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Maximum Likelihood (ML) inference   (Coles p. 
30-43)

Likelihood function  =  the function which shows how the “probability” (or 
likelihood) of getting the observed data depends on the parameters 
𝑥𝑥1, … 𝑥𝑥𝑛𝑛 observations of i.i.d. variables  𝑋𝑋1, … ,𝑋𝑋𝑛𝑛, density  𝑓𝑓 𝑥𝑥 = 𝑓𝑓(𝑥𝑥;𝜃𝜃)
𝜃𝜃 = (𝜃𝜃1, … ,𝜃𝜃𝑑𝑑) parameters
𝐿𝐿 𝜃𝜃 = 𝑓𝑓 𝑥𝑥1;𝜃𝜃 𝑓𝑓 𝑥𝑥2;𝜃𝜃 …𝑓𝑓(𝑥𝑥𝑛𝑛;𝜃𝜃) likelihood function
ℓ 𝜃𝜃 = log𝑓𝑓 𝑥𝑥1;𝜃𝜃 + log 𝑓𝑓 𝑥𝑥2;𝜃𝜃 + … log 𝑓𝑓 𝑥𝑥𝑛𝑛;𝜃𝜃 log likelihood function
ML estimates  = the value  �̂�𝜃 = (�̂�𝜃1 … �̂�𝜃𝑑𝑑) which maximizes the (log) 
likelihood function 

• Ml estimates often have to be found through numerical maximization
• sometimes a maximum doesn’t exist
• sometimes several local maxima ( problem for numerical maximization)
• but typically no problems if  the number of observations is “large”
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Apple losses (= - 100 × price tomorrow−price today
price today

) one year back

quarter 4 quarter 2quarter  1 Quarter 3 

Maximum quarterly loss excess of the level 𝑢𝑢 = 1.92

How large is the risk of  a big quarterly loss? BM
How large is the risk of a big loss tomorrow?  PoT
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Example:  ML estimation of the parameters in the PoT model

T =  length of observation period
N  =  number of observed excesses (random variable!)

observed excess sizes
𝜃𝜃 = (𝜎𝜎, 𝛾𝛾, 𝜆𝜆) parameters

The probability of observing  N excesses is                                ,    
independence   ⇒

obtained from numerical maximization of the second part of
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ML inference: asymptotic properties

expected Fisher information matrix, estimated  by

or by 𝐼𝐼(𝜃𝜃) where 𝐼𝐼 𝜃𝜃 = (− 𝜕𝜕2

𝜕𝜕𝜃𝜃𝑖𝑖𝜕𝜕𝜃𝜃𝑗𝑗
ℓ 𝜃𝜃 ) is   the the observed Fisher 

information matrix. (In the expected Fisher information matrix, the 
observations are replaced by the corresponding random variables when the 
expectations are computed. Numerical optimization programs typically 
compute the Hessian, −𝐼𝐼 𝜃𝜃 ) 

In particular, the variance  of      may be estimated by     (                   = the i-th
diagonal element of              ), or by                   . The latter is often more accurate.

asymptotically has a d-dimensional multivariate normal 
distribution with mean      and variance

𝑘𝑘𝛼𝛼 = the 𝛼𝛼-th quantile of the standard normal distribution (𝑘𝑘0.975 = 1.96)

(�̂�𝜃𝑖𝑖 − 𝑘𝑘1−(1−𝛼𝛼)/2 (𝐼𝐼 �̂�𝜃 −1)𝑖𝑖,𝑖𝑖 , �̂�𝜃𝑖𝑖+𝑘𝑘1−(1−𝛼𝛼)/2 (𝐼𝐼 �̂�𝜃 −1)𝑖𝑖,𝑖𝑖 )   asymptotic 

100𝛼𝛼%  confidence interval                                                                            5



Exercise: Compute  a confidence interval for the parameters in a 
Poisson process
𝑡𝑡 =  length of observation period = 5 years
𝑛𝑛 =  number of observed excesses = 31
𝜆𝜆 = parameter (= yearly intensity =expected number of excesses

per year) of Poisson process
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Solution:

L 𝜆𝜆 =
𝜆𝜆𝑡𝑡 𝑛𝑛

𝑛𝑛!
𝑒𝑒−𝜆𝜆𝜆𝜆

log ℓ(𝜆𝜆) = 𝑛𝑛𝑛𝑛𝑛 𝜆𝜆 + 𝑛𝑛𝑛𝑛𝑛 𝑡𝑡 − log 𝑛𝑛! − 𝜆𝜆𝑡𝑡
𝑑𝑑𝑛𝑛𝑛 ℓ(𝜆𝜆)

𝑑𝑑𝜆𝜆
=

𝑛𝑛
𝜆𝜆
− 𝑡𝑡 = 0 ⇒ �̂�𝜆 =

𝑛𝑛
𝑡𝑡

=
31
5

= 6.25

𝐼𝐼 𝜆𝜆 = −
𝑑𝑑2log ℓ(𝜆𝜆)

𝑑𝑑𝜆𝜆2
=

𝑛𝑛
𝜆𝜆2

Estimated variance of  �̂�𝜆 is − 1
𝐼𝐼 �𝜆𝜆

=
�𝜆𝜆2

𝑛𝑛

95% confidence interval:

(�̂�𝜆 − k0.975 �̂�𝜆2/𝑛𝑛, �̂�𝜆 + k0.975 �̂�𝜆2/𝑛𝑛)

= (6.25 − 1.96
6.25

31
, 6.25 + 1.96

6.25
31

)
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ML inference:  the delta method 

function of the parameters                                                                                               

asymptotically normal with mean      and  variance                                  

gradient,             estimate of gradient

(which e.g. can be estimated by                                  ) .

estimate of the function of the parameters

From this one can  construct  confidence intervals for 𝜂𝜂 in the same way 
as the confidence intervals for  𝜃𝜃 on the previous page.

Works well if 𝑔𝑔 is approximatly linear, not so well otherwise

8



Exercise: Compute  a confidence interval for the 95% quantile 
in a GP distribution based on observations 𝑥𝑥1, 𝑥𝑥2, … 𝑥𝑥𝑁𝑁

The GP density is ℎ 𝑥𝑥;𝜎𝜎, 𝛾𝛾 = 1
𝜎𝜎

1 + 𝛾𝛾
𝜎𝜎
𝑥𝑥

−1𝛾𝛾−1

log ℎ 𝑥𝑥;𝜎𝜎, 𝛾𝛾 = − log𝜎𝜎 −
1
𝛾𝛾

+ 1 log 1 +
𝛾𝛾
𝜎𝜎
𝑥𝑥

𝑑𝑑
𝑑𝑑𝜎𝜎

log ℎ 𝑥𝑥;𝜎𝜎, 𝛾𝛾 = −
1
𝜎𝜎

+
1 + 𝛾𝛾
𝜎𝜎2

𝑥𝑥

1 + 𝛾𝛾
𝜎𝜎 𝑥𝑥

𝑑𝑑
𝑑𝑑𝛾𝛾

log ℎ 𝑥𝑥;𝜎𝜎, 𝛾𝛾 =
1
𝛾𝛾2

log 1 +
𝛾𝛾
𝜎𝜎
𝑥𝑥 −

1
𝛾𝛾

+ 1
1
𝜎𝜎

𝑥𝑥

1 + 𝛾𝛾
𝜎𝜎 𝑥𝑥
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log likelihood function

ℓ 𝜎𝜎, 𝛾𝛾 = �
𝑖𝑖=1

𝑁𝑁

log ℎ 𝑥𝑥𝑖𝑖;𝜎𝜎, 𝛾𝛾

ML-estimates �𝜎𝜎, �𝛾𝛾 obtained as solutions to the equations

�
𝑖𝑖=1

𝑁𝑁
𝑑𝑑
𝑑𝑑𝜎𝜎

log ℎ 𝑥𝑥𝑖𝑖;𝜎𝜎, 𝛾𝛾 = 0

�
𝑖𝑖=1

𝑁𝑁
𝑑𝑑
𝑑𝑑𝛾𝛾

log ℎ 𝑥𝑥𝑖𝑖;𝜎𝜎, 𝛾𝛾 = 0

Observed information matrix obtained by inserting estimates into

𝐼𝐼 𝜎𝜎, 𝛾𝛾 =
−
𝑑𝑑2

𝑑𝑑𝜎𝜎2
ℓ 𝜎𝜎, 𝛾𝛾 −

𝑑𝑑2

𝑑𝑑𝜎𝜎𝑑𝑑𝛾𝛾
ℓ 𝜎𝜎, 𝛾𝛾

−
𝑑𝑑2

𝑑𝑑𝜎𝜎𝑑𝑑𝛾𝛾
ℓ 𝜎𝜎, 𝛾𝛾 −

𝑑𝑑2

𝑑𝑑𝛾𝛾2
ℓ 𝜎𝜎, 𝛾𝛾
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The 95% quantile 𝑥𝑥.95 in a GP distribution is obtained by solving

𝐻𝐻 𝑥𝑥.95 = 1 − 1 +
𝛾𝛾
𝜎𝜎
𝑥𝑥.95

−1𝛾𝛾
= 0.95

The solution is 

𝑔𝑔 𝜎𝜎, 𝛾𝛾 = 𝑥𝑥.95 =
𝜎𝜎
𝛾𝛾

(0.05−𝛾𝛾 − 1 )

so the maximum likelihood estimate is 

�𝑥𝑥.95 =
�𝜎𝜎
�𝛾𝛾

0.05−�𝛾𝛾 − 1

∇ 𝜎𝜎, 𝛾𝛾 =
𝑑𝑑
𝑑𝑑𝜎𝜎

𝑔𝑔 𝜎𝜎, 𝛾𝛾 ,
𝑑𝑑
𝑑𝑑𝛾𝛾

𝑔𝑔 𝜎𝜎, 𝛾𝛾

=
1
𝛾𝛾

0.05−𝛾𝛾 − 1 ,−
𝜎𝜎
𝛾𝛾2

0.05−𝛾𝛾 − 1 −
𝛾𝛾
𝜎𝜎
−log 0.05 0.05−𝛾𝛾
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The standard error of �𝑥𝑥.95 is estimated as

SE �𝑥𝑥.95 = ∇ �𝜎𝜎, �𝛾𝛾 𝐼𝐼( �𝜎𝜎, �𝛾𝛾)−1∇ �𝜎𝜎, �𝛾𝛾 𝑇𝑇

and a 95% asymptotic confidence interval is

( �𝑥𝑥.95 − 1.96SE �𝑥𝑥.95 , �𝑥𝑥.95 + 1.96SE �𝑥𝑥.95 )
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ML inference: Likelihood Ratio (LR) tests 

partition of       into two vectors       and       of dimensions  
𝑑𝑑 − 𝑝𝑝 and  𝑝𝑝.          maximizes                   over      , for     “kept fixed” (so 
function of     )    

asymptotically has a        distribution with  𝑑𝑑 − 𝑝𝑝
degrees of freedom if      is the true value    LR test:                        

Reject                             at the  significance level  𝛼𝛼 %   if 

2 𝑙𝑙(�̂�𝜃) − 𝑙𝑙 𝜃𝜃10, �̂�𝜃2∗ > 𝜒𝜒𝛼𝛼2 𝑑𝑑 − 𝑝𝑝 ,  where                       is the (1 − 𝛼𝛼)-th
quantile of the       distribution with  
𝑑𝑑 − 𝑝𝑝 degrees of freedom
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ML inference:  profile likelihood confidence intervals
(often more accurate than delta method intervals, plots from Coles )

Shape parameter Shape parameter

Conf. interval Conf. interval

Profile likelihood confidence intervals for the shape parameter  in the Block 
Maxima model. The delta method would give similar interval in the left
case, but not in the right.
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𝑥𝑥𝑝𝑝 = 𝑉𝑉𝑉𝑉𝑅𝑅𝑝𝑝(𝐿𝐿) = 𝑝𝑝-th quantile of distribution of loss L
= solution to 𝐹𝐹𝐿𝐿 𝑥𝑥𝑝𝑝 = 𝑝𝑝

𝐸𝐸𝑆𝑆𝑝𝑝 𝐿𝐿 = 𝐸𝐸 𝐿𝐿 𝐿𝐿 > 𝑉𝑉𝑉𝑉𝑅𝑅𝑝𝑝 𝐿𝐿 = Expected Shortfall

For the PoT model with threshold 𝑢𝑢 suppose that 𝑃𝑃 𝐿𝐿 > 𝑢𝑢 =
𝑝𝑝𝑢𝑢. Then 

𝑉𝑉𝑉𝑉𝑅𝑅𝑝𝑝 𝐿𝐿 =
𝜎𝜎
𝛾𝛾

1 − 𝑝𝑝
𝑝𝑝𝑢𝑢

−𝛾𝛾

− 1 + 𝑢𝑢, for 𝑝𝑝 > 𝑝𝑝𝑢𝑢

provided this value is greater than 𝑢𝑢,  and

𝐸𝐸𝑆𝑆𝑝𝑝 𝐿𝐿 = 𝑉𝑉𝑉𝑉𝑅𝑅𝑝𝑝 𝐿𝐿 +
𝜎𝜎 + 𝛾𝛾(𝑉𝑉𝑉𝑉𝑅𝑅𝑝𝑝 𝐿𝐿 − 𝑢𝑢)

1 − 𝛾𝛾
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Important exercise: Check if the formulas on the previous page 
are correct.

𝑉𝑉𝑉𝑉𝑅𝑅𝑝𝑝(𝐿𝐿) and 𝐸𝐸𝑆𝑆𝑝𝑝 𝐿𝐿 are estimated by replacing 𝜎𝜎, 𝛾𝛾 in the 
formulas on the previous page by their estimates �𝜎𝜎, �𝛾𝛾 and 
replacing 𝑝𝑝𝑢𝑢 by its estimate

𝑝𝑝𝑢𝑢∗ = # excesses of 𝑢𝑢
#observations
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Gudrun January 2005
326 MEuro loss
72 % due to forest losses  
4 times larger than second largest                         

Windstorm losses for
Länsförsäkringar 1982-2005

The real problem! 

PoT: windstorm insurance (Rootzén&
Tajvidi)



The problems

How much reinsurance should LFAB buy?

Should LFAB worry about windstorm losses 
getting worse?

How should  LFAB adjust if its forest insurance 
portfolio grows?

and: 

Can detailed modeling give better risk estimates?

Are windstorms becoming more frequent?
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1994 PoT analysis of 1982-1993 LFAB data (the basic method, 

more sophisticated analysis of 1982-2005 data in later paper)

conditional probability that a 
loss in excess of the reinsurance
level 850 MSEK exceeds x

Risk 
(MSEK) 

next 
year 

next 5 
years 

next 15 
years 

10%   66   215   473 
  1% 366 1149 2497 

 

𝑋𝑋𝑖𝑖 GP(𝑦𝑦 ;𝜎𝜎𝜆𝜆 , 𝛾𝛾)
𝜎𝜎𝜆𝜆 = exp(𝛼𝛼 + 𝛽𝛽𝑡𝑡)
�𝛼𝛼 = 0.93
�̂�𝛽 = .013 ± .013
no evidence of trend in
extremes Gudrun: 2912 MSEK, 12 years

later

Windstorms of 1902 and 1969 probably comparable to Gudrun
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Choice of threshold/number of order statistics 
in PoT, model diagnostics

Threshold choice compromise between low bias (= good fit of
model): requires high threshold/few order statistics, and low
variance: requires low threshold/many order statistics

• mean excess plots (high variability for heavy tails)
• median excess plots
• plots of parameter estimates as function of threshold/number 

of order statistics
• qq- and pp-plots

automatic threshold selection procedures exist, and are getting
better, but still “optimal” threshold depends on the unknown 
underlying distribution which has to be estimated.
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Quantiles of GPD
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Some conclusions

• risk cannot be summarized into one number
• extreme value statistics provide the simplest methods (but 
other methods may sometimes be needed)
• didn’t find clear trends
• meteorological data didn’t help
• don’t trust computer simulation models unless statistically

validated
• companies should develop systematic techniques for thinking 

about  “not yet seen” catastrophes 

• put contractual limits to aggregate exposure
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A step in another direction: 
catastrophe risks

BIG --- ”happens only once”

• can’t adjust and improve as experience is gained
• methods based on means, variances, central limit theory have
little meaning

• difficult to keep in mind that catastrophes can (and will!)
occur

a gamble --- find the odds of a gamble!
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