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Lasso - recap



Lasso as a selection mechanism

𝜷lasso(𝜆) = arg min
𝜷

‖𝐲 − 𝐗𝜷‖22 + 𝜆‖𝜷‖1

▶ Smallest 𝑞 in penalty such that constraint is still convex
▶ Produces sparse solutions (many coefficients exactly equal to zero) and
therefore performs feature selection
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Lasso as a selection mechanism

In lecture we talked about the selection properties of the lasso.

▶ If 𝑋 contain correlated features we know that selection can become
unstable and pivot between the correlated elements

▶ elastic net
▶ group lasso
▶ filtering

▶ If the correlations are not too large between the true predictors and the
predictors not in the true model, and your penalty is chosen appropriately,
lasso can be shown to be consistent in terms of model selection
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Lasso as a selection mechanism

Still, as you may already have noticed from your work on Project 3, selecting a
good penalty factors can be far from trivial.

▶ Cross-validation:
▶ Use the 𝜆 corresponding to the minimum cross-validation error: 𝜆𝑚𝑖𝑛
▶ Use the 𝜆 with cross-validation error within 1 SE of the minimum with the most
sparse solutions: 𝜆1𝑆𝐸

▶ Still, once you apply this penalty to the full data set you arrive at a model
with selected features and non-selected features and corresponding
estimates

▶ What if you want p-values and confidence intervals in your analysis report?
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Lasso as a selection mechanism

Can’t we just refit the selected model to the data with OLS and report those
p-values?
No!

▶ You already used the data to select the model and if you refit using the
same data you are subject to Selection bias

▶ Your p-values will be over-optimistic
▶ Also, you may still have 𝑝𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 > 𝑛
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Lasso as a selection mechanism
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Re-fit of the selected model

Example: the South African heart disease data
glm fit

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -7.0760913 1.3404862 -5.279 1.3e-07 ***
sbp 0.0065040 0.0057304 1.135 0.256374
tobacco 0.0793764 0.0266028 2.984 0.002847 **
ldl 0.1739239 0.0596617 2.915 0.003555 **
adiposity 0.0185866 0.0292894 0.635 0.525700
famhist 0.9253704 0.2278940 4.061 4.9e-05 ***
typea 0.0395950 0.0123202 3.214 0.001310 **
obesity -0.0629099 0.0442477 -1.422 0.155095
alcohol 0.0001217 0.0044832 0.027 0.978350
age 0.0452253 0.0121298 3.728 0.000193 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 596.11 on 461 degrees of freedom
Residual deviance: 472.14 on 452 degrees of freedom
AIC: 492.14

Number of Fisher Scoring iterations: 5

glm refit on selected

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -7.35462 0.96804 -7.597 3.02e-14 ***
tobacco 0.08038 0.02588 3.106 0.00190 **
ldl 0.16199 0.05497 2.947 0.00321 **
famhist 0.90818 0.22576 4.023 5.75e-05 ***
typea 0.03712 0.01217 3.051 0.00228 **
age 0.05046 0.01021 4.944 7.65e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 596.11 on 461 degrees of freedom
Residual deviance: 475.69 on 456 degrees of freedom
AIC: 487.69

Number of Fisher Scoring iterations: 5
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High-dimensional inference



High-dimensional inference

In this lecture we will talk about a few approaches for inference for lasso type
methods

▶ Re-sampling based inference
▶ Bias-correction
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High-dimensional inference

▶ L1-penalized modeling has become enormously popular for
high-dimensional problems

▶ We get model selection, and as we have seen in previous lectures, pretty
good point estimates since the bias is constrained to 𝜆

▶ But when we do low-dimensional modeling we usually don’t feel very
satisfied with just point estimates

▶ We want confidence intervals and p-values!
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High-dimensional inference

▶ What are the obstacles for obtaining p-values and confidence intervals?
▶ Highly non-standard setting when 𝑝 > 𝑛
▶ the distribution of lasso-solutions, by construction, has a point-mass at 0
and this makes bootstrapping to get standard error estimates difficult
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Sample-splitting

Wasserman and Roeder (2009) proposed the following approach to obtain
p-values

▶ Split the data in two sets
▶ Use set 1 to perform modelselection via e.g. lasso
▶ Use set 2 to evaluate p-values for the non-zero coefficients. This is done by
running LS using only the selected variables in the model.

▶ For the variables not selected in set 1, set p-value to 1.

The p-values are valid because we didn’t reuse the same data for selection and
p-value computation.
Moreover, if we want to compute adjusted p-values that take into account
multiple testing we only have to correct by selected set of variables, not all 𝑝.
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Sample-splitting

Example: the South African heart disease data
Result from one 50-50 split
Model summary from the test set

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -8.18526 1.42228 -5.755 8.66e-09 ***
tobacco 0.10105 0.03902 2.590 0.0096 **
famhist 1.36506 0.33562 4.067 4.76e-05 ***
typea 0.04408 0.01772 2.487 0.0129 *
age 0.06179 0.01586 3.897 9.75e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 295.44 on 230 degrees of freedom
Residual deviance: 219.26 on 226 degrees of freedom
AIC: 229.26

Number of Fisher Scoring iterations: 5

▶ Price: you are doing model selection on a
smaller data set

▶ Might lead to a smaller model
▶ What happens if you split the data again?
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Sample-splitting

Drawback with the procedure

▶ Sensitive to the split so the pvalues are not reproducible
▶ ”p-value lottery”
▶ Different splits leads to widely different p-values!

mm$pvals.nonaggr[, 9]

Fre
que

ncy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

60
70

12/27



P-value lottery
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Multi sample-splitting

To overcome the p-value lottery we perform several random splits of data
(Meinhausen et al, 2009)

▶ Repeat 𝐵 times: split data into set 1 and set 2
▶ Use set 1 for selection of variables
▶ Use set 2 to compute p-values and correct for multiple testing using the
number of selected features in set 1

▶ Aggregate the p-values

Hm? How to we combine 𝐵 p-values (like those from the histogram above) to one
final p-value?
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Multi sample-splitting

The p-value estimates are not independent because the data splits overlap.

▶ We can use the median p-value
▶ Or any other quantile
▶ Search for the best quantile - minimum p-values once adjusted for search
for the optimal thresshold.

▶ Note: the sample splits are dependent so you need to adjust for this and the
optimal search in the aggregation.

▶ Implemented in package hdi() and see also the class demo.
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Stability selection



Stability selection

We have noticed that lasso selection can be quite unstable - that is, you obtain
very different optimal 𝜆 or number and set of selected features of different splits
of the data.

Can we explore this to obtain a better selection procedure?

▶ Consider a range Λ of tuning parameters
▶ Run lasso selection on multiple splits of data using this range
▶ For each 𝜆 ∈ Λ, record the selection proportion for each feature 𝑗: Π𝜆

𝑗 - the
so-called stability paths
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Stability selection

Stability paths with a threshold
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Stability selection

▶ For each 𝜆 ∈ Λ, record the selection proportion for each feature 𝑗: Π𝜆
𝑗 - the

so-called stability paths
▶ The stable set 𝑆𝑠𝑡𝑎𝑏𝑙𝑒 = {𝑗 ∶ 𝑚𝑎𝑥𝜆∈Λ(Π𝜆

𝑗 ) ≥ 𝜋𝑡ℎ𝑟} for some threshold 𝜋𝑡ℎ𝑟
▶ Let 𝑞Λ denote the average model size selected across the multiple runs and
range Λ and let 𝑉 denote the number of falsely selected features.

▶ Meinshausen and Buhlmann (2010) show that

𝐸(𝑉) ≤ 1
2𝜋𝑡ℎ𝑟 − 1

𝑞2Λ
𝑝

where 𝑝 is the number of features we select from.
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Stability selection

▶ Meinshausen and Buhlmann (2010) show that

𝐸(𝑉) ≤ 1
2𝜋𝑡ℎ𝑟 − 1

𝑞2Λ
𝑝

where 𝑝 is the number of features we select from.
▶ Now you can set a threshold and a tuning parameter range Λ and obtain an
estimate of the expected number of false discoveries

▶ Alternatively, pick a threshold 𝜋𝑡ℎ𝑟 and an acceptable number of false
positives and derive the tuning parameter range Λ (size models allowed, e.g.
something like ∼ √𝑝).

Stability selection and extensions thereof are quite popular for network
modeling based on lasso-methods.

19/27



De-biasing the lasso



De-sparsified lasso

As you saw from the splitting procedures, you do sacrifice some data to find the
p-values for sparse estimators.
Zhang and Zhang (2014) proposed the de-sparsified lasso to come up with
p-values in a high-dimensional setting.

▶ We start with the 𝑝 < 𝑛 setting
▶ We are interested in the 𝑗-th coefficient estimate
▶ It turns out we can obtain the LS estimate as follows

̂𝛽𝐿𝑆𝑗 =
𝑦′𝑍𝑗
𝑋 ′
𝑗𝑍𝑗

where 𝑍𝑗 is the residual if you run a regression of 𝑋𝑗 on all the other 𝑋s!
▶ Proof: go through the OLS solutions and use matrix block inverses.
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De-sparsified lasso

Write out the true model

𝑦 =
𝐽
∑
𝑗=1

𝑋𝑗𝛽∗𝑗 + 𝜂

where 𝛽∗ are the true coefficient values
▶ If we plug this into the estimate ̂𝛽𝐿𝑆𝑗 = 𝑦′𝑍𝑗

𝑋′
𝑗𝑍𝑗

we see

𝑦′𝑍𝑗
𝑋 ′
𝑗𝑍𝑗

= 𝛽∗𝑗 + ∑
𝑘≠𝑗

𝛽∗𝑘
𝑋 ′
𝑘𝑍𝑗
𝑋 ′
𝑗𝑍𝑗

+
𝜂′𝑍𝑗
𝑋 ′
𝑗𝑍𝑗

𝑊ℎ𝑒𝑛𝑤𝑒ℎ𝑎𝑣𝑒𝑟𝑢𝑛𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑤𝑖𝑡ℎ𝐿𝑆𝑡ℎ𝑒𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠

Z𝑗 are orthogonal to the other variables 𝑋𝑘 and so we see that second term
on the right hand side is 0.

▶▶ What happens when 𝑝 > 𝑛?
▶ Then this doesn’t work since residuals 𝑍𝑗 are 0 21/27



De-sparsified lasso

Idea (Zhang and Zhang, 2014): Use a regularized regression of 𝑋𝑗 on the other 𝑋s!

▶ If we plug this into the estimate ̂𝛽𝐿𝑆𝑗 = 𝑦′𝑍𝑗
𝑋′
𝑗𝑍𝑗

we see

𝑦′𝑍𝑗
𝑋 ′
𝑗𝑍𝑗

= 𝛽∗𝑗 + ∑
𝑘≠𝑗

𝛽∗𝑘
𝑋 ′
𝑘𝑍𝑗
𝑋 ′
𝑗𝑍𝑗

+
𝜂′𝑍𝑗
𝑋 ′
𝑗𝑍𝑗

▶ Now term 2 does not go away and therefore we now have a biased estimate
of 𝛽∗𝑗

▶ Bias correction
̂𝛽𝑗 =

𝑦′𝑍𝑗
𝑋 ′
𝑗𝑍𝑗

− ∑
𝑘≠𝑗

̂𝛽𝑘
𝑋 ′
𝑘𝑍𝑗
𝑋 ′
𝑗𝑍𝑗

where we use the lasso-estimates ̂𝛽𝑘
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De-sparsified lasso

Zhang and Zhang (2014) and van de Geer at al (2014) has derived the distribution
for the bias-corrected estimate as

√𝑛( ̂𝛽 − 𝛽∗) ∼ 𝑁𝑝(0,𝑊)

▶ Since from above we have

√𝑛( ̂𝛽𝑗 − 𝛽∗𝑘) =
√𝑛𝜂′𝑍𝑗
𝑛−1𝑋 ′

𝑗𝑍𝑗
+ 𝑅

where 𝑅 can be shown to be neglible under sparsity assumptions on 𝛽∗ and
structure on 𝑋

▶ Then we can derive the distribution variance𝑊 from the term involving 𝜂 as

𝑊 𝑗𝑘 = 𝜎𝜂
𝑍′𝑗𝑍𝑘

(𝑋 ′
𝑗𝑍𝑗)(𝑋 ′

𝑘𝑍𝑘)
▶ And now we can compute p-values for every 𝛽!!!
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bias-corrected ridge regression

Another proposal by Buhlmann (2013) uses a bias-corrected ridge estimate

▶ Here we start with the ridge regression estimate
▶ Then we perform bias-correction using lasso-estimates
▶ Buhlmann (2013) derive the sampling distribution for the bias-corrected
estimates

▶ And now we can compute p-values for every 𝛽!!!
▶ Computationally cheaper than the de-sparsified lasso
▶ Tuning parameters need to selected - CV can be used or other criteria (see
journal paper)

▶ package hdi()
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Correlated variables

In practice, we often have highly correlated variables in our data sets. This was
the motivation for group selection in elastic net or group lasso.
When we have correlated variables this translates to higher estimation variance
within the group, wider confidence intervals and lower power of detection.

▶ Group testing is one solution
▶ We can group the variables together based on their pairwise correlations,
e.g. via hierarchical clustering

▶ We can then compute p-values for each group.
▶ How do we we generate group-p-values?
▶ In de-sparsified lasso and ridge we adjust the individual p-values by the
number of tests performed (𝑝) and then use the minimum adjusted p-value
within the group for group decisions.
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Correlated variables

Meinhausen (2013) proposes a multi-split testing of groups as follows.

▶ We use multi-sample splitting to construct confidence intervals for the
l1-norm of a group.

▶ If the lower bound of this confidence interval is larger than 0, we reject the
null-hypothesis for this group.

▶ hdi() package illustrates the group tests with a hierarchical tree (see
paper)
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Take-home message

▶ When 𝑛 < 𝑝 we use regularized methods for feature selection
▶ We have to be careful about how we obtain p-values for selected features -
we can’t reuse the same data used for selection to compute p-values

▶ Multi-sample splitting is very intuitive and quite general - drawback that you
sacrifice some data in the splitting procedure

▶ de-sparsified or de-biased methods have been developed for lasso
selection and do not require data splits
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