Lecture 16: Large-scale methods for data analysis

Rebecka Jörnsten, Mathematical Sciences

MSA220/MVE441 Statistical Learning for Big Data

16st May 2022

matrices

► Low-rank approximations of matrices become very important to make large-scale data manageable

$$\mathbf{X}_{n \times p} \approx \mathbf{A}_{n \times q} \cdot \mathbf{B}_{q \times p}$$

► Low-rank approximations of matrices become very important to make large-scale data manageable

$$\mathbf{X}_{n \times p} \approx \mathbf{A}_{n \times q} \cdot \mathbf{B}_{q \times p}$$

► Algorithms to determine **A** and **B** discussed in the lecture: **Low-rank SVD** and **low-rank NMF**

► Low-rank approximations of matrices become very important to make large-scale data manageable

$$\mathbf{X}_{n \times p} \approx \mathbf{A}_{n \times q} \cdot \mathbf{B}_{q \times p}$$

- ► Algorithms to determine **A** and **B** discussed in the lecture: **Low-rank SVD** and **low-rank NMF**
- ▶ Works best if original data in **X** is approximately of rank $q \ll \min(n, p)$

► Low-rank approximations of matrices become very important to make large-scale data manageable

$$\mathbf{X}_{n \times p} \approx \mathbf{A}_{n \times q} \cdot \mathbf{B}_{q \times p}$$

- ► Algorithms to determine **A** and **B** discussed in the lecture: **Low-rank SVD** and **low-rank NMF**
- ▶ Works best if original data in **X** is approximately of rank $q \ll \min(n, p)$
- ➤ X could be a really large data matrix, but it could also come from an intermediate calculation, e.g. a Gram matrix or a distance matrix

► Low-rank approximations of matrices become very important to make large-scale data manageable

$$\mathbf{X}_{n \times p} \approx \mathbf{A}_{n \times q} \cdot \mathbf{B}_{q \times p}$$

- ► Algorithms to determine **A** and **B** discussed in the lecture: **Low-rank SVD** and **low-rank NMF**
- ▶ Works best if original data in **X** is approximately of rank $q \ll \min(n, p)$
- ➤ X could be a really large data matrix, but it could also come from an intermediate calculation, e.g. a Gram matrix or a distance matrix
- NMF and SVD are computationally efficient if either n or p are reasonably small to medium sized (computational complexity $O(n^2p + p^3)$ for SVD)

What if both n and p are large?

Assume for now that **X** actually has rank $q \ll \min(n, p)$. Then we could find an exact factorisation **X** = **AB**, e.g. using the SVD truncated after q terms.

Assume for now that **X** actually has rank $q \ll \min(n, p)$. Then we could find an exact factorisation **X** = **AB**, e.g. using the SVD truncated after q terms.

SVD on the full matrix is too expensive, but can we **cheaply reduce** at least one of the dimensions?

Assume for now that **X** actually has rank $q \ll \min(n, p)$. Then we could find an exact factorisation **X** = **AB**, e.g. using the SVD truncated after q terms.

SVD on the full matrix is too expensive, but can we **cheaply reduce** at least one of the dimensions?

Since X is assumed to have rank q, its image

$$\operatorname{Im}(\mathbf{X}) = \{ \mathbf{y} : \mathbf{y} = \mathbf{X}\mathbf{w} \text{ for some } \mathbf{w} \in \mathbb{R}^p \}$$

is only q dimensional. Projecting the columns of \mathbf{X} at least approximately to a q-dimensional space leaves the overall structure of the data intact.

Assume for now that **X** actually has rank $q \ll \min(n, p)$. Then we could find an exact factorisation **X** = **AB**, e.g. using the SVD truncated after q terms.

SVD on the full matrix is too expensive, but can we **cheaply reduce** at least one of the dimensions?

Since X is assumed to have rank q, its image

$$\operatorname{Im}(\mathbf{X}) = \{ \mathbf{y} : \mathbf{y} = \mathbf{X}\mathbf{w} \text{ for some } \mathbf{w} \in \mathbb{R}^p \}$$

is only q dimensional. Projecting the columns of \mathbf{X} at least approximately to a q-dimensional space leaves the overall structure of the data intact.

But how do we choose the projection?

Recall: To project the data onto the first principal component direction ${\bf r}_1$ it was enough to compute

$$\mathbf{p}_1 = \mathbf{X}\mathbf{r}_1.$$

Recall: To project the data onto the first principal component direction \mathbf{r}_1 it was enough to compute

$$\mathbf{p}_1 = \mathbf{X}\mathbf{r}_1.$$

Let ω_i for $i=1,\ldots,q$ be random vectors (e.g. with standard normal entries). Then, the vectors

$$\mathbf{y}_i = \mathbf{X}\boldsymbol{\omega}_i$$

are called **random projections** and can be shown to be **linearly independent with high probability**.

Recall: To project the data onto the first principal component direction \mathbf{r}_1 it was enough to compute

$$\mathbf{p}_1 = \mathbf{X}\mathbf{r}_1.$$

Let ω_i for $i=1,\ldots,q$ be random vectors (e.g. with standard normal entries). Then, the vectors

$$\mathbf{y}_i = \mathbf{X}\boldsymbol{\omega}_i$$

are called **random projections** and can be shown to be **linearly independent with high probability**.

This can be seen as a **cheap** and **approximate** way of exploring the range of **X**.

Recall: To project the data onto the first principal component direction \mathbf{r}_1 it was enough to compute

$$\mathbf{p}_1 = \mathbf{X}\mathbf{r}_1.$$

Let ω_i for $i=1,\ldots,q$ be random vectors (e.g. with standard normal entries). Then, the vectors

$$\mathbf{y}_i = \mathbf{X}\boldsymbol{\omega}_i$$

are called **random projections** and can be shown to be **linearly independent with high probability**.

This can be seen as a **cheap** and **approximate** way of exploring the range of **X**.

Why is this a justifable strategy?

Johnson-Lindenstrauss lemma (I)

Johnson-Lindenstrauss lemma (1984)

Given $0 < \varepsilon < 1$ and an integer n let

$$q \ge \frac{4\log(n)}{\varepsilon^2/2 - \varepsilon^3/3}$$

be an integer. For every set of points $\mathbf{x}_1, \dots, \mathbf{x}_n$ in \mathbb{R}^p , there is a mapping $f: \mathbb{R}^p \to \mathbb{R}^q$ such that for any $\mathbf{x}_i, \mathbf{x}_j$

$$(1 - \varepsilon) \|\mathbf{x}_i - \mathbf{x}_j\|_2^2 \le \|f(\mathbf{x}_i) - f(\mathbf{x}_j)\|_2^2 \le (1 + \varepsilon) \|\mathbf{x}_i - \mathbf{x}_j\|_2^2$$

Note: The result is **independent of** p.

Johnson-Lindenstrauss lemma (II)

For small ε the exact result is mainly of interest for $p \gg n$.

n	ε	q_{min}
3	0.1	942
50	0.05	12951
	0.1	3354
	0.5	188
100	0.1	3948
1000	0.1	5921

Note: In practice, the dimension of the data is reduced to any useful dimension. However, be aware that the theoretical guarantees potentially are lost.

Random projection

There are multiple possibilities how the map f in the **Johnson-Lindenstrauss** theorem can be found.

Let $\mathbf{X} \in \mathbb{R}^{n \times p}$ be a data matrix and q the target dimension.

► Gaussian random projection: Set

$$\Omega_{ij} \sim N\left(0, \frac{1}{q}\right)$$
 for $i = 1, \dots, p, j = 1, \dots, q$

Sparse random projection: For a given s > 0 set

$$\Omega_{ij} = \sqrt{\frac{s}{q}} \left\{ egin{array}{ll} -1 & & 1/(2s) \\ 0 & \text{with probability} & 1-1/s \\ 1 & & 1/(2s) \end{array} \right.$$

for
$$i=1,\ldots,p,\ j=1,\ldots,q$$
 where often $s=3$ or $s=\sqrt{p}$

then $\mathbf{Y} = \mathbf{X}\mathbf{\Omega} \in \mathbb{R}^{n \times q}$ is a **random projection** for \mathbf{X} .

Random projections and the Johnson-Lindenstrauss lemma

Let $\mathbf{X} \in \mathbb{R}^{n \times p}$ where $X^{(i,j)} \sim N(0,1/\sqrt{p})$, n=3, $\varepsilon=0.1$ and Gaussian random projections onto the minimum JL dimension q=942 were performed.

p	$(1-\varepsilon)\ \mathbf{x}_i-\mathbf{x}_j\ $	$\ \mathbf{\Omega}\mathbf{x}_i - \mathbf{\Omega}\mathbf{x}_j\ $	$(1+\varepsilon)\ \mathbf{x}_i-\mathbf{x}_j\ $
3	0.78	0.88	0.95
	1.12	1.22	1.37
	0.67	0.72	0.82
1000	1.26	1.40	1.54
	1.23	1.37	1.50
	1.25	1.35	1.52
15000	1.26	1.40	1.54
	1.27	1.42	1.56
	1.28	1.44	1.56

Let $q < \min(n, p)$, $\Omega \in \mathbb{R}^{p \times q}$ a random projection matrix and set $Y = X\Omega$.

Let $q < \min(n, p)$, $\Omega \in \mathbb{R}^{p \times q}$ a random projection matrix and set $Y = X\Omega$.

A q-dimensional subspace of the range of ${\bf X}$ can be found by orthonormalising ${\bf Y}$ using e.g. the QR-decomposition (computational complexity $O(nq^2-q^3/3)$)

$$Y = QR$$

where $\mathbf{Q} \in \mathbb{R}^{n \times q}$ has orthogonal columns and $\mathbf{R} \in \mathbb{R}^{q \times q}$ is upper-triangular.

Let $q < \min(n, p)$, $\Omega \in \mathbb{R}^{p \times q}$ a random projection matrix and set $Y = X\Omega$.

A q-dimensional subspace of the range of ${\bf X}$ can be found by orthonormalising ${\bf Y}$ using e.g. the QR-decomposition (computational complexity $O(nq^2-q^3/3)$)

$$Y = QR$$

where $\mathbf{Q} \in \mathbb{R}^{n \times q}$ has orthogonal columns and $\mathbf{R} \in \mathbb{R}^{q \times q}$ is upper-triangular.

Assuming ${\bf X}$ is approximately of rank q it can be shown that

$$\mathbf{X} \approx \mathbf{Q} \mathbf{Q}^\mathsf{T} \mathbf{X}$$

where $\mathbf{Q}\mathbf{Q}^{\mathsf{T}} \in \mathbb{R}^{n \times n}$ is a random orthogonal projection matrix to a q-dimensional subspace of the range of \mathbf{X} .

Randomized low-rank SVD

Original goal: Apply SVD in cases where both n and p are large.

Idea: Determine an approximate low-dimensional basis for the range of \mathbf{X} and perform the matrix-factorisation in the low-dimensional space.

- ▶ Using a random projection $X \approx QQ^TX = QT$
- ▶ Note that $\mathbf{T} \in \mathbb{R}^{q \times p}$ and \mathbf{q} is small
- ► Calculate the SVD of $\mathbf{T} = \mathbf{U}_0 \cdot \mathbf{D} \cdot \mathbf{V}^{\mathsf{T}}$ $q \times q \quad q \times q \quad q \times p$
- ▶ Set $\mathbf{U} = \mathbf{Q}\mathbf{U}_0 \in \mathbb{R}^{n \times \mathbf{q}}$, then $\mathbf{X} \approx \mathbf{U}\mathbf{D}\mathbf{V}^{\mathsf{T}}$

The SVD of X can therefore be found by random projection into a q-dimensional subspace of the range of X, performing SVD in the lower-dimensional subspace and subsequent reconstruction of the vectors into the original space.

Notes on randomized low-rank SVD

- ▶ In practice the matrix **X** will most-likely not have rank *q* but rather a continuous spectrum of eigenvalues that go towards zero
- ► Possible solutions:
 - **Oversampling:** Create a random projection matrix of size $p \times (q + k)$ where k is a small integer. Setting k = 5 or 10 is often enough in practice
 - **Power iterations:** Instead of $\mathbf{Y} = \mathbf{X}\mathbf{\Omega}$ consider $\mathbf{Y} = (\mathbf{X}\mathbf{X}^{\mathsf{T}})^{l}\mathbf{X}\mathbf{\Omega}$ for some integer l. This ensures that small eigenvalues of \mathbf{X} are forced to zero and only large eigenvalues are dominant.

Notes on randomized low-rank SVD

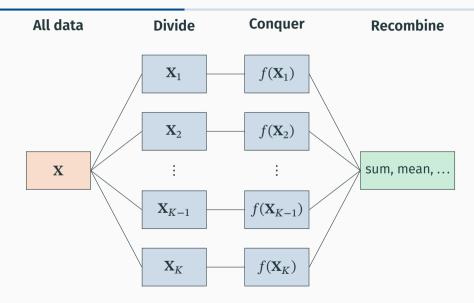
- ► In practice the matrix **X** will most-likely not have rank *q* but rather a continuous spectrum of eigenvalues that go towards zero
- ► Possible solutions:
 - ▶ Oversampling: Create a random projection matrix of size $p \times (q + k)$ where k is a small integer. Setting k = 5 or 10 is often enough in practice
 - **Power iterations:** Instead of $\mathbf{Y} = \mathbf{X}\mathbf{\Omega}$ consider $\mathbf{Y} = (\mathbf{X}\mathbf{X}^{\mathsf{T}})^{l}\mathbf{X}\mathbf{\Omega}$ for some integer l. This ensures that small eigenvalues of \mathbf{X} are forced to zero and only large eigenvalues are dominant.
- ► The idea of randomized computation can be applied to other algorithms as well, e.g. PCA, eigenvalues, ...

Notes on randomized low-rank SVD

- ► In practice the matrix **X** will most-likely not have rank *q* but rather a continuous spectrum of eigenvalues that go towards zero
- ► Possible solutions:
 - **Oversampling:** Create a random projection matrix of size $p \times (q + k)$ where k is a small integer. Setting k = 5 or 10 is often enough in practice
 - **Power iterations:** Instead of $\mathbf{Y} = \mathbf{X}\mathbf{\Omega}$ consider $\mathbf{Y} = (\mathbf{X}\mathbf{X}^{\mathsf{T}})^{l}\mathbf{X}\mathbf{\Omega}$ for some integer l. This ensures that small eigenvalues of \mathbf{X} are forced to zero and only large eigenvalues are dominant.
- ► The idea of randomized computation can be applied to other algorithms as well, e.g. PCA, eigenvalues, ...
- ► Implemented in R package rsvd or Python's sklearn (as randomized_svd)

Divide and conquer

Divide and conquer



In linear regression, we want to find the regression coefficients $\hat{\beta}$, which can be calculated as

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y}$$

In linear regression, we want to find the regression coefficients $\widehat{m{\beta}}$, which can be calculated as

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y}$$

Divide the data into K parts $\mathbf{X}_1, \dots, \mathbf{X}_K$, such that \mathbf{X} is the row concatenation of its parts.

In linear regression, we want to find the regression coefficients $\widehat{\beta}$, which can be calculated as

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y}$$

Divide the data into K parts $\mathbf{X}_1, \dots, \mathbf{X}_K$, such that \mathbf{X} is the row concatenation of its parts. Then estimate (**conquer**)

$$\widehat{\boldsymbol{\beta}}_k = (\mathbf{X}_k^{\mathsf{T}} \mathbf{X}_k)^{-1} \mathbf{X}_k^{\mathsf{T}} \mathbf{y}_k$$

In linear regression, we want to find the regression coefficients $\widehat{\beta}$, which can be calculated as

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y}$$

Divide the data into K parts $\mathbf{X}_1, \dots, \mathbf{X}_K$, such that \mathbf{X} is the row concatenation of its parts. Then estimate (**conquer**)

$$\widehat{\boldsymbol{\beta}}_k = (\mathbf{X}_k^{\mathsf{T}} \mathbf{X}_k)^{-1} \mathbf{X}_k^{\mathsf{T}} \mathbf{y}_k$$

To **recombine** the parts, consider that

$$\widehat{\boldsymbol{\beta}} = \left(\sum_{k} \mathbf{X}_{k}^{\mathsf{T}} \mathbf{X}_{k}\right)^{-1} \left(\sum_{k} \mathbf{X}_{k}^{\mathsf{T}} \mathbf{X}_{k} \widehat{\boldsymbol{\beta}}_{k}\right)$$

This means that $\hat{\beta}_k$ and $\mathbf{X}_k^{\mathsf{T}}\mathbf{X}_k \in \mathbb{R}^{p \times p}$ have to be returned from each batch.

In linear regression, we want to find the regression coefficients $\widehat{m{eta}}$, which can be calculated as

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

Divide the data into K parts $\mathbf{X}_1, \dots, \mathbf{X}_K$, such that \mathbf{X} is the row concatenation of its parts. Then estimate (conquer)

$$\widehat{\boldsymbol{\beta}}_k = (\mathbf{X}_k^{\mathsf{T}} \mathbf{X}_k)^{-1} \mathbf{X}_k^{\mathsf{T}} \mathbf{y}_k$$

To recombine the parts, consider that

$$\widehat{\boldsymbol{\beta}} = \left(\sum_{k} \mathbf{X}_{k}^{\mathsf{T}} \mathbf{X}_{k}\right)^{-1} \left(\sum_{k} \mathbf{X}_{k}^{\mathsf{T}} \mathbf{X}_{k} \widehat{\boldsymbol{\beta}}_{k}\right)$$

This means that $\widehat{\beta}_k$ and $\mathbf{X}_k^{\mathsf{T}}\mathbf{X}_k \in \mathbb{R}^{p \times p}$ have to be returned from each batch.

Note: Since $Cov(\widehat{\boldsymbol{\beta}}_k) = \sigma^2(\mathbf{X}_k^\mathsf{T}\mathbf{X}_k)^{-1}$ the recombination is a weighted average of the batch estimates. Here, σ^2 is the variance of the residual error.

Example: Divide and Conquer for general estimation problems

In a **general estimation problem** (regression or MLE) there is often a need to solve the **score equation**

$$\sum_{l=1}^{n} \Psi(y_l; \mathbf{x}_l, \theta) = \mathbf{0}$$

where y_l is a response, \mathbf{x}_l a vector of predictors, and $\boldsymbol{\theta}$ a vector of parameters.

Examples:

- Normal equations in linear regression $\sum_{l=1}^{n} (y_l \mathbf{x}_l^{\mathsf{T}} \boldsymbol{\beta}) \mathbf{x}_l = \mathbf{0}$
- ► Maximum likelihood estimation $\sum_{l=1}^{n} \frac{\partial \log f(y_l; \mathbf{x}_l, \theta)}{\partial \theta} = \mathbf{0}$

Advanced example (II)

To apply Divide and Conquer to this problem, divide the data into K subsets S_k and solve the subproblems

$$\mathbf{M}_k(\theta) = \sum_{l \in S_k} \Psi(y_l; \mathbf{x}_l, \theta) = \mathbf{0}$$

Per batch, the estimate is $\hat{\theta}_k$.

Compute

$$\mathbf{A}_k(\theta) := -\frac{\mathrm{d}\mathbf{M}_k(\theta)}{\mathrm{d}\theta} = -\sum_{l \in S_k} \frac{\partial \mathbf{\Psi}(y_l; \mathbf{x}_l, \theta)}{\partial \theta}$$

and use the 1st order Taylor expansion of \mathbf{M}_k in $\hat{ heta}_k$ to get

$$\mathbf{M}_k(\boldsymbol{\theta}) \approx \mathbf{A}_k(\hat{\boldsymbol{\theta}}_k) \left(\boldsymbol{\theta} - \hat{\boldsymbol{\theta}}_k\right)$$

Advanced example (III)

Returning to the full problem of solving the score equation

$$\mathbf{0} = \sum_{l=1}^{n} \mathbf{\Psi}(y_l; \mathbf{x}_l, \boldsymbol{\theta}) = \sum_{k=1}^{K} \mathbf{M}_k(\boldsymbol{\theta}) \approx \sum_{k=1}^{K} \mathbf{A}_k(\hat{\boldsymbol{\theta}}_k) \left(\boldsymbol{\theta} - \hat{\boldsymbol{\theta}}_k\right)$$

The solution to the approximation is then given by

$$\hat{\theta} = \left(\sum_{k=1}^{K} \mathbf{A}_k(\hat{\theta}_k)\right)^{-1} \left(\sum_{k=1}^{K} \mathbf{A}_k(\hat{\theta}_k)\hat{\theta}_k\right)$$

Note: For this approximation the per-batch covariance matrices $\mathbf{X}_k^{\mathsf{T}} \mathbf{X}_k$ are replaced by the matrices $\mathbf{A}_k(\hat{\theta}_k)$.

In case of the MLE example

$$\mathbf{A}_{k}(\hat{\theta}_{k}) = -\sum_{l \in S_{k}} \frac{\partial^{2} \log f(y_{l}; \mathbf{x}_{l}, \theta)}{\partial \theta^{2}}$$

which is the observed Fisher information.

Sampling methods for big-n

Recap: Random Forests

Computational procedure:

- 1. Given training data $\mathbf{X} \in \mathbb{R}^{n \times p}$, do for $b = 1, \dots, B$
 - 1.1 Draw a **bootstrap sample of size** n from training data (with replacement)
 - 1.2 Grow a tree T_b until nodes are pure or reach minimal node size n_{\min}
 - 1.2.1 Randomly select m variables out of p variables
 - 1.2.2 Find best splitting variable among these m
 - 1.2.3 Split the node
- 2. For a new x predict

Regression:
$$\widehat{f}_{rf}(\mathbf{x}) = \frac{1}{B} \sum_{b=1}^{B} T_b(\mathbf{x})$$

Classification: Majority vote at x across trees

For big-n: In principal all trees can be grown in parallel. However, this requires B bootstrap samples of size n which can be infeasibly large in a big-n scenario.

Big-n and the bootstrap

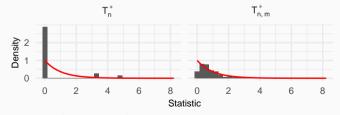
The *m*-out-of-*n* bootstrap

Instead of drawing a bootstrap sample of n samples with replacement (as in the standard bootstrap), a smaller sample of size m < n is drawn with replacement.

- ▶ **Note:** If m < n samples are drawn without replacement, then this is called **subsampling**.
- ightharpoonup Surprisingly, the m-out-of-n bootstrap (moon bootstrap) works even in situations where the standard bootstrap fails
- ▶ For the theoretical guarantees to hold, it is required that when $m, n \to \infty$ then $m/n \to 0$
- $m = 2\sqrt{n}$ is a possible choice

Example: m-out-of-n bootstrap

- ▶ Let $x_1, ..., x_n \sim \text{Uniform}(0, \theta)$ and $\hat{\theta}_n = \max_i x_i$.
- ► Consider the statistics
 - $ightharpoonup T_n = n(\theta \hat{\theta}_n)$, the statistic to be approximated
 - $ightharpoonup T_n^* = n(\hat{\theta}_n \hat{\theta}_n^*)$ where $\hat{\theta}_n^* = \max_i x_i^*$ for a standard bootstrap sample x_1^*, \dots, x_n^*
 - ▶ $T_{n,m}^* = m(\hat{\theta}_n \hat{\theta}_{n,m}^*)$ where $\hat{\theta}_{n,m}^* = \max_i x_i^*$ for a standard bootstrap sample x_1^*, \dots, x_m^*
- ▶ Simulated data with n=1000, $m=2\sqrt{1000}\approx 64$, B=10000, and $\theta=1$



The red line is the density of T_n given the true θ .

Bag of little bootstraps (BLB)

A two-stage bootstrapping technique

- 1. Draw K subsets of size m < n from original data (with or without replacement)
- 2. For each subset
 - 2.1 Draw B set of weights $(n_1, ..., n_m) \sim \text{Multinomial}(n, 1/m)$ (oversampling)
 - 2.2 Estimate the statistic of interest from the B weighted samples
 - 2.3 Combine values of the statistic for each subset, e.g. by averaging
- 3. Recombine statistics from each subset, e.g. by averaging

This is known as the **bag of little bootstraps (BLB)** (Kleiner et al. 2014)

Notes on the BLB

- ▶ One of the computational burdens of the standard bootstrap is having to create resamples of size *n*
- ► The BLB circumvents that by resampling from a limited amount of samples and thereby being able to use weights instead of a full sample
- ► Typically $m \ge n^{\gamma}$ for $\gamma \in [0.5, 1]$ works well (e.g. for $\gamma = 0.6$: when $n = 10^6$ choose m = 3982)
- ► The BLB is easier to parallelise, since less data has to be propagated to each batch.
- ► Fits well within the **Divide and Conquer** framework

Random forests for big-n

Instead of the standard RF with normal bootstrapping, multiple strategies can be taken

- ▶ Subsampling (once): Take a subsample of size *m* and grow RF from there. Very simple to implement, but difficult to ensure that the subsample is representative.
- ► *m*-out-of-*n* sampling: Instead of standard bootstrapping, draw repeatedly *m* samples and grow a tree on each subsample. Recombine trees in the usual fashion.
- ▶ **BLB sampling:** Grow a forest on each subset by repeatedly oversampling to *n* samples.
- ▶ **Divide and Conquer:** Split original data in *K* parts and grow a random forest on each.

Subsampling for big-n

Leverage

Problem: Representativeness

How can we ensure that a subsample is still representative?

We need additional information about the samples. Consider the special case of linear regression and $n \gg p$.

Recall: For least squares predictions it holds that

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y} = \mathbf{H}\mathbf{y}$$

with the **hat-matrix** $\mathbf{H} = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}$.

Specifically $\hat{\mathbf{y}}^{(i)} = \sum_{j=1}^{n} \mathbf{H}^{(i,j)} \mathbf{y}^{(j)}$, which means that $\mathbf{H}^{(i,i)}$ influences its own fitted values.

Element $\mathbf{H}^{(i,i)}$ is called the **leverage** of the *i*-th observation. Leverage captures if the observation *i* is close or far from the centre of the data in feature space.

22/27

Leveraging (I)

Goal: Subsample the data, but make the **more influential** data points, those with **high leverage**, more likely to be sampled.

Computational approach

▶ Weight sample *i* by

$$\pi_i = \frac{\mathbf{H}^{(i,i)}}{\sum_{j=1}^n \mathbf{H}^{(j,j)}}$$

- ▶ Draw a weighted subsample of size $m \ll n$
- Use the subsample to solve the regression problem

This procedure is called **Leveraging** (Ma and Sun, 2013).

Leveraging (II)

Problem: How to perform regression?

- Ordinary least squares: Biased with regard to the full sample estimate, due to subsampling, but unbiased with respect to the true coefficients and generally small variance
- 2. Weighted least squares: Use the inverse sampling weights $1/\pi_i$ as weights during the regression. Unstable for very small weights, i.e. high variance. Weights can be stabilized by using

$$\tau_i = \alpha \pi_i + (1 - \alpha) \frac{1}{n}$$

instead of π_i for α recommended at 0.8–0.9.

Leveraging (III)

Problem: How should the diagonal entries of the hat matrix be determined without having to solve the original regression problem?

Let $X = UDV^T$ be the SVD of the data matrix, then

$$\mathbf{H} = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}} = \mathbf{U}\mathbf{U}^{\mathsf{T}}$$

and therefore, with \mathbf{u}_i being the *i*-th row of \mathbf{U} ,

$$\mathbf{H}^{(i,i)} = \|\mathbf{u}_i\|_2^2$$

Using e.g. randomized SVD or other fast computational approaches, this is feasible for very large data.

Notes on leveraging

- ▶ **Pro:** Fast and simple approach to make subsampling more focused on the important samples
- ▶ **Pro:** Smaller datasets are easier to use computationally, but also visualisations get feasible again
- ► Caveat: Careful with outliers! These often have large leverage, but are misrepresentative of the actual shape of the data.

Take-home message

- Large-scale data brings its own challenges, many of which are computational
- ▶ Randomization can help to speed up classical algorithms in practice
- ▶ Divide and Conquer can help in $n \gg p$ and big-n scenarios; can be non-trivial to determine how to recombine
- Subsampling/clever bootstrapping can reduce the necessary computational load tremendously