Lecture 14: Multiple testing

Rebecka Jörnsten, Mathematical Sciences

MSA220/MVE441 Statistical Learning for Big Data

12th May 2022

Statistical Testing - recap

.

Statistical testing

Every statistical test is associated with the risk that you false declare a finding (a false positive, a false rejection of a null hypothesis).

We pick the *level* of our statistical test to safe-guard this from happening at some acceptable level of risk.

Terminology:

- Data X which is random (e.g. a vector, two vectors, a summary statistic like a mean, an estimated coefficient,...)
- Test statistic T(X) which is random through X (e.g. a z-score, t-value etc)
- Null hypothesis: You assume something about the data, e.g. that the mean is 0, that the true model coefficent is 0, ...

Statistical testing

Terminology:

- Test statistic T(X) which is random through X (e.g. a z-score, t-value etc)
- Null hypothesis: You assume something about the data, e.g. that the mean is 0, that the true model coefficent is 0, ...
- Under the null we can work out the distribution for T explicitly (e.g t-distribution with associated degrees of freedom) OR...
- ... we can generate the null distribution through simulation.
 Example: Permutation test
 - ► Testing difference of mean of *X* between two classes
 - Permute the labels and re-compute the test-statistic
 - ▶ Repeat *B* ~ 1000 times and compare the distribution of test-statistics under permutation to the original.

More terminology:

- Test statistic T(X) which is random through X (e.g. a z-score, t-value etc)
- ▶ Distribution (CDF) of *T* under the null

 $P(T \le t \mid H_0)$

where H_0 refers to the null hypothesis

- Alternative hypothesis H_1 .
 - This is usually very open: e.g. H_1 : $\beta_j \neq 0$
 - It can refer to a subset of model coefficients being non-zero and some non-zero.

Statistical testing

▶ Distribution (CDF) of *T* under the null

 $P(T \le t \mid H_0)$

where H_0 refers to the null hypothesis

- Level of the test α : threshold for the test statistic.
- If we observe T above this threshold we reject H₀, otherwise we fail to reject
- Note: we can never prove or accept an alternative hypothesis since we have not worked out the distribution for the test statistic under this assumption.
- ▶ Note: I am using a one-sided test her for ease of presentation/visualization.

Statistical testing

- Level of the test α : threshold for the test statistic.
- If we observe T above this threshold we reject H₀, otherwise we fail to reject
- p-value: we compute the probability mass of the pdf p_T(t) for observed T or values even more extreme

Multiple Testing

Multiple testing

Example: the South African heart disease data

1 1

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-7.0760913	1.3404862	-5.279	1.3e-07	***
sbp	0.0065040	0.0057304	1.135	0.256374	
tobacco	0.0793764	0.0266028	2.984	0.002847	**
ldl	0.1739239	0.0596617	2.915	0.003555	**
adiposity	0.0185866	0.0292894	0.635	0.525700	
famhist	0.9253704	0.2278940	4.061	4.9e-05	***
typea	0.0395950	0.0123202	3.214	0.001310	* *
obesity	-0.0629099	0.0442477	-1.422	0.155095	
alcohol	0.0001217	0.0044832	0.027	0.978350	
age	0.0452253	0.0121298	3.728	0.000193	***
Signif. cod	es: 0 '***'	0.001 '**'	0.01 ',	· ' Ø.05 '.	' 0.1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 596.11 on 461 degrees of freedom Residual deviance: 472.14 on 452 degrees of freedom AIC: 492.14 Here, there are 5 significant coefficients but you are actually performing 9 tests (9 features in total).

- Using level $\alpha = 0.05$ means each test as a probability of 5% of generating a false rejection.
- Across the 9 features, the probability of making at least one false positive is

P(At least one false positive) =

 $= 1 - (1 - \alpha)^9 \simeq 0.37$

Multiple testing problem: If I test n true null hypotheses at level α , then on average we can expect to falsely reject $\alpha \times n$ of them.

Common problem:

- ▶ Test whether a gene's expression is linked to disease across 10000+ genes.
- > Detection of a server attack in a large network (anomaly detection)
- fMRI detection of "active" regions (pixel level test)
- Really: most studies involve multiple testing but perhaps at the modest scale of 10 tests like the heart disease example.
- Already with 10 tests you are very likely to encounter at least one false positive and

Multiple testing

- Most studies may involve multiple testing but perhaps at the modest scale of 10 tests like the heart disease example.
- Already with 10 tests you are very likely to encounter at least one false positive and
- once we reach 100 tests this probability reaches 99%!

	H_0 true	H_0 false	Total
Reject H_0	V	S	R
"Accept H_0	U	T	n-R
	n_0	$n - n_0$	п

- ▶ R = number of rejected H_0 (our "findings")
- V = number of type I errors (our false rejections)
- T = number of type II errors (our missed detections)

Family wise error rate, FWER

	H_0 true	H_0 false	Total
Reject H_0	V	S	R
"Accept H_0	U	T	n-R
	n_0	$n - n_0$	п

$$\blacktriangleright FWER = P(V \ge 1)$$

- > This is what was illustrated in the figure on the previous slide
- How can we reduce this risk?
- What if we adjust the level of the test to reflect that we are performing multiple tests?

FWER

	H_0 true	H_0 false	Total
Reject H_0	V	S	R
"Accept H_0	U	T	n-R
	n_0	$n - n_0$	п

$$\blacktriangleright FWER = P(V \ge 1)$$

- Let us adjust the level α to α/n
- This is called the Bonferroni correction and controls FWER at level α regardless of the number of true null hypotheses n₀

Bonferroni correction

Consider testing *n* different null hypotheses H_0^j , $j = 1, \dots, n$, all of which are, in fact, true. We want to control

 $P(\text{reject at least (any) hypothesis}) \leq \alpha$

Bonferroni method:

Perform each test at significance level α/n , instead of level α .

 $P(\text{reject any null hypothesis} = P(V \ge 1) =$

 $= P(\text{reject } H_0^1 \cup \cdots \text{reject } H_0^n) = \leq P(\text{reject } H_0^1) + \cdots + P(\text{reject } H_0^n) =$

 $= \alpha/n + \cdots + \alpha/n = \alpha$

Bonferroni controls the FWER regardless of how many hypothesis are in fact true nulls, n_0 .

• Perform each test at significance level α/n , instead of level α .

 $P(\text{reject any null hypothesis} = P(V \ge 1) =$

 $= P(\text{reject } H_0^1 \cup \cdots \text{ reject } H_0^{n_0} = \leq P(\text{reject } H_0^1) + \cdots + P(\text{reject } H_0^{n_0}) =$

 $= n_0 \alpha / n \le \alpha$

- Adjust level of the test: $\alpha_n = \alpha/n$
- Adjusted p-value: $p.adj = n \cdot p.val$

More about p-values

- Reject hypothesis *j* if p-value $p_j \leq \alpha/n$
- What do p-values from a set of tests look like?
- ▶ Fact: a p-values under the null is distributed as *U*[0,1]

histogram of the test statistics

More about p-values

- Reject hypothesis *j* if p-value $p_j \leq \alpha/n$
- What do p-values from a set of tests look like?
- ▶ Fact: a p-values under the null is distributed as *U*[0,1]

More about p-values

- Reject hypothesis *j* if p-value $p_j \leq \alpha/n$
- What do p-values from a set of tests look like?
- ▶ Fact: a p-values under the null is distributed as *U*[0,1]

Let's say we reject a hypothesis if the test statistic T is large. The p-value is the upper tail of the CDF F of T

$$P(p-value \le t) = P(1 - F(T) \le t) = P(1 - t \le F(T)) =$$

$$= P(F(T) \ge 1 - t) = 1 - P(F(T) \le 1 - t) =$$
$$= 1 - P(T \le F^{-1}(1 - t)) = 1 - F(F^{-1}(1 - t)) = 1 - (1 - t) = t$$

I.e. the p-value is uniformly distributed.

Back to testing

- Reject hypothesis *j* if p-value $p_j \leq \alpha/n$
- What do p-values from a set of tests look like when some of the nulls are false?

	H_0 true	H_0 false	Total
Reject H_0	V = 477	S = 100	R = 577
"Accept H_0	U = 9423	T = 0	n - R = 9423
	$n_0 = 9900$	$n - n_0 = 100$	n = 10000

- The good news is I found every non-null
- The bad news is that I made lots of false rejections

What if we use the Bonferroni correction

• Use level $\alpha/10000$ here

	H_0 true	H_0 false	Total
Reject H_0	V = 1	S = 16	R = 17
"Accept H_0	U = 9899	T = 84	n - R = 9983
	$n_0 = 9900$	$n - n_0 = 100$	n = 10000

Hmm... a bit too cautious perhaps?

Controling False Discovery Rate

FPR and FDR

	H_0 true	H_0 false	Total
Reject H_0	V	S	R
"Accept H_0	U	T	n-R
	n_0	$n - n_0$	п

- $FPR = V/n_0$ false positive rate
- ▶ $FDP = \frac{V}{R} \mathbb{1}[R \ge 1]$ false detection proportion
- E(FDP) = FDR is the false discovery rate
- Benjamini-Hochberg (BH) procedure compares the sorted p-values to a diagonal cutoff line with a slope q, finds the largest p-value that still falls below this line, and rejects the null hypotheses for the p-values up to and including this one.

- The FDR (false discovery rate) has gained a lot of traction because pracitioners have found Bonferroni to be too conservative
- (There are also alternative FWER controlling methods that are less conservative)
- The Benjamini-Hochberg (BH) procedure compares the sorted p-values to a diagonal cutoff line with a slope q.
 We find the largest p-value that still falls below this line, and rejects the null hypotheses for the p-values up to and including this one.

Back to testing

Sorted p-values with the 0.05 threshhold

Back to testing

It is common to plot p-values on a log10 scale since the thresholds we often use (0.01, 0.001) correspond to levels of the log10 plot.

FDR control

- Sorted p-values with the 0.05 threshhold in red, Bonferroni i blue
- BH in green (slope q = 0.05 cutoff)

FDR control

- Sorted p-values with the 0.05 threshhold in red, Bonferroni i blue
- BH in green (slope q = 0.05 cutoff)

FDR control

Formally, the BH procedure at level **q** is defined as follows:

- Sort the p-values. Call them $P_{(1)} \leq ... \leq P_{(n)}$
- Find the largest *r* such that $P(r) \le q(r/n)$
- Reject the null hypotheses $H_{(1)}, ..., H_{(r)}$.

Benjamini and Hochberg (1995)): Consider tests of *n* null hypotheses, n_0 of which are true. If the test statistics (or equivalently, p-values) of these tests are independent, then the FDR of the above procedure satisfies $FDR \leq \frac{n_0 q}{n} \leq q$.

Note: FDR control is not guaranteed if the test statistics are dependent. **q** is thus our acceptable level of the false discovery rate. This might be higher than a common choice for α . Think of this in terms of follow-up experiments. How many uninformative follow-up experiments are you willing to run? What if we use the BH correction in our example from above?

	H_0 true	H_0 false	Total
Reject H_0	V = 3	S = 82	R = 85
"Accept H_0	U = 9897	T = 18	n - R = 9915
	$n_0 = 9900$	$n - n_0 = 100$	n = 10000

- The observed FDP is 0.035
- However, you can observe values over α
- > You only control the FDR in *expectation*

E(FDP) for the BH procedure

- ▶ We repeat the simulation several times and record the observed FDP values
- We observe that the expected value of the FDP is below the threshold 0.05 (dashed line)

The Benjamini-Hochberg procedure

- For each $\alpha \in (0, 1)$, let $M(\alpha)$ be the number of p-values $\leq \alpha$.
- ▶ Using a level of α and rejecting all hypotheses with p-values $\leq \alpha$ means we can expect to falsely reject $n_0 \cdot \alpha$ null hypotheses, since the null p-values are distributed as U(0, 1).
- We estimate the false discovery proportion as

 $FDP = n_0 \cdot \alpha / M(\alpha)$

Hang on! We don't actually know n_0 .

However, we can obtain a conservative upper-bound from

 $FDP < n \cdot \alpha / M(\alpha)$

We estimate the false discovery proportion as

 $FDP = n_0 \cdot \alpha / M(\alpha)$

• A conservative upper-bound n_0 is n

• We set $\alpha = P_{(r)}$, the r-th largest p-value. Then

 $FDP < n \cdot \alpha / M(\alpha) \le q$

with equality when

 $P_{(r)} \le q \cdot r/n$

Another way of thinking about this:

So the BH procedure chooses α (in a data-dependent way) so as to reject as many hypotheses as possible, subject to the constraint

 $FDP < n \cdot \alpha / M(\alpha) \le q$

Adjusted p-values

We mainly talked about how to utilize the adjustments to test at a level α . However, the procedures we talked about can also be used to *adjust* the p-values to be used with a level selected later.

- Bonferroni: $p.adj^B = min(1, p.raw * n)$
- Benjamini-Hochberg:
 - ▶ sort the p.values: $p.raw(j), j = 1, \dots, n$
 - BH procedure states we should reject hypothesis j if p.raw(j) < α(j/n) where j denotes the rank (lowest to highest)</p>
 - That means we reject if $(np.raw(j))/j < \alpha$
 - Adjusted p-value

$$p.adj^{BH}(j) = \frac{p.raw(j)n}{j}$$

You can report the adjusted p-values instead or with the raw ones for later inference with a chosen α .

Take-home message

- If you perform many tests you all but guaranteed to get false positives
- If your study leads to follow-up experiments or studies you may need to control these false positives - use multiple testing corrections
- Sometimes it's more important to control the proportion of false positives among your detection - use a less aggressive adjustment and metric, the FDR (false discovery rate).
- Caveats:
 - Are you using the right test?
 - Where did the p-values come from? Perhaps you need to use non-parametric approaches like permutations or bootstraps to obtain them
 - In regression and anova there are also other post-processing procedures for pairwise comparisons etc.
 - ► Careful when the sample size is large... upcoming lectures