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Overview

Topics
▶ Supervised Learning/Classification
▶ Unsupervised Learning/Clustering
▶ Dimension Reduction/Feature selection
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Overview

Common to all Topics
▶ Case-by-case!
▶ No universal methods - it all depends on the data at hand
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Classification

Classification:
Goals and setup:

▶ Build a predictive model/algorithm to discriminate between known groups
▶ Need a data set with know group labels on which we can construct/learn
our model.

Combine with dimension reduction/feature selection:
▶ increased interpretability - which features discriminate between the groups?
▶ improved performance - don’t train your model on features that are
unrelated to the groups.

▶ some methods can’t be applied in a high-dimensional setting so you need to
reduce the number of features first.
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Clustering

Clustering:
Goals and setup:

▶ Finding groups in data
▶ Summarize data this is otherwise difficult to ”get a feeling for”.
▶ Data exploration

This is a more difficult task than classification in the sense that the goal is
subjective. What is a group? A set of observations separated from the rest? A set
of observations close together? What is meant by ”close”?
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Clustering

Clustering:
Combine with dimension reduction/feature selection:

▶ Which features are ”responsible” for group separation?
▶ Some methods can’t be applied in a high-dimensional setting so you need
to reduce the number of features first. In a very high-dimensional setting
”closeness” looses meaning (curse of dimensionality).
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Classification - selection of tuning parameters

Classification methods can be tuned via method-specific parameters.

▶ kNN - choose the size neighborhood, 𝑘
▶ CART - choose number of rectangular regions or, equivalently, the number of
data splits in the classification tree.

▶ Number of features
▶ LDA vs QDA vs FDA - complexity

How do we choose the best value for the tuning parameter? Cross-validation!!!
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Prediction models

▶ 𝑦 is the output, an 𝑛 × 1 vector
▶ 𝑋 is the input (explanatories, independent variables....), an 𝑛 × 𝑝 matrix
▶ We want to build a predictive model or rule for 𝑦 using 𝑋

What is a good model?
▶ Need to define a loss function to define ”good”
▶ Usually squared error loss if 𝑦 is continuous
▶ Usually 0-1 error loss if 𝑦 is categorical

7/115



Bias-Variance Trade-off

How do we choose between flexible/local or rigid/global models? Most methods
allow us to choose from a spectrum of more or less local rules. Depending on the
tuning parameter value, a classification rule can be thought of as local or global.

local global
use subset of data use all data

flexible more rigid
allow for complex boundaries assume an underlying model

or models for the data distribution
example: kNN with small k example: discriminant analysis

(multivariate normal data distribution)
example: Local average regression example: linear regression model
need a lot of data to train on requires less data in general
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Nearest centroid classifier

A simple rule that is related to discriminant analysis is the nearest centroid
classifier. We compute

𝜇̂𝑐 =
1
𝑁𝑐

∑
𝑦𝑖=𝑐

𝑥𝑖

where 𝑁𝑐 is the number of observations in class 𝑐. That is, we compute the mean,
or centroid, of each class.
The rule is

̂𝑐(𝑥) = arg min
𝑐
𝑑(𝑥, 𝜇̂𝑐)

where 𝑑(., .) is the distance between observation location 𝑥 and the centroid 𝜇.
This is usually the euclidean distance

𝑑(𝑥, 𝜇̂𝑐) =∣∣ 𝑥 − 𝜇̂𝑐 ∣∣2= (𝑥 − 𝜇̂𝑐)′(𝑥 − 𝜇̂𝑐).
The rule is thus to allocate each observation to the class with the closest
centroid.
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Nearest centroid classifier

Problems?
Nearest centroids ignores the variability of a class around its center and that this
variability may be different for different classes and for different features.
One needs to consider both spread/scale of a distribution (the amount of spread
around a centroid) and the shape of the distribution (the correlation structure
between the features) to form a good classification rule.
This is what discriminant analysis does.
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Discriminant analysis

General setup is the following;

▶ prior 𝜋𝑐 = 𝑝(𝑦 = 𝑐)
▶ data distribution 𝑝(𝑥 ∣ 𝑦 = 𝑐) ∼ 𝑁(𝜇𝑐, Σ𝑐) where 𝜇𝑐 is a p-dimensional vector
and Σ𝑐 is a p-by-p dimensional covariance matrix.
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Discriminant analysis

The multivariate normal assumption leads to the following simple, intuitive
parameter estimates:

▶ 𝜋̂𝑐 = 𝑁𝑐/𝑁, where 𝑁𝑐 = ∑𝑖 1{𝑦𝑖 = 𝑐} is the number of observations in class 𝑐.
▶ 𝜇̂𝑐 =

1
𝑁𝑐

∑𝑦𝑖=𝑐
𝑥𝑖

▶ Σ̂𝑐 = ∑𝑦𝑖=𝑐
(𝑥𝑖 − 𝜇̂𝑐)(𝑥𝑖 − 𝜇̂𝑐)′/(𝑁𝑐 − 1)

This is quite a large number of parameters...: (𝐶 − 1) for 𝜋̂ (not 𝐶 since the 𝜋s add
to 1), 𝑝 × 𝐶 mean parameters, and 𝑝(𝑝 + 1) × 𝐶/2 covariance parameters (since
they’re symmetric).
As the dimensionality of the problem grows (𝑝) the number of parameters grows
quickly, especially due to the covariance matrices.
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Cautionary remarks

One take-home message is that a key component in LDA is the inverse of Σ, the within-class
covariance matrix. This is also a main ingredient in regression type methods!
Problem?

▶ Σ may be very difficult to invert, numerically unstable, if the sample size 𝑛 is not much bigger
than the data dimension 𝑝.

▶ If some of the 𝑥-features are highly correlated, then the matrix Σ is also difficult to invert
since it is near singular.

▶ Special case when 𝑛 < 𝑝 or some 𝑥-s are perfectly correlated, the inverse of Σ does not
exist. This is less of a worry since most programs will warn you about this. When we are near
singular, that’s when you need to pay attention. So correlated 𝑥s, high-dimensional data and
small sample sizes are all situations when LDA and regression can fail due to the poor
performance of the inverse of Σ.
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Recap on regression

We want to fit a regression model to our data using least squares.

𝑦 = 𝑋𝛽 + 𝜖

▶ 𝑦 is our 𝑛 × 1 vector of outcome data
▶ 𝑋 is our 𝑛 × 𝑝 design matrix
▶ 𝜖 is our 𝑛 × 1 vector with additive errors.
▶ For convenience, assume centered and standardized data.

Is this OK?
Reality check: 5 basic assumptions, scatter plots,.... TRANSFORMATIONS! ID
EXTREME OUTLIERS!
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Regularized regression

When 𝑝 is large or covariates in 𝑋 are correlated, it is a tricky business to fit
regression via OLS.
Why?

▶ min𝛽 ||𝑦 − 𝑋𝛽||2 has closed form solution
▶ (𝑋 ′𝑋)−1𝑋 ′𝑦
▶ IF the inverse of 𝑋 ′𝑋 exists.
▶ Not true if 𝑝 > 𝑛. Inverse unstable if some covariates extremely correlated.
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Regularized regression

What do we do?

▶ Reduce the number of covariates - prefiltering
▶ PCA of 𝑋 and use only leading components.
▶ Regularized regression
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Ridge regression

We want to minimize
||𝑦 − 𝑋𝛽||2

subject to ||𝛽||22 ≤ 𝜏
I.e., try to minimize least squares but don’t let the average 𝛽 get too big...

▶ Lagrangian formulation: min𝛽
1
2
||𝑦 − 𝑋𝛽||2 + 𝜆||𝛽||22

▶ Take derivatives with respect to 𝛽
▶ −𝑋 ′(𝑦 − 𝑋𝛽) + 𝜆𝛽 = 0
▶ Solution 𝛽𝑅 = (𝑋 ′𝑋 + 𝜆𝐼)−1𝑋 ′𝑦
▶ Choose 𝜆 to make sure condition 𝜏 holds or more commonly, choose 𝜆 via
Cross-validation
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Lq-penalized regression

We can adress the instability of high-dimensional modeling using different kinds of penalties.

▶ 𝐿0: min𝛽 ||𝑦 − 𝑋𝛽||2 + 𝜆∑𝑝
𝑗=1 1{𝛽𝑗 ≠ 0}

▶ 𝐿𝑞: min𝛽 ||𝑦 − 𝑋𝛽||2 + 𝜆∑𝑝
𝑗=1 |𝛽𝑗|

𝑞

▶ 𝐿1: min𝛽 ||𝑦 − 𝑋𝛽||2 + 𝜆∑𝑝
𝑗=1 |𝛽𝑗|

▶ 𝐿1: min𝛽 ||𝑦 − 𝑋𝛽||2 + 𝜆∑𝑝
𝑗=1 𝛽

2
𝑗

Fraction 𝑞 < 1, 𝑞 = 1 and 𝑞 = 2
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Because the 𝐿1 penalty has ”singularities” (points) this makes the selection of solutions at those
points more likely.
We will see this by solving the problem mathematically too, but think of this as the penalty region
extremes being the most likely to lead to a solution that is optimal for the loss (model fit).
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L1-penalized regression

Estimator Formula

Best subset (size M) β̂j · I(|β̂j | ≥ |β̂(M)|)
Ridge β̂j/(1 + λ)

Lasso sign(β̂j)(|β̂j | − λ)+

(0,0) (0,0) (0,0)

|β̂(M)|

λ

Best Subset Ridge Lasso

This figure from the book illustrates the estimation of 𝐿0, 𝐿1 and 𝐿2 in relation to the LS estimate.
Notice the constant bias for 𝐿1 and growing bias for 𝐿2.
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L1-penalized regression

So now you’ve seen that the L1-penalty induces model selection or sparsity. The
reason is the non-smooth shape of the penalty region. Here follows some
illustration from Julien Mairal’s excellent slides.

21/115



Penalized regression

Why does the �1-norm induce sparsity?
Regularizing with the �1-norm

�1-ball

‖α‖1 ≤ μ

α[2]

α[1]

The projection onto a convex set is “biased” towards singularities.

Julien Mairal Complexity Analysis of the Lasso Regularization Path 25/67
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Penalized regression

Why does the �1-norm induce sparsity?
Regularizing with the �2-norm

α[2]

α[1]
�2-ball

‖α‖2 ≤ μ

The �2-norm is isotropic.

Julien Mairal Complexity Analysis of the Lasso Regularization Path 26/67
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Penalized regression

Non-convex sparsity-inducing penalties

α[2]

α[1]
�q-ball

‖α‖q ≤ μ with q < 1

Julien Mairal Complexity Analysis of the Lasso Regularization Path 35/67

24/115



Penalized regression

Why does the �1-norm induce sparsity?
Regularizing with the �∞-norm

α[2]

α[1]
�∞-ball

‖α‖∞ ≤ μ

The �∞-norm encourages |α[1]| = |α[2]|.

Julien Mairal Complexity Analysis of the Lasso Regularization Path 28/67
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Penalized regression

The point is that we can be a bit more adventurous about constructing penalty
regions in order to generate a desired type of sparsity.
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Group-penalized regression

Let’s say there’s a natural grouping of the variables: e.g. factor levels of a
categorical level, source, etc. We want to include a group of variables and not
select them separately.
We can achieve this by using a group penalty instead. Consider the case of 𝐾
groups of variables:

min
𝛽

1
2||𝑦 − 𝑋𝛽||2 + 𝜆

𝐾
∑
𝑘=1

||𝛽𝑘||2

where ||𝛽𝑘||2 = √∑𝑗∈𝑘 |𝛽𝑗 |2, i.e. we penalize the average 𝛽 value within each
group.
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Group-penalized regression

Group LASSO Ball

• If Dk ∈ R
N×1, then ||X||2,1 = ||X||1

• That is, if all the groups are singletons, the optimization problem
reduces to LASSO.

• Group LASSO ball shares attributes of both �2 and �1 balls.

Figure 2: Group LASSO LASSO

14

From a talk by Hojjat Akhondi-Asl, UCL.
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Elastic net

Lasso struggles when covariates are correlated and tends to pick only one of
them even if both are related to the outcome. We can form groups of correlated
variables and run group-lasso or we can let the data decide for us and ”helping”
a bit by altering the penalty as follows:

min
𝛽

1
2||𝑦 − 𝑋𝛽||2 + (1 − 𝛼)𝜆12||𝛽||

2
2 + 𝛼𝜆||𝛽||1

As you can see, this uses both an 𝐿1 and an 𝐿2 penalty on 𝛽.
This penalty strategy is called the elastic net.
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Summary

▶ Structured penalty to induce desired sparsity
▶ Simple coordinate descent works for big problems but perhaps not the most
efficient

▶ Cross-validation usually used to select the penalty parameters, but this is a
difficult problem.
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Summary

How well do the L1-penalized methods perform?
▶ Biased estimates→ adaptive lasso, SCAD
▶ If 𝜆 = 𝑜(𝑛), then 𝛽𝑙1−𝑝𝑒𝑛 → 𝛽𝑡𝑟𝑢𝑒 as 𝑛 → ∞
▶ If 𝜆 ∝ 𝑛1/2 L1-pen has a non-zero probability of identifying the true model
(model selection consistency) (Knight and Fu, 2000)

▶ BUT if many of the non-relevant variables are correlated with the relevant
variables, L1-pen regression may fail to select the true model even if 𝑛 is
large.

▶ We need the Irrepresentable condition to hold

|(𝑋 ′
1𝑋1)−1(𝑋 ′

2𝑋2)| < 1 − 𝜂
where 𝑋1 are the irrelevant and 𝑋2 the relevant variables. (Zhao and Yu,
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Generalized linear models

When we have categorical outcome data we can still use penalized fitting strategies.
The objective function will now be the negative log-likelihood of the data plus the penalty.
For binomial data, our model is

𝑃(𝑦 = 1|𝑋 = 𝑥) = 𝑒𝑥𝛽
1 + 𝑒𝑥𝛽

and so we minimize
∑
𝑖
(𝑦𝑖(𝑥𝛽) − 𝑙𝑜𝑔(1 + 𝑒𝑥𝛽)) + 𝐽(𝛽)

▶ This is nonlinear in 𝛽
▶ Use a quadratic approximation of the log-likelihood and coordinate descent
▶ Then the problem looks like a penalized least squares problem
▶ Solve this and iterate
▶ package glmnet()
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Generalized linear models

What if you have more than two classes? Multinomial model.

𝑃(𝑦 = 𝑘|𝑋 = 𝑥) = 𝑒𝑥𝛽𝑘

∑𝐾
𝑗=1 𝑒

𝑥𝛽𝑗

▶ Notice we actually have set of coefficients 𝛽𝑘 = {𝛽0𝑘, 𝛽1𝑘,⋯ ,𝛽𝑗𝑘}, one 𝑝-vector for each
class.

▶ This 𝑝 ×𝐾 matrix of coefficients can be treated as separate problems
▶ OR if you want to have a model that is easier to interpret you let each 𝛽𝑗𝑘, 𝑘 = 1,⋯ ,𝐾
constitute a group so that variable 𝑗 is used to predict all classes or not used at all.

▶ package glmnet()
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High-dimensional inference

▶ L1-penalized modeling has become enormously popular for
high-dimensional problems

▶ We get model selection, fairly good predictions and as saw above, good
point estimates

▶ But when we do low-dimensional modeling we usually don’t feel very
satisfied with just point estimates

▶ We want confidence intervals and p-values!
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High-dimensional inference

▶ What are the obstacles for obtaining p-values and confidence intervals?
▶ Highly non-standard setting when 𝑝 > 𝑛
▶ the distribution of lasso-solutions, by construction, has a point-mass at 0
and this makes bootstrapping to get standard error estimates difficult
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Sample-splitting

Wasserman and Roeder (2009) proposed the following approach to obtain
p-values

▶ Split the data in two sets
▶ Use set 1 to perform modelselection via e.g. lasso
▶ Use set 2 to evaluate p-values for the non-zero coefficients. This is done by
running LS using only the selected variables in the model.

▶ For the variables not selected in set 1, set p-value to 1.

The p-values are valid because we didn’t reuse the same data for selection and
p-value computation.
Moreover, if we want to compute adjusted p-values that take into account
multiple testing we only have to correct by the selected set of variables, not all 𝑝.
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Sample-splitting

Drawback with the procedure
▶ Sensitive to the split so the pvalues are not reproducible
▶ ”p-value lottery”
▶ Different splits leads to widely different p-values!
▶ Use Multi sample splitting instead hdi() package + de-sparsified lasso

mm$pvals.nonaggr[, 9]
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Multiple testing

We also discussed multiple testing in the class

▶ Under the null, p-values are distributed as U(0,1)
▶ Of course then, just by chance, you could get a small p-value even if the null
is true.

▶ The more tests you perform, the more likely it will be that these chance
events are among your decisions

▶ We used p-value adjustment methods for this to control the number of false
rejections or the proportion of detections that are false
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Data representations

With big data we often need to find efficient data representations of a smaller
dimension for both visualization and computation. Precursor to modeling
(regression and classification)

▶ SVD, NMF
▶ SOM, MDS
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SVD

SVD (singular value decomposition) is a workhorse that underpins much of the
modeling we do!

▶ Data matrix 𝑋 of dimension 𝑛 × 𝑝
▶ Before you do anything, you want to center and scale the columns of 𝑋 !!!
▶ Otherwise the scale of individual variables dominate the representation and
visualization is weird without centering

▶ We want to approximate the observations 𝑥𝑖 in 𝑋 by a lower-rank model
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SVD

▶ 𝑋 = 𝑈𝐷𝑉𝑇 where 𝑈 is a 𝑛 × 𝑝 matrix, 𝐷 is a diagonal 𝑝 × 𝑝 matrix and 𝑉 is a
𝑝 × 𝑝 matrix where 𝑈𝑇𝑈 = 𝐼, 𝑉𝑇𝑉 = 𝐼

▶ We can also write 𝑉𝑋 = 𝑈𝐷
▶ 𝑈𝐷 are called the principal components
▶ 𝑉𝑋 is the rotation 𝑉 applied to the data 𝑋 to project it onto the principal
component space.

▶ The entries of each column in 𝑉 are called loadings and tell you how much
each original variable contribute to the make-up of the new dimension in PC
space

▶ The leading components in 𝑉 correspond to the largest values of 𝐷
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SVD

▶ Another way of looking at SVD is building a structure from orthogonal
components. To see this write

𝑋 = 𝑈𝐷𝑉𝑇 =
𝑃
∑
𝑗=1

𝑑𝑗𝑢𝑗𝑣𝑇𝑗

where 𝑢𝑗 is a 𝑛 × 1 vector and 𝑣𝑇𝑗 is a 1 × 𝑝 vector.
▶ Each produce 𝑢𝑗𝑣𝑇𝑗 construct a 𝑛 × 𝑝 matrix representation of 𝑋
▶ Scaled by 𝑑𝑗 they represent approximation of 𝑋 in orthogonal directions.
▶ The first component is the best rank 1 approximation of 𝑋
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SVD and regression

▶ Least squares modeling
min
𝛽

||𝑌 − 𝑋𝛽||2

▶ The LS solution 𝛽 = (𝑋 ′𝑋)−1𝑋 ′𝑌
▶ If we plug in 𝑋 = 𝑈𝐷𝑉𝑇 in the above expression we get

𝛽 = (𝑉𝐷𝑈 ′𝑈𝐷𝑉 ′)−1𝑉𝐷𝑈 ′𝑌 =
= (𝑉𝐷2𝑉 ′)−1𝑉𝐷𝑈 ′𝑌 = 𝑉𝐷−2𝑉 ′𝑉𝐷𝑈 ′𝑌 = 𝑉𝐷−1𝑈 ′𝑌

▶ The expression 𝑉𝐷−1𝑈 ′ is called the pseudo-inverse of 𝑋
▶ Notice then that the regression coefficients are really obtained through SVD
▶ Fitted values ̂𝑦 = 𝑋 ̂𝛽 = 𝑈𝐷𝑉 ′𝑉𝐷−1𝑈 ′𝑌 = 𝑈(𝑈 ′𝑌)
▶ 𝑈 is the ortogonal basis the spans the columns of 𝑋 and regression projects
onto these components
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SVD and classification

▶ In classification with LDA we sphered the data using 𝑈
▶ We classified using the manahalobis distance

𝑐(𝑥) = arg min
𝑐
(𝑥 − 𝜇𝑐)′Σ−1(𝑥 − 𝜇𝑐)

▶ We could write 𝑋 ′𝑋/𝑛 = Σ̂ = (𝑉𝐷2𝑉 ′)/𝑛
▶ And so we can write

𝑐(𝑥) = arg min
𝑐
(𝑉 ′(𝑥 − 𝜇𝑐))′𝐷−2(𝑉 ′(𝑥 − 𝜇𝑐))

▶ Since the matrix 𝐷 is diagonal, the sphered data is much easier to work with
- just look at one ”variable” at a time in this space
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SVD and data representation

▶ SVD is a component in many methods as you saw above
▶ We can also use it for data exploration
▶ We plot the principal components 𝑋𝑉 = 𝑈𝐷 for the leading components and
since these preserve most of the information in 𝑋 we get a dense summary
of the data

▶ Excellent for finding groups in the data
▶ The loadings in 𝑉 tells you in which variable set the information about 𝑋
resides

▶ If PC1 and PC2 separates groups in the data, check which variables
contribute to these (loadings in the 1st columns of 𝑉 )
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sparse SVD

▶ Like in regression, it is not always easy to see which variables contribute to
the PCs

▶ We can look for large factor loadings....
▶ OR we can adapt SVD to generate sparse 𝑉 where only few variables do
contribute
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sparse SVD

▶ A couple of different variants of sparse SVD have been proposed
▶ ScotLASS (Joliffe et al), sparse PCA (Witten et al) and sparse SVD (Zou et al)
are a few

▶ They add an L1 penalty to the factor loadings, but how the problem then is
solved is different
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sparse SVD

▶ PMA package and nsprcomp package
▶ Difficult to choose how much to penalize
▶ but good for visualization and exploration

48/115



Non-negative matrix factorization

▶ What if the idea of layer summation is our key feature?
▶ Each layer should add some information to the representation (not correct
previous layers)

▶ NMF:
𝑋 = 𝑊𝐻, 𝑊 ≥ 0 𝐻 ≥ 0

▶ 𝑋 is our 𝑛 × 𝑝 matrix where each row is an observation and each column a
feature

▶ 𝑊 is a 𝑛 × 𝑟 matrix, or basis which gives you the coordinates for each of the
𝑛 observations in the lower-dimensional space....

▶ ... indexed by 𝐻: a 𝑟 × 𝑝 matrix of coefficients, or a codebook.

49/115



Non-negative matrix factorization

▶ NMF:
𝑋 = 𝑊𝐻, 𝑊 ≥ 0 𝐻 ≥ 0

▶ Example from the handwritten digits: Let’s say we choose to approximate
the data with rank 𝐾

▶ 𝐻 will contain 𝐾 images of the same size as each original digit, illuminating
important pixels that summarize the data

▶ 𝑊 is a matrix where each row 𝑗 tells you how to combine the images in 𝐻 to
recreate the 𝑗th digit in the data set.
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Data representations

▶ Both SVD and NMF try to find a linear dimension reduction of the data to
summarize the data well

▶ The difference lies in the assumed structure of the dimension reduction
▶ SVD creates orthogonal components (perhaps sparse)
▶ NMF creates component-wise non-negative coefficients and basis elements.
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Non-negative matrix factorization

▶ Let’s say we have found a rank 𝐾 approximation
▶ We can approximate the 𝑗th observation by

̂𝑋𝑗 =
𝐾
∑
𝑙=1

𝑊 𝑗𝑙𝐻𝑙.

▶ Since we have a non-negative contraint on𝑊 and 𝐻 this consists of adding
layers together, no corrections or subtractions.

▶ The result of the non-negative constraint is that the coefficients in 𝐻 tend to
be sparse!!!

▶ Fit with alternating least squares
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Revisiting PCA

▶ Data matrix 𝑋 of dimension 𝑛 × 𝑝
▶ Assume from now that rows are centered
▶ SVD 𝑋 = 𝑈𝐷𝑉 ′, PCA 𝑋 ′𝑋 = 𝑉𝐷2𝑉 ′. Principal components 𝑈𝐷 obtained by
projecting 𝑋 onto 𝑉 : 𝑋𝑉 = 𝑈𝐷.
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Revisiting PCA

▶ Key: want to maximize variance along orthogonal projections.
▶ 𝑚𝑎𝑥𝑣𝑉𝑎𝑟(𝑣𝑋) subject to 𝑣′𝑣 = 1
▶ Lagrangian formulation 𝑚𝑎𝑥𝑣𝑣′𝑋 ′𝑋𝑣 − 𝜆(𝑣′𝑣 − 1)
▶ Take derivatives: 𝑋 ′𝑋𝑣 − 𝜆𝑣 = 0 or equivalently 𝑆𝑣 = 𝜆𝑣 - the eigenproblem
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Revisiting PCA

▶ What if we had instead focused on 𝑋𝑋 ′?
▶ Let’s apply PCA in this system: 𝑋𝑋 ′ = 𝑊𝐿𝑊 ′: equivalently 𝑋𝑋 ′𝑊 = 𝑊𝐿
▶ Multiple by 𝑋 ′ from the left: (𝑋 ′𝑋)(𝑋 ′𝑊) = (𝑋 ′𝑊)𝐿.
▶ This means 𝑋 ′𝑊 is the eigenvectors of 𝑋 ′𝑋
▶ Almost, since not orthonormal: (𝑋 ′𝑊)′(𝑋 ′𝑊) = 𝑊 ′(𝑋𝑋 ′)𝑊 = 𝐿 not 𝐼
▶ Fix by renormalizing so: 𝑉 = (𝑋 ′𝑊)𝐿−1/2 is the eigenvectors of 𝑋 ′𝑋 obtained
from 𝑋𝑋 ′
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Revisiting PCA

▶ Why do we care?
▶ Alternative approach to PCA from object distances rather than feature
correlations

▶ 𝑋 ′𝑋 ≃ 𝐶𝑜𝑣(𝑋) is the p by p structure between features 𝑝.
▶ 𝑋𝑋 ′ ≃ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑋) is the n by n distance matrix between objects
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Gram matrix and the distance matrix

▶ Let’s look at the distance matrix 𝑑𝑖𝑗 = 𝑑𝑖𝑠𝑡(𝑥𝑖, 𝑥𝑗)
▶ 𝑑𝑖𝑗 = ||𝑥𝑖 − 𝑥𝑗 ||2 = (𝑥𝑖 − 𝑥𝑗)′(𝑥𝑖 − 𝑥𝑗) = 𝑥′𝑖𝑥𝑖 − 2𝑥′𝑖𝑥𝑗 + 𝑥′𝑗𝑥𝑗
▶ Now

𝑋𝑋 ′ =
⎛
⎜
⎜
⎜
⎝

𝑥11 𝑥12 ⋯ 𝑥1𝑝
𝑥21 𝑥22 ⋯ 𝑥2𝑝
…
𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑝

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

𝑥11 𝑥21 ⋯ 𝑥𝑛1
𝑥12 𝑥22 ⋯ 𝑥𝑛2
…
𝑥1𝑝 𝑥2𝑝 ⋯ 𝑥𝑛𝑝

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

∑𝑝
𝑗=1 𝑥21𝑗 ∑𝑝

𝑗=1 𝑥1𝑗𝑥2𝑗 ⋯ ∑𝑝
𝑗=1 𝑥1𝑗𝑥𝑛𝑗

∑𝑝
𝑗=1 𝑥1𝑗𝑥2𝑗 ∑𝑝

𝑗=1 𝑥22𝑗 ⋯ .
…
. ⋯ . ∑𝑝

𝑗=1 𝑥2𝑛𝑗

⎞
⎟
⎟
⎟
⎠
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Gram matrix and the distance matrix

▶ 𝑑𝑖𝑗 = ||𝑥𝑖 − 𝑥𝑗 ||2 = (𝑥𝑖 − 𝑥𝑗)′(𝑥𝑖 − 𝑥𝑗) = 𝑥′𝑖𝑥𝑖 − 2𝑥′𝑖𝑥𝑗 + 𝑥′𝑗𝑥𝑗

𝑋𝑋 ′ =
⎛
⎜
⎜
⎜
⎝

∑𝑝
𝑗=1 𝑥21𝑗 ∑𝑝

𝑗=1 𝑥1𝑗𝑥2𝑗 ⋯ ∑𝑝
𝑗=1 𝑥1𝑗𝑥𝑛𝑗

∑𝑝
𝑗=1 𝑥1𝑗𝑥2𝑗 ∑𝑝

𝑗=1 𝑥22𝑗 ⋯ .
…
. ⋯ . ∑𝑝

𝑗=1 𝑥2𝑛𝑗

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

𝑥′1𝑥1 𝑥′1𝑥2 ⋯ 𝑥′1𝑥𝑛
𝑥′1𝑥2 𝑥′2𝑥2 ⋯ .
…
. ⋯ . 𝑥′𝑛𝑥𝑛

⎞
⎟
⎟
⎟
⎠

▶ This means we can write the distance matrix 𝐷 = (𝑑𝑖𝑗) as
𝐷 = 1𝑑𝑖𝑎𝑔(𝑋𝑋 ′) − 2𝑋𝑋 ′ + 𝑑𝑖𝑎𝑔(𝑋𝑋 ′)1′

where 1 is just a column of ones. 58/115



Gram matrix and the distance matrix

▶ The matrix 𝐺 = 𝑋𝑋 ′ is called the Gram matrix.
▶ The elements of 𝐺 are the dot-products of the observations 𝑥′𝑖𝑥𝑗 =< 𝑥𝑖, 𝑥𝑗 >
▶ From previous slide we see that the pairwise distances are just a function of
the dot-products

𝐷 = 1𝑑𝑖𝑎𝑔(𝑋𝑋 ′) − 2𝑋𝑋 ′ + 𝑑𝑖𝑎𝑔(𝑋𝑋 ′)1′
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Gram matrix and the distance matrix

▶ The matrix 𝐺 = 𝑋𝑋 ′ is called the Gram matrix.
▶

𝐷 = 1𝑑𝑖𝑎𝑔(𝑋𝑋 ′) − 2𝑋𝑋 ′ + 𝑑𝑖𝑎𝑔(𝑋𝑋 ′)1′

▶ Equivalently, define 𝐻 = 𝐼 − 1
𝑛
11′ (also called the centering matrix), then

𝐺 = −12𝐻𝐷
2𝐻
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Multi-dimensional scaling

▶ We compute all the pairwise distances between objects 𝑖 and 𝑗: 𝑑𝑖𝑗
▶ We can be clever about using appropriate distances here depending on the
variable types (daisy package in R)

▶ We want to find observations 𝑧𝑖 in a low-dimensional space such that

∑
𝑖≠𝑖′

(𝑑𝑖𝑖′ − ||𝑧𝑖 − 𝑧𝑖′ ||)2

is small.
▶ We can scale the mapping distance by 𝑑𝑖𝑖′ which preserved small distances
better

▶ We can also use rank-based mapping (called non-metric scaling) -
depending if subsets of data are very spread out.
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Multi-dimensional scaling

▶ We compute all the pairwise distances between objects 𝑖 and 𝑗: 𝑑𝑖𝑗
▶ We want to find observations 𝑧𝑖 in a low-dimensional space such that

∑
𝑖≠𝑖′

(𝑑𝑖𝑖′ − ||𝑧𝑖 − 𝑧𝑖′ ||)2

is small.
▶ How? Spectral decomposition of centered 𝑑 ∶𝑖𝑖′ and use leading
eigenvectors.

▶ With the alternative representation of PCA through the Gram matrix and
thereby the distance matrix we see that MDS is in fact equivalent to PCA if
the distance used is euclidean!!!
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Multi-dimensional scaling

▶ Metric MDS: we want to minimize 𝑚𝑖𝑛𝑧∑𝑖𝑗(𝑑𝑥𝑖𝑗 − 𝑑𝑧𝑖𝑗)2
▶ We just saw the equivalence between the gram matrix and the distance
matrix: minimizing D - max ”correlation” or min dotproduct.

▶ So MDS is equivalent to 𝑚𝑖𝑛𝑧∑𝑖𝑗(𝑥′𝑖𝑥𝑗 − 𝑧′𝑖𝑧𝑗)2
▶ Write in matrix form as a Trace of the full matrices

𝑚𝑖𝑛𝑍𝑇𝑟(𝑋𝑋 ′ − 𝑍𝑍′)2

▶ Use spectral decomposition of each

𝑚𝑖𝑛𝑍𝑇𝑟(𝑊𝐿𝑊 ′ − 𝑄𝑇𝑄′)2 = 𝑇𝑟(𝐿 −𝑊 ′𝑄𝑇𝑄′𝑊)2 =

= 𝑇𝑟(𝐿 − 𝑅𝑇𝑅′)2 = 𝑇𝑟(𝐿2 − 𝑅𝑇𝑅′𝑅𝑇𝑅′ − 2𝐿𝑅𝑇𝑅′)
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Multi-dimensional scaling

▶

𝑚𝑖𝑛𝑍𝑇𝑟(𝑊𝐿𝑊 ′ − 𝑄𝑇𝑄′)2 = 𝑇𝑟(𝐿 −𝑊 ′𝑄𝑇𝑄′𝑊)2 =

= 𝑇𝑟(𝐿 − 𝑅𝑇𝑅′)2 = 𝑇𝑟(𝐿2 − 𝑅𝑇𝑅′𝑅𝑇𝑅′ − 2𝐿𝑅𝑇𝑅′)
▶ For fixed T: minimize wrt 𝑅 - solution 𝑅 = 𝐼 and plug-in

𝑚𝑖𝑛𝑇𝑇𝑟(𝐿2 − 𝑇2 − 2𝐿𝑇𝑅) = 𝑇𝑟(𝐿2 − 𝑇2)

▶ Make small by matching the leading eigenvalues of 𝐿 and 𝑇 and since
𝐼 = 𝑅 = 𝑊 ′𝑄 this implies 𝑄 = 𝑊

▶ So MDS - leading eigenvectors of the Gram matrix.
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Multi-dimensional scaling

▶ We compute all the pairwise distances between objects 𝑖 and 𝑗: 𝑑𝑖𝑗
▶ We want to find observations 𝑧𝑖 in a low-dimensional space such that

∑
𝑖≠𝑖′

(𝑑𝑖𝑖′ − ||𝑧𝑖 − 𝑧𝑖′ ||)2

is small.
▶ The point being - with MDS we can exploit this and be more flexible with the
distance used!

▶ Define 𝐻 = 𝐼 − 1
𝑛
11′ (also called the centering matrix), then we can obtain a

gram matrix from a distance matrix through

𝐺 = −12𝐻𝐷
2𝐻

▶ and then solve the eigen problem
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Multi-dimensional scaling

▶ PCA = eigenvectors of 𝑋 ′𝑋 (covariance of 𝑋) - scales poorly with
dimensionality

▶ MDS = eigenvectors of 𝑋𝑋 ′ (gram matrix, related to pairwise distances) -
scales poorly with sample size

▶ Key is using other distance metrics in MDS for flexibility.
▶ In non-metric MDS you are even more adventurous - using monotone
transformations of distances, qualitative distances, ranks - usually then
solved by iterative procedures.
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kernelPCA

▶ PCA = eigenvectors of 𝑋 ′𝑋 (covariance of 𝑋) - scales poorly with
dimensionality

▶ or equivalently eigenvectors of 𝑋𝑋 ′, obtain eigenvectors as 𝑉 = (𝑋 ′𝑊)𝐿−1/2
and PCs as 𝑋𝑉 .

▶ Limitations of PCA: Global method, assuming 𝑋 can be well represented by a
linear projection/approximations - covariance is a linear association
measure

▶ What if we could look at nonlinear dependencies? How?
▶ Transform data into a 𝑀 > 𝑝 dimensional space: 𝜙(𝑥) and compute
covariance in this space

𝑆𝜙 = 𝜙(𝑋)′𝜙(𝑋)
(M by M matrix instead of p by p).

▶ Compute eigenvectors 𝑉 : 𝑆𝜙𝑉 = 𝐿𝑉 and project onto leading components
here.
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kernelPCA
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kernelPCA

▶ What do we want the nonlinear transformation 𝜙 to do?
▶ Preserve local information: e.g. locally linear relationships or pairwise
distance information
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kernelPCA

Given: Low-dim. surface embedded nonlinearly in high-dim. space

Such a structure is called a Manifold

Goal: Recover the low-dimensional surface
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kernelPCA

Figures from slides by P. Rai
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kernelPCA

▶ What do we want the nonlinear transformation 𝜙 to do?
▶ Preserve local information: e.g. locally linear relationships or pairwise
distance information

▶ ”Unrolling” or ”unwrapping” the low dimensional structure embedded in a
high dimensional space
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kernelPCA

▶ We would rather not have to compute the data transformation for two
reasons

▶ Increasing dimensionality - bad
▶ Having to explicitly define a transformation that works
▶ Idea: the kernel-trick. ”Easier” to define a nonlinear or local distance and we
know from before there is an implicit relationship between the PCA
decomposition based on structure and distance.
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kernelPCA

▶ We have 𝑆𝜙 = 1
𝑛
∑𝑖 𝜙(𝑥𝑖)𝜙(𝑥𝑖)′ as the M by M covariance matrix. (assume

centered after transformation)
▶ PCA: 𝑆𝜙𝑣𝑘 = 𝜆𝑘𝑣𝑘 for components 𝑘 = 1,⋯ ,𝑀
▶ Plug in: 1

𝑛
∑𝑖 𝜙(𝑥𝑖)(𝜙(𝑥𝑖)′𝑣𝑘) = 𝜆𝑘𝑣𝑘

▶ Eigenvectors are of the format 𝑣𝑘 = ∑𝑖 𝑎𝑘𝑖𝜙(𝑥𝑖) and so1
𝑛
∑𝑖 𝜙(𝑥𝑖)(𝜙(𝑥𝑖)′∑𝑗 𝑎𝑘𝑗𝜙(𝑥𝑗) = 𝜆𝑘∑𝑗 𝑎𝑘𝑗𝜙(𝑥𝑗)

▶ Multiply this by 𝜙(𝑥𝑙)′ on both sides
1
𝑛
∑𝑖 𝑝ℎ𝑖(𝑥𝑙)′𝜙(𝑥𝑖)(𝜙(𝑥𝑖)′∑𝑗 𝑎𝑘𝑗𝜙(𝑥𝑗) = 𝜆𝑘∑𝑗 𝑎𝑘𝑗𝜙(𝑥𝑙)′𝜙(𝑥𝑗)

74/115



kernelPCA

▶ Multiply this by 𝜙(𝑥𝑙)′ on both sides
1
𝑛
∑𝑖 𝑝ℎ𝑖(𝑥𝑙)′𝜙(𝑥𝑖)(𝜙(𝑥𝑖)′∑𝑗 𝑎𝑘𝑗𝜙(𝑥𝑗) = 𝜆𝑘∑𝑗 𝑎𝑘𝑗𝜙(𝑥𝑙)′𝜙(𝑥𝑗)

▶ The dot products are scalars, define as 𝜙(𝑥𝑖)′𝜙(𝑥𝑗) = 𝑘(𝑥𝑖, 𝑥𝑗)
▶ and so we have 1

𝑛
∑𝑖 𝑘(𝑥𝑖, 𝑥𝑙)∑𝑗 𝑎𝑘𝑗𝑘(𝑥𝑖, 𝑥𝑗) = 𝜆𝑘∑𝑗 𝑎𝑘𝑗𝑘(𝑥𝑖, 𝑥𝑙)

▶ Define the kernel matrix 𝐾 comprising all the dot products (see back at PCA
via Gram) which captures pairwise distance/similariy in 𝜙 space

𝐾2𝑎𝑘 = 𝜆𝑘𝑁𝐾𝑎𝑘 → 𝐾𝑎𝑘 = 𝜆𝑘𝑎𝑘
▶ We need to normalize the 𝑣s: 𝑣′𝑘𝑣𝑘 = 1 = ∑𝑖,𝑗 𝑎𝑘𝑖𝑎𝑘𝑗𝜙(𝑥𝑖)′𝜙(𝑥𝑗) → 𝑎′𝑘𝐾𝑎𝑘 = 1
▶ A projection onto the k-th PCs is thus

𝜙(𝑥)′𝑣𝑘 = ∑
𝑖
𝑎𝑘𝑖𝐾(𝑥, 𝑥𝑖)
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kernelPCA

▶ The kernel matrix has to be centered prior to this
▶ Use the centering matrix from above
▶ Popular kernels: gaussian, polynomial

76/115



t-distributed stochastic neighbor embedding

▶ tSNE is a local extension of MDS. (Paper can be found here).
▶ Here we use a kernel based distance between observations i and j and
interpret this as a probability

𝑝𝑗|𝑖 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 − 𝑝𝑑𝑓(𝑑𝑖𝑗 , 𝜎2𝑖 )/∑
𝑘≠𝑖

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 − 𝑝𝑑𝑓(𝑑𝑖𝑘, 𝜎2𝑖 )

where 𝜎𝑖 is the bandwidth of the kernel around reference point 𝑖. You create
a symmetric distance by taking the average of the two conditional
distributions

▶ Even more simple if you use the same bandwidth everywhere

𝑝𝑖𝑗 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 − 𝑝𝑑𝑓(𝑑𝑖𝑗 , 𝜎2)/ ∑
𝑘,𝑙≠𝑘

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 − 𝑝𝑑𝑓(𝑑𝑘𝑙, 𝜎2)

▶ We now try to construct a 𝑑-dimensional space 𝑦 that mimics these densities
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tSNE

▶ How do we measure distance in the 𝑦-space? Natural thing would be to use
gaussian densities there too (called SNE)

▶ In the SNE, the authors observed that the 𝑦-space got ”crowded” in that
slightly similar observations were forced to be very similar in the
low-dimensional space

▶ To remedy this, tSNE uses a more long-tailed distribution to describe the
densities in 𝑦-space (Cauchy distribution)

𝑞𝑖𝑗 =
(1 + 𝑑(𝑦𝑖, 𝑦𝑗))−1

∑𝑘≠𝑖(1 + 𝑑(𝑦𝑖, 𝑦𝑘))−1

where d is the squared euclidean distance
▶ We match 𝑝 and 𝑞 by minimizing the Kullback-Leibler distance
∑𝑖≠𝑗 𝑝𝑖𝑗 log(𝑝𝑖𝑗

𝑞𝑖𝑗
)

▶ How? Gradient descent.
▶ So it’s related to MDS, but with a different treatment of distances and a different cost
function.
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Isomap

▶ Isomap is a local version of MDS - we work with a matrix of distances
between observations

▶ Use distances based on a shortest path in a graph connecting observations
▶ The graph is produced by connecting only objects that are within a certain
euclidean distance of eachother, or is within a set of k nearest neighbors.

▶ This can capture quite local behaviour - nonlinear transformation of data
▶ Spectral decomposition of this matrix
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Global/Local

▶ Global: PCA, SVD, MDS, NMF
▶ Local: kPCA, isomap, tSNE
▶ many many more....
▶ Of course, be careful about applying to real data! ”Overfitting”, noisy data,
big/small n, big/small p, mixed data types...
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Clustering

Explorative analysis - finding groups in data.
This is a more difficult task than classification since the goal is rather subjective -
what is group?
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Clustering

What defines a group is up to you to choose, e.g. by defining an object-object
similarity measure or distance.
The most commonly used distance measure is euclidean distance. However,
other distances may be more appropriate to use for some data sets, e.g.
matching-metrics for categorical data or correlation-based similarities for curve
data or when relative differences between features are more interesting than
absolute levels.

82/115



Goal of Clustering

1. Minimize within-cluster distances.
▶ 𝐶 denotes a partition that puts labels {1,⋯ , 𝐾} on objects. 𝐶(𝑖) is the label for
observation 𝑖.

▶ We want the within-cluster distances to be small:
𝑊(𝐶) = ∑𝐾

𝑘=1∑𝐶(𝑖)=𝐶(𝑗)=𝑘 𝑑𝑖𝑗 , where 𝑑𝑖𝑗 is the distance between objects 𝑖 and 𝑗.
2. Maximize between-cluster distances.

▶ Maximize 𝐵(𝐶) = ∑𝐾
𝑘=1∑𝐶(𝑖)=𝑘,𝐶(𝑗)≠𝑘 𝑑𝑖𝑗

Turns out the total sum of distances is𝑊(𝐶) + 𝐵(𝐶) so the two goals are
equivalent. (But if you only consider distances to some clusters instead of all, it’s
not the same.)
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How to generate a partition

kmeans is a very popular method and has been around for a long time. It is very
simple and fast and results in partitions that minimize the within-cluster
distances.
In addition, kmeans doesn’t try to take cluster shape into account and tends to
find spherical groups (cf. nearest-centroid classifier).
How many clusters? You can track how much the within-cluster distances
decrease as a function of the number of clusters. Once you start adding more
clusters that the data ”supports” there is very little decrease in𝑊(𝐶) since you
are forcing kmeans to split close observations into smaller groups. You should
look for a point where the𝑊(𝐶) levels off as the number of clusters grow (see
demo code).
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k-medoids, PAM

PAM, partition around medoids, is an alternative to kmeans that is more robust
and allows for extensions to non-euclidean distances.
Instead of using centroids (cluster means) to summarize a group, we use an
observation = a medoid. Medoid is a multivariate generalization of a median.
Some things to note about PAM

▶ The entire algorithm uses only object-object distances 𝑑𝑖𝑗
▶ No new distances need to be computed (to centroids etc since medoids are
already part of the set of observations).

▶ Input to PAM can thus be any kind of pairwise distance matrix! Lots of
choices possible.
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Hierarchical clustering

Hierarchical clustering is very popular since it is simple, intuitive and comes with
a nice graphical display. Like PAM, it takes pairwise distances as input which
makes it rather flexible.
In contrast to PAM and kmeans it constructs clusters ”bottom-up”, i.e. building
clusters by joining observations together as opposed to splitting the data into
groups (”top-down”).
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Hierarchical clustering

1. Start with all the observations as their own clusters, 𝑔1, 𝑔2,⋯ , 𝑔𝑛, each
cluster of size 1.

2. Join the pair of clusters 𝑔𝑖 and 𝑔𝑗 that are the closest together
3. Keep on joining clusters pairs until all observations are in one big clusters of
size 𝑛.
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Modelbased clustering

Parametric, or modelbased clustering, takes clustering into a familiar statistical
modeling framework where we can say something about the goodness-of-fit of
clusters. It is a statistical problem that can be objectively analyzed BUT of course
relies on a modeling assumption that is a subjective choice nonetheless. So on
the plus-side, we make clear modeling assumption and can validate them and
analyze/draw inference from results.
On the minus-side, our modeling assumption can be too strict, not flexible
enough to capture groupings in the data.
The most commonly used modeling assumption in modelbased clustering is that
each group is multivariate normally distributed, that is, groups are ellipsoid
blobs in 𝑥-space.
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EM-iterations

▶ If we knew the labels, we could estimate the parameters of each cluster
easily just like we did in discriminant analysis.

▶ If we knew the model parameters, we could allocate observations to each
cluster using the posterior probability approach, just like in discriminant
analysis.

This iterative process is the EM approach to model fitting and is a method used
to solve complex estimation problems that would be easy to solve with some
additional information (as done in each step or the iterative procedure).
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Modelbased clustering

As in all model-based methods, the likelihood cannot be used to select the
model (number of clusters) as the likelihood is always increased by adding more
and more model parameters to the description of the data - i.e. using the
likelihood to select the number of clusters would just lead you to choose the
largest number of clusters you try.
However, as we are in a standard modeling setting we can use the off-the-shelf
model selection criteria that you may be familiar with from regression. The most
commonly used criterion in mixture modeling is the Bayesian information
criterion, BIC.
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MClust

This idea of simplifying the cluster shapes, sizes and correlations (orientations)
was the basis for the Mclust procedure of Raftery et al (2006). This modelbased
clustering method has been implemented in a very easy-to-use R-package
(mclust()).
Other Big Data extensions regularize the means and covariances of each cluster!
Regularization methods here as well!
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High-dimensional clustering

What goes wrong when the data is high-dimensional?
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High-dimensional clustering

The notion of similar and dissimilar brakes down - everyone is far apart in
high-dimensional space!
Clustering is all about distances - and the concept of relative distance brakes
down.
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(b) 6 Objects in One Unit Bin
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(c) 4 Objects in One Unit Bin

Figure 1: The curse of dimensionality. Data in only one dimension is relatively tightly packed. Adding a dimension stretches
the points across that dimension, pushing them further apart. Additional dimensions spreads the data even further making
high dimensional data extremely sparse.
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High-dimensional clustering

What to do?

▶ Feature selection
▶ Feature transformation
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Feature selection

▶ Take the most variable features.
▶ The idea is that large spread is due to cluster separation
▶ Caution: this is a bad idea if features are measured at different scales!
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Feature selection

▶ An alternative is to think that a cluster feature should have a clear
multi-modal distribution where each ”hump” in the distribution corresponds
to a cluster

▶ Screen features by testing for unimodality (Hartigan’s dip-test).
▶ Keep features with the largest test statistic against unimodality
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Feature transformation

▶ We can also transform the data - projecting onto a lower-dimensional space
▶ We want to ensure we retain as much information as possible
▶ PCA to the rescue!
▶ Keep principal components corresponding to the largest eigenvalues
▶ Or use other dimension reduction techniques discussed above!
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Dimension reduction and clustering

▶ Careful! Check how sensitive the results are to your screening
▶ both the type of screening and
▶ how aggressively you screen
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Dimension reduction and classification

▶ An ”easier” filtering problem since you can test feature-class associations
▶ BUT careful about imbalanced data, correlated filter statistics, etc
▶ Dimension reduction - not guaranteed to retain class information!
▶ Other alternatives: supervised dimension reduction (PLS), effective
dimensionality (classes are described with low-rank covariance structures).
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Consensus clustering

▶ Any method that comprises many steps is subject to instability since each
step is a source of error

▶ How many features, how many eigenvalues?
▶ In addition, many clustering methods are quite sensitive to small data
perturbations
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Consensus clustering

▶ If you can do things once, you can do it 100 times!
▶ Add some randomness to the procedure and run it many times
▶ Retain clusters that are stable across multiple runs!
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Spectral clustering

https://charlesmartin14.wordpress.com/2012/10/09/spectral-clustering/
▶ Most clustering methods are geared at finding dense, compact regions
▶ What if clusters are more complex than that?
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Spectral clustering

Similarity graphs

▶ A similarity measure between observational pairs can be illustrated with a
graph

▶ The length of an edge between objects inversely proportional to the
similarity

▶ If we threshold similarities that are small we get a graph where only some
observations are connected

▶ Graph-partitioning: which edges should we cut to form good clusters?
Clearly the ones with low similarity.
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Spectral clustering

▶ Turns out: if there are 𝑘 connected components in your graph (clusters) then
there are 𝑘 zero-eigenvalues of 𝐿 = 𝐷 −𝑊 , where 𝐷 is the degree matrix and
𝑊 the adjacency matrix.

▶ and the corresponding eigenvectors can be used to find the clusters using
e.g. kmeans.
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Big n!

▶ When the sample size is large, there’s a couple of things we need to be
concerned about

▶ p-values become ”meaningless” - simply reflecting that all models are
approximations of the real world

▶ Computations can become impossible or slow, even for simple statistical
tasks
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Big n statistics

▶ Most methods bear a strong resemblance to stuff you’re already familiar with
▶ Cross-validation, subsampling (bagging, RF) and bootstrap
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Big n statistics

3 main approaches

▶ Subsampling
▶ Divide and Conquer/Split and Merge/Divide and Recombine
▶ Online updating
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Bag of Little Bootstraps

▶ We draw 𝑠 subsets of data of size 𝑚 < 𝑛
▶ For each of the 𝑠 subsets, draw 𝑟 samples of size 𝑛
▶ Obtain point estimate and e.g. CIs from the 𝑟 bootstraps
▶ Finally, combine the results across the 𝑠 subsets
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Divide and Conquer

▶ Idea is to split the data into K chunks
▶ Estimate your model parameters on each chunk separately
▶ Combine the estimates into a final estimate
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Charting the impact of n on the estimates

▶ You can track the impact on the p-values from increasing the sample sizes to
guide you

▶ ... or chart the effect sizes and CIs
▶ ... or switch to model importance metrics.
▶ Remember: you still need to explore the data set when n is large!
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Take-home message!

Big p!

▶ Use data representations to explore!
▶ Transformation or feature selection. Regularization methods are very
popular!

▶ Still, how much to regularize is difficult to choose. Also, it’s not magic! If you
have very strong correlations between ”relevant” and ”irrelevant” features,
feature selection in extremely difficult!

▶ Do many times! Look for reproducibility. Variable importance like RF also
useful

▶ Regularization methods for regression, classification and clustering!
▶ Nonlinear data representations - but careful about ”overfitting”
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Take-home message!

Classification and Predictive modeling

▶ Train and Test!!!
▶ If you can do things once you can do it 100 times. Ensemble methods or to
check reproducibility.

▶ The answer in statistics is always ”it depends” - there is no universally best
method - it’s case by case, dataset specific

▶ In general though: more data needed to train complex models
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Take-home message!

Clustering

▶ A VERY difficult problem!
▶ Very subjective - careful to not read to much into this
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Take-home message!

Big n!

▶ Subsampling (either ”thinning”, batch computation or streaming)
▶ Big n does not always mean an easier problem.... convenience sampling,
outliers, extremes, missing values

▶ Leveraging for model assessment
▶ Big n allows for complex modeling... but is a complex model necessary?
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