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Statistical Testing - recap



Statistical testing

Every statistical test is associated with the risk that you false declare a finding (a
false positive, a false rejection of a null hypothesis).

We pick the level of our statistical test to safe-guard this from happening at
some acceptable level of risk.

Terminology:

▶ Data 𝑋 which is random (e.g. a vector, two vectors, a summary statistic like a
mean, an estimated coefficient,...)

▶ Test statistic 𝑇(𝑋) which is random through 𝑋 (e.g. a z-score, t-value etc)
▶ Null hypothesis: You assume something about the data, e.g. that the mean
is 0, that the true model coefficent is 0, ...
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Statistical testing

Terminology:
▶ Test statistic 𝑇(𝑋) which is random through 𝑋 (e.g. a z-score, t-value etc)
▶ Null hypothesis: You assume something about the data, e.g. that the mean
is 0, that the true model coefficent is 0, ...

▶ Under the null we can work out the distribution for 𝑇 explicitly (e.g
t-distribution with associated degrees of freedom) OR...

▶ ... we can generate the null distribution through simulation.
Example: Permutation test

▶ Testing difference of mean of 𝑋 between two classes
▶ Permute the labels and re-compute the test-statistic
▶ Repeat 𝐵 ∼ 1000 times and compare the distribution of test-statistics under
permutation to the original.
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Statistical testing

More terminology:

▶ Test statistic 𝑇(𝑋) which is random through 𝑋 (e.g. a z-score, t-value etc)
▶ Distribution (CDF) of 𝑇 under the null

𝑃(𝑇 ≤ 𝑡 ∣ 𝐻0)

where 𝐻0 refers to the null hypothesis
▶ Alternative hypothesis 𝐻1.

▶ This is usually very open: e.g. 𝐻1 ∶ 𝛽𝑗 ≠ 0
▶ It can refer to a subset of model coefficients being non-zero and some
non-zero.
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Statistical testing

▶ Distribution (CDF) of 𝑇 under the null

𝑃(𝑇 ≤ 𝑡 ∣ 𝐻0)

where 𝐻0 refers to the null hypothesis
▶ Level of the test 𝛼: threshhold for the test statistic.
▶ If we observe 𝑇 above this threshhold we reject 𝐻0, otherwise we fail to
reject

▶ Note: we can never prove or accept an alternative hypothesis since we have
not worked out the distribution for the test statistic under this assumption.

▶ Note: I am using a one-sided test her for ease of presentation/visualization.
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Statistical testing

▶ Level of the test 𝛼: threshhold for the test statistic.
▶ If we observe 𝑇 above this threshhold we reject 𝐻0, otherwise we fail to
reject

▶ p-value: we compute the probability mass of the pdf 𝑝𝑇(𝑡) for observed 𝑇 or
values even more extreme
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Multiple Testing



Multiple testing

Example: the South African heart disease data

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -7.0760913 1.3404862 -5.279 1.3e-07 ***
sbp 0.0065040 0.0057304 1.135 0.256374
tobacco 0.0793764 0.0266028 2.984 0.002847 **
ldl 0.1739239 0.0596617 2.915 0.003555 **
adiposity 0.0185866 0.0292894 0.635 0.525700
famhist 0.9253704 0.2278940 4.061 4.9e-05 ***
typea 0.0395950 0.0123202 3.214 0.001310 **
obesity -0.0629099 0.0442477 -1.422 0.155095
alcohol 0.0001217 0.0044832 0.027 0.978350
age 0.0452253 0.0121298 3.728 0.000193 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 596.11 on 461 degrees of freedom
Residual deviance: 472.14 on 452 degrees of freedom
AIC: 492.14

Number of Fisher Scoring iterations: 5

Here, there are 5 significant coefficients but
you are actually performing 9 tests (9
features in total).

▶ Using level 𝛼 = 0.05 means each test
as a probability of 5% of generating a
false rejection.

▶ Across the 9 features, the probability
of making at least one false positive is

𝑃(At least one false positive) =

= 1 − (1 − 𝛼)9 ≃ 0.37
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Multiple testing

Multiple testing problem: If I test n true null hypotheses at level 𝛼, then on
average we can expect to falsely reject 𝛼 × 𝑛 of them.

Common problem:

▶ Test whether a gene’s expression is linked to disease across 10000+ genes.
▶ Detection of a server attack in a large network (anomaly detection)
▶ fMRI - detection of ”active” regions (pixel level test)
▶ Really: most studies involve multiple testing but perhaps at the modest
scale of 10 tests like the heart disease example.

▶ Already with 10 tests you are very likely to encounter at least one false
positive and .....
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Multiple testing

▶ Most studies may involve multiple testing but perhaps at the modest scale
of 10 tests like the heart disease example.

▶ Already with 10 tests you are very likely to encounter at least one false
positive and .....

▶ once we reach 100 tests this probability reaches 99%!
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Type I and II errors

𝐻0 true 𝐻0 false Total
Reject 𝐻0 𝑉 𝑆 𝑅
”Accept 𝐻0 𝑈 𝑇 𝑛 − 𝑅

𝑛0 𝑛 − 𝑛0 𝑛

▶ 𝑅 = number of rejected 𝐻0 (our ”findings”)
▶ 𝑉 = number of type I errors (our false rejections)
▶ 𝑇 = number of type II errors (our missed detections)
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Family wise error rate, FWER

𝐻0 true 𝐻0 false Total
Reject 𝐻0 𝑉 𝑆 𝑅
”Accept 𝐻0 𝑈 𝑇 𝑛 − 𝑅

𝑛0 𝑛 − 𝑛0 𝑛

▶ 𝐹𝑊𝐸𝑅 = 𝑃(𝑉 ≥ 1)
▶ This is what was illustrated in the figure on the previous slide
▶ How can we reduce this risk?
▶ What if we adjust the level of the test to reflect that we are performing
multiple tests?
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FWER

𝐻0 true 𝐻0 false Total
Reject 𝐻0 𝑉 𝑆 𝑅
”Accept 𝐻0 𝑈 𝑇 𝑛 − 𝑅

𝑛0 𝑛 − 𝑛0 𝑛

▶ 𝐹𝑊𝐸𝑅 = 𝑃(𝑉 ≥ 1)
▶ Let us adjust the level 𝛼 to 𝛼/𝑛
▶ This is called the Bonferroni correction and controls FWER at level 𝛼
regardless of the number of true null hypotheses 𝑛0
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Bonferroni correction

Consider testing 𝑛 different null hypotheses 𝐻𝑗
0, 𝑗 = 1,⋯ , 𝑛, all of which are, in

fact, true. We want to control

𝑃(reject at least (any) hypothesis) ≤ 𝛼

Bonferroni method:

▶ Perform each test at significance level 𝛼/𝑛, instead of level 𝛼.

𝑃(reject any null hypothesis = 𝑃(𝑉 ≥ 1) =

= 𝑃(reject 𝐻1
0 ∪⋯ reject 𝐻𝑛

0 ) =≤ 𝑃(reject 𝐻1
0) +⋯ + 𝑃(reject 𝐻𝑛

0 ) =

= 𝛼/𝑛 +⋯+ 𝛼/𝑛 = 𝛼
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Bonferroni correction

Bonferroni controls the FWER regardless of how many hypothesis are in fact true
nulls, 𝑛0.

▶ Perform each test at significance level 𝛼/𝑛, instead of level 𝛼.

𝑃(reject any null hypothesis = 𝑃(𝑉 ≥ 1) =

= 𝑃(reject 𝐻1
0 ∪⋯ reject 𝐻𝑛0

0 =≤ 𝑃(reject 𝐻1
0) +⋯ + 𝑃(reject 𝐻𝑛0

0 ) =

= 𝑛0𝛼/𝑛 ≤ 𝛼
▶ Adjust level of the test: 𝛼𝑛 = 𝛼/𝑛
▶ Adjusted p-value: 𝑝.𝑎𝑑𝑗 = 𝑛 ⋅ 𝑝.𝑣𝑎𝑙
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More about p-values

▶ Reject hypothesis 𝑗 if p-value 𝑝𝑗 ≤ 𝛼/𝑛
▶ What do p-values from a set of tests look like?
▶ Fact: a p-values under the null is distributed as 𝑈[0, 1]
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More about p-values

▶ Reject hypothesis 𝑗 if p-value 𝑝𝑗 ≤ 𝛼/𝑛
▶ What do p-values from a set of tests look like?
▶ Fact: a p-values under the null is distributed as 𝑈[0, 1]
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More about p-values

▶ Reject hypothesis 𝑗 if p-value 𝑝𝑗 ≤ 𝛼/𝑛
▶ What do p-values from a set of tests look like?
▶ Fact: a p-values under the null is distributed as 𝑈[0, 1]

Let’s say we reject a hypothesis if the test statistic 𝑇 is large. The p-value is the
upper tail of the CDF 𝐹 of 𝑇

𝑃(p-value ≤ 𝑡) = 𝑃(1 − 𝐹(𝑇) ≤ 𝑡) = 𝑃(1 − 𝑡 ≤ 𝐹(𝑇)) =

= 𝑃(𝐹(𝑇) ≥ 1 − 𝑡) = 1 − 𝑃(𝐹(𝑇) ≤ 1 − 𝑡) =

= 1 − 𝑃(𝑇 ≤ 𝐹−1(1 − 𝑡)) = 1 − 𝐹(𝐹−1(1 − 𝑡)) = 1 − (1 − 𝑡) = 𝑡

I.e. the p-value is uniformly distributed.
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Back to testing

▶ Reject hypothesis 𝑗 if p-value 𝑝𝑗 ≤ 𝛼/𝑛
▶ What do p-values from a set of tests look like when some of the nulls are
false?
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Back to testing

𝐻0 true 𝐻0 false Total
Reject 𝐻0 𝑉 = 477 𝑆 = 100 𝑅 = 577
”Accept 𝐻0 𝑈 = 9423 𝑇 = 0 𝑛 − 𝑅 = 9423

𝑛0 = 9900 𝑛 − 𝑛0 = 100 𝑛 = 10000

▶ The good news is I found every non-null
▶ The bad news is that I made lots of false rejections
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Back to testing

▶ What if we use the Bonferroni correction
▶ Use level 𝛼/10000 here

𝐻0 true 𝐻0 false Total
Reject 𝐻0 𝑉 = 1 𝑆 = 16 𝑅 = 17
”Accept 𝐻0 𝑈 = 9899 𝑇 = 84 𝑛 − 𝑅 = 9983

𝑛0 = 9900 𝑛 − 𝑛0 = 100 𝑛 = 10000

▶ Hmm... a bit too cautious perhaps?
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Controling False Discovery Rate



FPR and FDR

𝐻0 true 𝐻0 false Total
Reject 𝐻0 𝑉 𝑆 𝑅
”Accept 𝐻0 𝑈 𝑇 𝑛 − 𝑅

𝑛0 𝑛 − 𝑛0 𝑛

▶ 𝐹𝑃𝑅 = 𝑉/𝑛0 false positive rate
▶ 𝐹𝐷𝑃 = 𝑉

𝑅
1[𝑅 ≥ 1] false detection proportion

▶ 𝐸(𝐹𝐷𝑃) = 𝐹𝐷𝑅 is the false discovery rate
▶ Benjamini-Hochberg (BH) procedure compares the sorted p-values to a
diagonal cutoff line with a slope 𝑞, finds the largest p-value that still falls
below this line, and rejects the null hypotheses for the p-values up to and
including this one.
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FPR and FDR

▶ The FDR (false discovery rate) has gained a lot of traction because
pracitioners have found Bonferroni to be too conservative

▶ (There are also alternative FWER controlling methods that are less
conservative)

▶ The Benjamini-Hochberg (BH) procedure compares the sorted p-values to a
diagonal cutoff line with a slope 𝑞.
We find the largest p-value that still falls below this line, and rejects the null
hypotheses for the p-values up to and including this one.
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Back to testing

▶ Sorted p-values with the 0.05 threshhold
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Back to testing

▶ It is common to plot p-values on a log10 scale since the thresholds we often
use (0.01, 0.001) correspond to levels of the log10 plot.
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FDR control

▶ Sorted p-values with the 0.05 threshhold in red, Bonferroni i blue
▶ BH in green (slope 𝑞 = 0.05 cutoff)
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FDR control

▶ Sorted p-values with the 0.05 threshhold in red, Bonferroni i blue
▶ BH in green (slope 𝑞 = 0.05 cutoff)
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FDR control

Formally, the BH procedure at level q is defined as follows:
▶ Sort the p-values. Call them 𝑃(1) ≤ ... ≤ 𝑃(𝑛)
▶ Find the largest 𝑟 such that 𝑃(𝑟) ≤ 𝑞(𝑟/𝑛)
▶ Reject the null hypotheses 𝐻(1), ..., 𝐻(𝑟).

Benjamini and Hochberg (1995)): Consider tests of 𝑛 null hypotheses, 𝑛0 of which
are true. If the test statistics (or equivalently, p-values) of these tests are
independent, then the FDR of the above procedure satisfies 𝐹𝐷𝑅 ≤ 𝑛0𝑞

𝑛
≤ 𝑞.

Note: FDR control is not guaranteed if the test statistics are dependent.
q is thus our acceptable level of the false discovery rate. This might be higher
than a common choice for 𝛼. Think of this in terms of follow-up experiments.
How many uninformative follow-up experiments are you willing to run?
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Back to testing example

▶ What if we use the BH correction in our example from above?

𝐻0 true 𝐻0 false Total
Reject 𝐻0 𝑉 = 3 𝑆 = 82 𝑅 = 85
”Accept 𝐻0 𝑈 = 9897 𝑇 = 18 𝑛 − 𝑅 = 9915

𝑛0 = 9900 𝑛 − 𝑛0 = 100 𝑛 = 10000

▶ The observed FDP is 0.035
▶ However, you can observe values over 𝛼
▶ You only control the FDR in expectation
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E(FDP) for the BH procedure

▶ We repeat the simulation several times and record the observed FDP values
▶ We observe that the expected value of the FDP is below the threshhold 0.05
(dashed line)
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The Benjamini-Hochberg procedure

▶ For each 𝛼 ∈ (0, 1), let 𝑀(𝛼) be the number of p-values ≤ 𝛼.
▶ Using a level of 𝛼 and rejecting all hypotheses with p-values ≤ 𝛼 means we
can expect to falsely reject 𝑛0 ⋅ 𝛼 null hypotheses, since the null p-values are
distributed as 𝑈(0, 1).

▶ We estimate the false discovery proportion as

𝐹𝐷𝑃 = 𝑛0 ⋅ 𝛼/𝑀(𝛼)

Hang on! We don’t actually know 𝑛0.
However, we can obtain a conservative upper-bound from

𝐹𝐷𝑃 < 𝑛 ⋅ 𝛼/𝑀(𝛼)
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The Benjamini-Hochberg procedure

▶ We estimate the false discovery proportion as

𝐹𝐷𝑃 = 𝑛0 ⋅ 𝛼/𝑀(𝛼)

▶ A conservative upper-bound 𝑛0 is 𝑛
▶ We set 𝛼 = 𝑃(𝑟), the r-th largest p-value. Then

𝐹𝐷𝑃 < 𝑛 ⋅ 𝛼/𝑀(𝛼) ≤ 𝑞

with equality when
𝑃(𝑟) ≤ 𝑞 ⋅ 𝑟/𝑛
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The Benjamini-Hochberg procedure

Another way of thinking about this:
▶ So the BH procedure chooses 𝛼 (in a data-dependent way) so as to reject as
many hypotheses as possible, subject to the constraint

𝐹𝐷𝑃 < 𝑛 ⋅ 𝛼/𝑀(𝛼) ≤ 𝑞
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Adjusted p-values

We mainly talked about how to utilize the adjustments to test at a level 𝛼.
However, the procedures we talked about can also be used to adjust the
p-values to be used with a level selected later.

▶ Bonferroni: 𝑝.𝑎𝑑𝑗𝐵 = 𝑚𝑖𝑛(1, 𝑝.𝑟𝑎𝑤 ∗ 𝑛)
▶ Benjamini-Hochberg:

▶ sort the p.values: 𝑝.𝑟𝑎𝑤(𝑗), 𝑗 = 1,⋯ , 𝑛
▶ BH procedure states we should reject hypothesis 𝑗 if 𝑝.𝑟𝑎𝑤(𝑗) < 𝛼(𝑗/𝑛) where 𝑗
denotes the rank (lowest to highest)

▶ That means we reject if (𝑛𝑝.𝑟𝑎𝑤(𝑗))/𝑗 < 𝛼
▶ Adjusted p-value

𝑝.𝑎𝑑𝑗𝐵𝐻(𝑗) = 𝑝.𝑟𝑎𝑤(𝑗)𝑛
𝑗

You can report the adjusted p-values instead or with the raw ones for later
inference with a chosen 𝛼. 32/33



Take-home message

▶ If you perform many tests you all but guaranteed to get false positives
▶ If your study leads to follow-up experiments or studies you may need to
control these false positives - use multiple testing corrections

▶ Sometimes it’s more important to control the proportion of false positives
among your detection - use a less aggressive adjustment and metric, the
FDR (false discovery rate).

▶ Caveats:
▶ Are you using the right test?
▶ Where did the p-values come from? Perhaps you need to use non-parametric
approaches like permutations or bootstraps to obtain them

▶ In regression and anova there are also other post-processing procedures for
pairwise comparisons etc.

▶ Careful when the sample size is large... upcoming lectures
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