it holds that

𝐘𝐘⊤ = 𝐔𝑞𝚲1/2
𝑞 𝚲1/2

𝑞 𝐔⊤
𝑞 = 𝐔𝚲𝐔⊤ = 𝐊 = 𝐗𝐗⊤

which implies
‖𝐱𝑙 − 𝐱𝑚‖22 = 𝐱⊤𝑙 𝐱𝑙 − 2𝐱⊤𝑙 𝐱𝑚 + 𝐱⊤𝑚𝐱𝑚

= 𝐲⊤𝑙 𝐲𝑙 − 2𝐲⊤𝑙 𝐲𝑚 + 𝐲⊤𝑚𝐲𝑚
= ‖𝐲𝑙 − 𝐲𝑚‖22. 3/30



Multi-dimensional scaling

▶ This procedure is not guaranteed to lead to dimension reduction, i.e. 𝑞 = 𝑝
possible. However, usually the internal structure of the data is
lower-dimensional and 𝑞 < 𝑝.

▶ Keeping only the first 𝑚 < 𝑞 components of 𝐲𝑙 is known as classical scaling
or multi-dimensional scaling (MDS) and minimizes the so-called stress or
strain

𝑑(𝐃, 𝐘) = (∑
𝑖≠𝑗

(𝐃(𝑖,𝑗) − ‖𝐲𝑖 − 𝐲𝑗‖2)
2)

1/2

▶ Results also hold for general distance matrices 𝐃 as long as 𝜆1,… , 𝜆𝑞 > 0 for
𝑞 = rank(𝐊). This is called metric MDS.

4/30



Lower-dimensional data in a
high-dimensional space



A problematic geometry

x

y

z

Swiss roll (n = 1000) Ideal unrolled graph PCA

kPCA (RBF kernel, sigma = 0.13) Classical scaling
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What is the problem here?

▶ The data has an intrinsic structure that is quite simple (2D) in itself, but
much more complex in the three-dimensional space

▶ To understand this data set properly we need to learn about the local
structure of the data

▶ PCA is a global method and will always look at all data
▶ kernel PCA introduces a different distance measure but the chosen Gaussian
kernel does not represent the structure of the data well

▶ Classical scaling performs (and works) roughly like PCA
▶ What is the issue? All approaches measure distances in the Euclidean norm
of the surrounding three-dimensional space.
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Data-driven distance measure (I)

We can create a local, data-driven distance measure by looking at the 𝑘 nearest
neighbours of a data point.

x
y

z

Swiss roll (n = 1000)

x

y

z

Nearest neighbours (k = 6)
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Data-driven distance measure (II)

Computation

1. For a data point 𝐱𝑙 find the 𝑘 nearest neighbours
2. Construct a graph between data points and their 𝑘 nearest neighbours,
weighting each edge by the Euclidean distance

3. To measure distance between data points measure their geodesic distance,
i.e. find the shortest path in the weighted graph and sum up the weights

This creates a distance matrix 𝐃𝐺 between data points that is more adapted to
the actual geometry.
To embed the geometry in a lower-dimensional space, MDS can be applied to
𝐃𝐺, the resulting method is called Isomap.
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Isomap

Isomap can work well but is sensitive to the number of nearest neighbours.

Isomap (knn = 6) Isomap (knn = 20)
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Caveats of Isomap

▶ The graph that is formed in the first stage of Isomap can have multiple
unconnected components. This leads to infinite geodesic distances between
some data points (because they are unreachable from each other)

▶ Implementations typically return a different embedding for each component
of the graph

▶ Isomap also has problems with datasets that have varying density
▶ Number of nearest neighbours has to be carefully tuned
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A different approach to local
dimension reduction



Probability as a measure of similarity

Given a set of feature vectors 𝐱1,… , 𝐱𝑛 a measure of relative similarity between
the vectors 𝐱𝑖 and 𝐱𝑗 is their pairwise Euclidean distance ‖𝐱𝑖 − 𝐱𝑗‖2.

This measure can be localized around a vector 𝐱𝑖 for a 𝜎 > 0

𝑝𝑗|𝑖 =
exp (−‖𝐱𝑗 − 𝐱𝑖‖22/(2𝜎2))

∑𝑙≠𝑖 exp (−‖𝐱𝑙 − 𝐱𝑖‖22/(2𝜎2))
𝑗 = 1,… , 𝑛, 𝑗 ≠ 𝑖 and 𝑝𝑖|𝑖 = 0

0.02
0.05

0.11

0.15

0.18 0.17
0.15

0.09

0.04
0.02

x_i x_j

11/30



Probability as a measure of similarity

Given a set of feature vectors 𝐱1,… , 𝐱𝑛 a measure of relative similarity between
the vectors 𝐱𝑖 and 𝐱𝑗 is their pairwise Euclidean distance ‖𝐱𝑖 − 𝐱𝑗‖2.

This measure can be localized around a vector 𝐱𝑖 for a 𝜎 > 0

𝑝𝑗|𝑖 =
exp (−‖𝐱𝑗 − 𝐱𝑖‖22/(2𝜎2))

∑𝑙≠𝑖 exp (−‖𝐱𝑙 − 𝐱𝑖‖22/(2𝜎2))
𝑗 = 1,… , 𝑛, 𝑗 ≠ 𝑖 and 𝑝𝑖|𝑖 = 0

0.02
0.05

0.11

0.15

0.18 0.17
0.15

0.09

0.04
0.02

x_i x_j 11/30



𝜎 determines the size of the local neighbourhood

0.00 0.00
0.05

0.16

0.34

0.27

0.15

0.02 0.00 0.00

σ = 0.5
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σ = 1

0.07
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0.09
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σ = 2
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Connection between 𝜎 and entropy

Denote the discrete probability distribution 𝑃𝑖 = (𝑝𝑗|𝑖)𝑗 .

The entropy of 𝑃𝑖 is a measure for how much information we gain by observing a
random variable 𝑋 ∼ 𝑃𝑖 (i.e. by observing one of the 𝐱𝑗 ’s in the neighbourhood).
It is defined as

𝐻(𝑋) = −∑
𝑗≠𝑖

𝑝𝑗|𝑖 log2 𝑝𝑗|𝑖.

with 𝑝𝑗|𝑖 log2 𝑝𝑗|𝑖 ∶= 0 if 𝑝𝑗|𝑖 = 0.

Observations:
▶ Small values of 𝜎 lead to small values for the entropy
(e.g. 𝜎 = 0.5, 𝐻(𝑋) = 2.44)

▶ When 𝜎 increases, then the entropy increases as well
(e.g. 𝜎 = 2, 𝐻(𝑋) = 4.22)
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Connection between 𝜎 and perplexity

The Perplexity of 𝑋 ∼ 𝑃𝑖 is defined as
Perp(𝑋) = 2𝐻(𝑋)

and is interpreted as the average number of neighbours in the local
neighbourhood around 𝐱𝑖.

Observations
▶ If 𝐻(𝑋) = 0, i.e. we learn on average nothing by observing 𝑋 , then

Perp(𝑋) = 1 and the neighbourhood contains only the centre data point
itself.

▶ Small 𝜎 leads on average to smaller neighbourhood
▶ If 𝐻(𝑋) grows larger, i.e. we learn on average more about 𝑋 by observing it,
then Perp(𝑋) grows as well and the neighbourhood around 𝐱𝑖 gets larger.

▶ For growing 𝜎 the average size of neighbourhoods grows as well
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Fixating perplexity and symmetrising the distribution

As a slight generalisation, let each 𝐱𝑖 have its own 𝜎𝑖 > 0, i.e.

𝑝𝑗|𝑖 =
exp (−‖𝐱𝑗 − 𝐱𝑖‖22/(2𝜎2𝑖 ))

∑𝑙≠𝑖 exp (−‖𝐱𝑙 − 𝐱𝑖‖22/(2𝜎2𝑖 ))
𝑗 = 1,… , 𝑛, 𝑗 ≠ 𝑖 and 𝑝𝑖|𝑖 = 0.

By setting perplexity to a fixed value 𝛾 > 0 we control the average size of
neighbourhoods around all 𝐱𝑖. For a fixed 𝛾 the individual 𝜎𝑖 can be calculated.
Depending on the data these can vary with 𝑖.

Note: This is similar but more flexible than building nearest neighbour graphs for
Isomap.

The values 𝑝𝑗|𝑖 and 𝑝𝑖|𝑗 are asymmetric similarity measures, due to the different
parameters 𝜎𝑖 and 𝜎𝑗 . Define the symmetrized probabilities

𝑝𝑖𝑗 =
𝑝𝑗|𝑖 + 𝑝𝑖|𝑗

2 and 𝑝𝑖𝑖 = 0.
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Connection to lower-dimensional embeddings

Our goal is to embed the potentially high-dimensional vectors 𝐱1,… , 𝐱𝑛 ∈ ℝ𝑝

into a lower dimensional space 𝐲1,… , 𝐲𝑛 ∈ ℝ𝑞 with 𝑞 ≪ 𝑝.
Given a perplexity parameter 𝛾 > 0, we found a way to measure local similarity in
ℝ𝑝 using the probabilities 𝑝𝑖𝑗 .
A technique called t-distributed stochastic neighbour embedding (tSNE) uses
the t-distribution with one degree of freedom (or Cauchy distribution) to
measure similarity in ℝ𝑞 with

𝑞𝑖𝑗 =
(1 + ‖𝐲𝑖 − 𝐲𝑗‖22)

−1

∑𝑙≠𝑟 (1 + ‖𝐲𝑙 − 𝐲𝑟‖22)
−1 and 𝑞𝑖𝑖 = 0.

To determine the 𝐲𝑙 the Kullback-Leibler divergence between the distributions
𝑃 = (𝑝𝑖𝑗)𝑖𝑗 and 𝑄 = (𝑞𝑖𝑗)𝑖𝑗 is minimized with gradient descent (+ numerical tricks)

KL(𝑃||𝑄) = ∑
𝑖≠𝑙

𝑝𝑖𝑙 log 𝑝𝑖𝑙𝑞𝑖𝑙 16/30



Revisiting the Swiss roll with tSNE

x

y

z

Swiss roll (n = 1000)

−10 0 10 20

−
5

0
5

Isomap (knn = 6)

x

y

−40 0 40

−
40

0
20

40
60

tSNE (perplexity = 6)

x

y

−30 −10 10

−
20

0
10

20

tSNE (perplexity = 30)

x

y

▶ Results are similar to Isomap
▶ Strong dependence on perplexity and no literal relationship between
k-nearest neighbours and perplexity parameter

▶ Slightly more condensed, but manages the main goal to unroll data
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A more impressive example of tSNE
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Caveats of tSNE

tSNE is a powerful method but comes with some difficulties as well
▶ Convergence to local minimum (i.e. repeated runs can give different results)
▶ Perplexity is hard to tune (as with any tuning parameter)

Let’s see what tSNE does to our old friend, the moons dataset.
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Influence of perplexity on tSNE
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tSNE multiple runs
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Spectral clustering



Starting point

▶ Many clustering methods focus on global behaviour of the data (e.g. GMM,
k-means, hierarchical clustering with complete linkage)

▶ To adapt to local behaviour hierarchical clustering with single linkage and
the group of density-based algorithms (e.g. DBSCAN) showed some success

▶ In dimension reduction building a graph of the data based on 𝑘 nearest
neighbours helped to capture local behaviour (e.g. Isomap)

▶ Idea: Build a graph representing local behaviour in the data and find good
cut points to partition the graph into 𝐾 clusters.
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Graphs and adjacency matrices

1

2

3

4

0.25

2
10.3

An adjacency matrix 𝐀 ∈ {0, 1}𝑛×𝑛 describes edges between 𝑛
nodes such that 𝐀(𝑖,𝑗) = 1 when there is an edge between nodes
𝑖 and 𝑗 and zero otherwise.

In addition, weights can be added to the edges, leading to a
weighted adjacency matrix𝐖 ∈ [0,∞)𝑛×𝑛.

For the graph on the left

𝐀 =
⎛
⎜
⎜
⎜
⎝

0 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0

⎞
⎟
⎟
⎟
⎠

and 𝐖 =
⎛
⎜
⎜
⎜
⎝

0 0.3 2 0.25
0.3 0 1 0
2 1 0 0

0.25 0 0 0

⎞
⎟
⎟
⎟
⎠

Note: Undirected graphs have symmetric adjacency matrices. Directed graphs
can be described by unsymmetric adjacency matrices.
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A graph from data

Recall: In the first step of Isomap, a weighted undirected graph was built based
on the 𝑘 nearest neighbours of a data point.
A weighted undirected graph can be constructed from a weighted adjacency
matrix𝐖.

1. For a data point 𝐱𝑙, find the 𝑘 nearest neighbours.
2. Set𝐖(𝑙,𝑙𝑖) = 𝑔(‖𝐱𝑙 − 𝐱𝑙𝑖‖2) where 𝑔 ∶ [0,∞) → [0,∞) is a monotone function
and 𝐱𝑙𝑖 , 𝑖 = 1,… , 𝑘 are the nearest neighbours of 𝐱𝑙. In addition, set all
𝐖(𝑙,𝑚) = 0 for 𝑚 ∉ {𝑙1,… , 𝑙𝑘} (in particular𝐖(𝑙,𝑙) = 0).

3. Construct a graph where each node represents a data point 𝐱𝑙 and there is a
weighted edge between 𝐱𝑙 and 𝐱𝑚 if𝐖(𝑙,𝑚) > 0.

In Isomap 𝑔(𝑧) = 𝑧, but in the following 𝑔𝑐(𝑧) = exp(−𝑧2/𝑐) for 𝑐 > 0.
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Node degree and the graph Laplacian

Given the weighted adjacency matrix𝐖, the degree of node 𝑙 describes how
well-connected a node is

𝑑𝑙 =
𝑛
∑
𝑚=1

𝐖(𝑙,𝑚)

and the degree matrix is 𝐃 = diag(𝑑1,… , 𝑑𝑛).
Define now the graph Laplacian, a measure of information flow, as

𝐋 = 𝐃 −𝐖
Interpretation: If heat were to be distributed from node to node with flow
speeds described by𝐖, then 𝐋 takes the role of the discretised Laplacian
operator ∇2 in the heat equation for the heat distribution 𝝓

d𝝓
d𝑡 + 𝑘𝐋𝝓 = 𝟎
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Graph cutting

A good separation of the graph into two parts 𝐴 and 𝐵 is one where flow
between the parts is minimized and neither is chosen too small, i.e.

min
𝐴,𝐵

( 1
vol(𝐴) +

1
vol(𝐵)) ∑

𝑙∈𝐴,𝑚∈𝐵
𝐖(𝑙,𝑚)

where vol(𝐴) = ∑
𝑙∈𝐴

𝑛
∑
𝑚=1

𝐖(𝑙,𝑚) = ∑
𝑙∈𝐴

𝑑𝑙

Raw data and graph Graph edge weights Clustering result

0.00 0.05 0.10 0.15 0.20
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Finding good cut points

Finding the best cut point would require to check all possible cuts and is an
NP-hard combinatorial problem.
Observations and theorem
1. The graph Laplacian is symmetric and positive semi-definite, since
𝐲⊤𝐋𝐲 = ∑𝑛

𝑖,𝑗=1𝐖(𝑖,𝑗)(𝐲(𝑖) − 𝐲(𝑗))2 ≥ 0 for all 𝐲 ∈ ℝ𝑛.
2. If there are 𝐾 connected components of the graph, then the set of
eigenvectors of 𝐋 with eigenvalue 0 is spanned by 𝟏𝐴𝑘 for 𝑘 = 1,… , 𝐾, where
𝟏(𝑖)𝐴𝑘

= 1 if 𝑖 ∈ 𝐴𝑘 and zero otherwise.

In practice
▶ There will not be 𝐾 separate connected components
▶ However, if 𝐾 clusters exist, the smallest 𝐾 eigenvalues will be near zero and
the and corresponding eigenvectors close to indicator vectors. 27/30



Spectral Clustering

1. Determine the weighted adjacency matrix𝐖 and the graph Laplacian 𝐋
2. Find the 𝐾 smallest eigenvalues of 𝐋 that are near zero and well separated
from the others

3. Find the corresponding eigenvectors 𝐔 = (𝐮1,… , 𝐮𝐾) ∈ ℝ𝑛×𝐾 and use
k-means on the rows of 𝐔 to determine cluster membership

Raw data (n = 500)
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Eigenvalues of L Spectral clustering
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Laplacian Eigenmaps for dimension reduction

▶ In addition to clustering, the eigenvectors of the Laplacian can also be used for
dimension reduction.

▶ For each component, use the 𝑞 eigenvectors corresponding to the 𝑞 smallest
non-zero eigenvalues as an embedding of the original data.

▶ Laplacian Eigenmaps can be shown to optimally preserve the local behaviour on
average, but not necessarily global behaviour.
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Take-home message

▶ Dimension reduction can aim to preserve global and local structure
▶ Data can have structure at multiple scales (e.g. locally flat but globally
spirally as the in swiss roll example)

▶ Isomap and tSNE are powerful dimension reduction techniques that can
help in explorative data analysis to uncover hidden structure. However, be
careful not to use them blindly

▶ Spectral clustering can also be used for flexible clustering. There is a lot of
theoretical work underpinning this technique - see e.g. Statistics and
Machine Learning in High-dimensions, EEN100 given by Giuseppe Durisi and
myself in LP1.
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