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May 4, 2021

Exercises on linear ODE with periodic coefficients.

Find the characteristic (Floquet) multiplicator for the scalar linear

equation with periodic coefficient: (4p)
7' = (a+sin®t)x

Find also those values of the parameter a that imply that all solutions
tend to zero with t — +o0.

. Calculate monodromy matrix and Floquet exponents for the 2-dim sys-

tem

where a(t) is a scalar periodic function with period T and A is a con-
stant real 2 x 2 matrix. Discuss conditions implying that all solutions
tend to zero or stay bounded with ¢t — +oo0.

Hint: make a change of time variable t — 7 = fti) a(s)ds.

Compute the monodromy matrix for the system with the following
periodic matrix A(t) with period 1.

a 1
— <
0 o Ay, 0<t<1/2
At) =
0]
— <
1o Ay, 1/2<t<1

Hint: combine explicit formulas for fundamental matrices on subin-
tervals where A(t) is a constant matrix and the Chapmen-Kolmogorov
relation.



4. Consider the following linear system of ODE with periodic coefficients:

d7 (t) = . : P 11

= A(t)r(t), with matrix A(t) = (a + sin“(t)) ERE

Use Floquet theory to find for which real constants a its solutions are
bounded. Hint: make a change of the time variable as in Exercise 2 to

find a monodromy matrix.

5. Exercise 2.21. p.58. Consider the Hill equation y” + a(t)y = 0;
a(t + p) = a(t).with periodic a(t) with period p = 1 having the form:

aft) Wi m<t<m+rT
10, m+r<t<m-+1

Here 7 € (0,1), w = 7/7.
The vector form of the Hill equation is:

¥ = A(t)z
Al = [—2@) H

Consider the transfer matrix solution ®(¢,0) and show that its first col-
umn P4 (¢,0) is periodic with period 2, and it’s second column ®y(¢,0) is
unbounded with the first element equal to (—1)"n(1 — 7).



Some solutions

1. Find the characteristic multiplicator for the scalar linear equation with

periodic coefficient: (4p)

7' = (a+sin’*t)x

The characteristic multiplicator is eigenvalue of the monodromy matrix

denoted by ®(p, 0) in the course book, where p is the period of the right hand
side in the equation. One builds a monodromy matrix (it will be a number
in our case with one scalar equation) of solutions to initial value problems
with initial data z(0) that are standard basis vectors in R" calculated in the
time point T' - equal to the period of the right hand side.In our case we have
just one scalar equation, so the monodromy matrix will be a number. We
find the value of the solution to I.V.P. to the given equation with initial data
x(0) = 1 at the time t = 7 that is a period of the right hand side in our
case. The equation is linear, so the solution is found with help of a primitive
function of the coefficient:

1. P(t) = fg (a + sin® s)ds = 1t + at — } sin 2t.

z(t) = exp(P(t))z(0) = exp (5t + at — § sin 2t) z(0).

The monodromy "matrix" in our case is the value of the solution z(t)
in t = 7 such that z(0) = 1.

®(m,0) = z(r) = exp (37 + ar) = exp (7(1/2 + a)).

The characteristic multiplicator is the same number: exp (7(1/2 + a)).

Solutions will tend to zero in the case a < —1/2, that makes exp (7(1/2 4+ a)) <
1.



3. Compute the monodromy matrix for the system z'(t) = A(t)x(t) with
the following periodic matrix A(t) with period 1.

a 1
— <
{0 a] Ay, 0<t<1/2

A(t) =

a 0
— <
[1 a} A, 1/2<t<1

Solution:
The monodromy matrix ®(p,0) = ®(1,0) is expressed as (using Chapman-
Kolmogorov)

B(1,0) = B(1,1/2)d(1/2,0)
= exp((1 —1/2)Az) exp((1/2) Ay)
exp((1/2)Ay) exp((1/2) Ay)

Here exp(tA;) = exp(at) { (1) i ] , exp(tAz) = exp(at) [ 1 ? }

We derive an explicit expression for ®(1,0) ®(1,0) = exp(3a+3a) [ 1}2 (1) } [ (1) 1{2 }

1 1
= exp(oz) 1 % :| )
2 4
1 2 1 1
det{l %}zl;Tr{l %}:2.25.
2 4 2 4
characteristic polynomial p(\) = A\* — %)\ +1

eigenvalues: )\1:%— (%)2—1:%—%\/1_7>0, )\2:%\/1_7+% >0
and are simple.

Find conditions on « such that all solutions will be bounded

The condition for boundedness of all solutions is exp(a) || < 1 or
exp(oz)% (\/1_7 + 9) < 1 because \, is larger in absolute value.

It can be reformulated by taking logarithm of left and right hand sides
as a < In(8) — In(v/17 + 9) ~ —0.494 93.

All solutions will tend to zero if and only if the strict inequality is valid
a < In(8) — In(v/17 +9) ~ —0.494 93



4. Consider the following linear system of ODE with periodic coefficients:

d7 (t) - ) . . 9 L1
— = A(t) 7 (t), with matrix A(t) = (a + sin”(t)) { 1 9 ] .

Use Floquet theory to find for which real constants a its solutions are
bounded.

Hint: make a change of the time variable to find a monodromy matrix.
(4p)

Solution. The period of the coefficients is p = 7.

Consider the equation in the form

(a+sin2(t))dz(t) - { 1 H?

Introduce a new time variable 7(t) = fot (a + sin®(s))ds. The change of
variables in time differentiation will be

d dr(t)d d(fyla+sin())ds) 4 _ (asin?(e) 2
it~ dt dr dt gr I
! 9 11
7(t) = [ a+sin®(s)ds = at + =t — —sin 2t
; 2" T 1
Therefore
1 dr@t) dr(r) [1 1 = _ g7
(a+sin(t)) dt — dr |1 2 N

and we have got a linear system of ODEs with constant coefficients in
terms of the 7 variable and can solve it exactly. Its transfer matrix is exp(7B)
and
7 (1) = exp(7B)r(0)
with exp(0 - B) = I.
The transfer matrix for the original system is

(t,0) = exp(r(t)B)



and we observe that exp(B7(0)) = I. The monodromy matrix of the original
system will be ®(7,0) because the period of the coefficients is p = .

®(7,0) = exp (7(m)B)

11
1 2
Eigenvalues of the matrix B are \; = % - % 5 and Ay = %\/5 + % -
both positive. Floquet multipliers are exp(A\7(7)) and exp(Ae7 (7)) and are
semisimple. Floquet exponents are evidently < (A;7(7)) and L (A7()).

We must have 7(7m) < 0 to have the both Floquet exponents non-positive
and correspondingly to have Floquet multipliers not larger than 1.

It will imply by the Floquet theorem that solutions to the given system of
ODE will be bounded because \;7(7) and A7 () are different (not multiple).
Checking the values of the integral 7(7) = [["(a + sin®(s))ds = am + 37 —
%lsin 21 we observe that to have 7(27) < 0, a must satisfy the inequality
a < —1/2. The same idea would in fact work for any function instead of
(a + sin?(s)) in the definition of A(t). See Exercise 2.

The characteristic polynomial for the matrix B = [ = A2 —3)\+1

5. Exercise 2.21. p.58.

Consider the Hill equation y” + a(t)y = 0; a(t + p) = a(t).with periodic
a(t) with period p = 1. The vector form with x1(t) = y(t), z2(t) = ¥/(t) of
the equation is:

¢ = Al
A0 = | oy o)

We choose a(t) as a piecewise constat periodic function:

a(t) = Wi om<t<m+rT
10, m+rT<t<m-+1

Here 7 € (0,1), w = 7/T.

Consider the transfer matrix solution ®(¢,0) and show that its first col-
umn $(¢,0) is periodic with period 2, and it’s second column ®,(t,0) is
unbounded with the it’s element equal to (—1)"n(1 — 7).

Solution. The monodromy matrix has the followinf structure:

®(1,0) = O(1,7)P(7,0) = exp((1 — 7)A2) exp(TA;)

6



where according to the definition of A(t)

Alz{ 0 H — A() , t € (0,7)

—W

Ay — [8 é] —A(t), te(r1)

Eigenvectors to A; are: [ :jl } = { [ _15 } } — iw,
2

% = —lWw.
Check the first of eigenvectors:

0 1 V1 . U1
—w? 0 Uy - Uy
Vg = WU

—wi; = iwuy

1. (t) = ([ N ]exp(m)) — [ “ ] (cos(wt) + i sin(wt)) = { — 1 (costw + i sin tw)

costw + ¢ sin tw
L (sintw) —L costw

N % = w N I % = W‘

 Rez.(t) cos tw » Ima(t) sin tw

We like to build using these two linearly independent solutions, one

solution with initial data e; = [ (1] } and one solution with initial data

e It is easy to see that the following solutions satisfy these initial
conditions and can be collected into the transfer matrix:

€y =

costw L (sintw)
w
—w sin tw cos tw

®(t,0) = [—WImCU*(t),Rea:*(t)]:{

®(r,0) = { cos 7w i(sinm)}

—wsin Tw COS TW

We will calculate ®(¢,7) for ¢t € (7, 1].
01
=0

7



As is a Joirdan block with eigenalue A = 0.
Then ®(¢,7) = exp <(t —7) [ 8 (1) ]) l (1] t_l } according to for-
mulas for a Jordan block.

Then ®(1,7) = élzT ;

The monodromy matrix is calculated as:

— L(gi

5(1,0) — @(LT)@(T,o):{l ! TH cos 7w w<smm>}
—wsinTw  cosTw

B [cosnu—w(smTw)(l—T ls1n7’cu—i—(COSTw)(l—T)]

—WSsImTw COS TWwW

If w = m/7, then the monodromy matrix is

B(1,0) — cosT —w (sinm) (1 —7) Lsinm+ (cosm)(1—7)
S —wsinm cos

- [0 N7

Eigenvalues of this triangular monodromy matrix are both equal to A\; o =
—1.

Checking the matrix ®(1,0) — (—1)] = { 0 —(1-

7)
0 0 } we find only one

linearly independent eigenvector to ®(1,0) is e; = [ (1] ] .

1) Therefore there must exist unbounded solutions because the multiple
A12 = —1 is not semisimple. (!!!)

2) Therefore (M5)> =1 . It implies by a Corollary preious time that the
solution with initial data equal to the corresponding eigenvector e; has the
period 2p = 2 that is double period of the system. In this particular case the
period of coefficients is p = 1.

Ajv = Mdv, v - an eigenvector
z.(t) = exp(tA)v is a solution to
2 = Az



This solution is the first column in ®(t,0), because the corresponding eigen-

vector e; = {

(1) ] - is the initial condition for the first column in ®(¢,0).

In time points t = pn = n the second column in ®(¢,0) is equal to the
second column in ®(1,0)" -that is the n - th power of the monodromy matrix
that coinsides with ®(t,0) for t equal to integer number of periods.

®(1,0)2 =
®(1,0)3 =

®(1,0)* =

We observe that ®(1,0)" = {

finished.
[ |

-1 —(1—7) ]
0 —1

-1 —(1-7)
0 -1

-1 —(1-7)
0 —1

17" -1 3r—3
1o

{—01 —(1_17)

-1

1% 1 —4r+4
“lo 1

0 (=1)"

1 (~1)"n(1—

T

|
|

7) } and the exercise is



