May 3, 2021

Exercises on general linear ODE

1. Show that (A(t)B(t)) = A'(t)B(t) + A(t)B'(t) for n x n matrices A(t) and B(t) with differentiable
elements.

2. Show that det(exp(A)) = exp(trA) for any constant matrix A.

3. If t — ¥(¢) is a fundamental matrix solution for the system 2’ = A(t)z, x € R". It means that
U'(t) = A(t)¥(t).

Then the matrix valued function ®(¢,7) = U(t)¥~!(7) is called the transition matrix function: it is a
fundamental matrix solution with respect to the variable ¢ for each 7 such that ®(7,7) = I. It implies
that the solution x(t) to I.V.P.

¥=Alt)xr, x(r)=¢&

with initial data & at the time 7 is given by the expression:
x(t) = ®(t, 7)¢
The matrix ®(t, 7) satisfies Chapman-Kolmogorov identities:
O(t,s)P(s,7) = P(t,7)
(semigroup property) and

B, 5) = B(s, 1), a@é’; )t 5)A(s)

Prove these statements.
4. Calculate the transition matrix function ®(¢, s) for the system of equations

Ty =tx
l'/2 =2+ tI‘Q
5. Calculate the transition matrix function ®(t, s) for the system of equations

) = x1 + tag
/!
Ty = 2T9

6. Suppose that every solution of 2/ = A(t)z is bounded for ¢t > 0 and let ¥(¢) be a fundamental matrix
solution. Prove that U~!(¢) is bounded for ¢ > 0 if and only if the function ¢t — f(f trA(s)ds is bounded
from below. Hint: The inverse of a matrix is the adjugate of the matrix divided by its determinant. See:
http://en.wikipedia.org/wiki/Adjugate matrix

7. Suppose that the linear system z’ = A(t)z is defined on an open interval containing the origin whose
right-hand end point is w < oo and the norm of every solution has a finite limit as ¢t — w.

Show that there is a solution converging to zero as ¢t — w if and only if fow trA(s)ds = —oo. Hint: Use
Abels formula and the fact that a matrix has a nontrivial kernel if and only if its determinant is zero.
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7a. Show that if liminf, , fti tr(A(s))ds = +oo then the equation #’ = A(t)z has an unbounded
solution. Hint: use Abel’s formula.

8. Let A be an invertible constant matrix. Show that the only invariant lines for the linear system
¢’ = Az, x € R? are the lines az; + by = 0 where [—b,a]” is an eigenvector to A.

9. Show that for arbitrary n x n matrix A the relation det(I +eA + O(g?)) = 1 + etr (A) + O(&?)

10. Consider the flow ¢(t,x) corresponding to the autonomous equation ' = f(y), y € R™ mapping
the domain 2 to the domain as Q; = {y = ¢(t,x),z € Q} where y is the solution to the ODE v’ = f(y)
with initial data y(0) =z € Q.

Show that £ (Vol()) = Jo, div (f) dy. Hint: use the result of Ex.9.

11. Show directly that the area of a unit disk is preserved when it is transformed forward to 2 time
units by the flow, corresponding to the system 2’ = y, ¥ = x. Hint: consider the system in new variables
r+yand x —y.



Solutions.
Solution to 3.
o B(t,5)®(s,7) = V()T s)U(s)U (7)) =V() T (7) = D(¢, 7).
o Ot s) = (U(t)¥!

(
o % = —®d(t,5)A(s)

Use the relation: L (U7!(s)) = =0~ (s)L (U(s)) T(s)

0v(ts) _ O 0N) _ (o1 1) 2 (@ (s, 1) B (s, 1)) = —B (s, 1) AD(s, 1) (s, ) = B (s,1) A

Js

Solution to 4.
Calculate the transition matrix function ®(t, s) for the system of equations

Ty =tx
xh = x1 +txg

z(t) = ®(t, 7)€

Here the matrix A(t) is triangular.

Solution to the scalar linear equation ' = p(t)z + ¢g(t) with initial data z(7) = x, is calculated using
the primitive function P(¢, 7) of p(t).

v = p(t)r+g(t)

P(t,7) = /Ttp(s)ds

z(t) = eXp{]P’(t,T)}:Uo—i—/ exp {P(t, s)} g(s)ds

z(T) = g

P R ——

B = [ sl

exp{-P(t,7)}2" = exp{-P(t 7)}p(t)z +exp {-P(t,7)} g(t)
exp {—P(t,7)} 2’ — p(t)exp {-P(t,7)}z = exp{-P(t,7)}g(t)
exp {—P(t,7)} ' + (exp {~P(t,7)})'x = exp{-P(t,7)}g(t)
lexp {=P(t,7)} 2] = exp{-P(t,7)}g(t)
/ [exp {—P(s,7)}2(s)]'ds = / exp{—P(s,7)} g(s)ds

exp {~PB(t, 7)} 2(t) — exp {~B(r,7)} 20 = / exp {—P(s, 7)} g(s)ds

exp {—P(t,7)} (t) — exp {0} zp = / exp {—P(s,7)} g(s)ds



o) = e (D a0+ [ e P} (P ) o(o)is
z(t) = exp{P(t,7)}xo+ /Tt exp {P(t,7) — P(s,7)} g(s)ds
P(t,7) — P(s,7) — / p(2)dz / Cp(2)ds — / (s + / " p(2)ds —
[ o = i)

2(t) = exp{P(t,7)}zo+ / exp {P(t, 5)} g(s)ds:

(1) = xo

The system of ODE above has triangular matrix and can be solved recursively starting from the first
equation.
The fundamental matrix ®(¢, 7) satifies the same equation, namely

d
E@(t, T) = Ad®(t,71)

O(r,7) = 1

®(t,7) has columns 7(t,7) and my(¢,7) that at the time ¢ = 7 have initial values [1,0]” and [0, 1],

10
because ®(7,7) =1 = [ 01 } :
In the equation zj = tx; the coefficient p(t) = t, therefore P(¢,7) = f: sds = (
and the solution z1(t) = exp(3 (t2 — 7))z (7).
The second equation x5, = t x5 + x; is similar but inhomogeneous:

xo(t) = exp(P(t, to))z2(to) —i—/t exp(P(t, s))x1(s)ds.
Substituting P(t, 7) = 1 (2 — 72) we conclude that @5(t) = exp(2 (t2 — 72))ao(7)+ [T exp(L (2 — s%)) exp(3 (s -

exp(L (2 = 7))aa(r) + [ exp(} (22 — 7)1 (r)ds
And

xo(t) = exp(% (£ = 7°))za(7) + exp(% (£ = 7)1 (1) (t — 7).

The fundamental matrix solution ®(¢,7) has columns that are solutions to ' = A(t)x with initial data -
0
1 )
Taking z1(7) = 1 and () = 0 we get 21 (t) = exp(5 (t* — 72)) with z5(t) = exp(3 (2 — 72))(t — 7)
Taking z1(7) = 0 and z5(7) = 1 we get z1(¢) = 0 with z5(t) = exp(3 (t* — 7)) and the fundamental
matrix solution in the form
(t T )) [ t—7 1

that are columns in the unit matrix: [ (1) } and [

O(t,7) = exp(
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Solution to 5. The solution is similar to the problem 4.
¥ = p(t)z+ gt 1)

P(t, tg) = /ttp(s)ds

z(t) = eXp{IP’(t,to)}azo—l—/ exp {P(t, s)} g(s)ds

to
I(tg) = Xy

r(r,7) = [H,m(m) _ [(1)]

We solve first the equation for x4(t) with initial data z5(7) :

xo(t) = xo(7) exp(2(t — 7))

and then the equation for x;(¢) with initial data z;(7) and substituting the solution for xs(t) =
x2(7) exp(2(t — 7))into the right hand side of the equation, both accoring to the formula in (1)

x1(t) = z(1)exp(t—7)+ / exp(t — s) [sxo(T) exp(2(s — 7))] ds

= x1(7)exp(t — 7) + z2(7) exp(t — 27) / exp(s)sds =

texp(s)sds = te! —1e” — (¢ — ¢)
U |

= z(7)exp(t — 7) + xa(T) (et_T — el — 207 4 tez(t_T))
and substitute particular initial data for my (¢, 7), ma(t, 7):

exp(t —7) exp(t—7)(1—7)+exp(2(t—7))(t—1)
o(t,7) = { 0 exp(2(t — 7)) ’ ]

Solution to 6.

Suppose that every solution of ' = A(t)x is bounded for ¢ > 0 and let ¥(¢) be a fundamental matrix
solution. Prove that U~!(¢) is bounded for ¢ > 0 if and only if the function ¢t — fot trA(s)ds is bounded
from below.

Hint: The inverse of a matrix is the adjugate of the matgix divided by its determinant, namely
UL(t) = [det(T ()] " [Adj(¥(#))]. The adjugate Adj(B) = (E) where the matrix B is a matrix of the

same size as B with elements in B;; calculated as n — 1 dimentional determinants of the matrix B with
eliminated i-th row and j-th column times (—1)"*7. See http://en.wikipedia.org/wiki/Adjugate matrix

The fact that all solutions to the ODE are bounded for ¢ > 0 implies that all elements in ¥(t) are
bounded for ¢ > 0 and therefore all elements of Adj(¥(t)) are bounded for ¢ > 0 since they consist
of sums of products of bounded elements in W(¢) times +1. It implies that ¥~1(¢) is bounded (has
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bounded elements) for ¢ > 0 if and only if [det(¥(¢))] " is bounded that is equivalent to that |det(®(t))]
is bounded from below for for t > 0. Abel’s formula gives that det(¥(¢)) = det(¥(0))exp (fot trA(s)ds)

and that |det(¥(t))| = |det(¥(0))]exp (fot trA(s)ds) > a > 0, (bounded from below) if and only if
In (|det(¥(0))]) + ( s trA(s)ds) > Ina or

(/Ot trA(s)ds) > Ina — In (|det(T(0))])

It implies that |det(¥(¢))| is bounded from below if and only if fot trA(s)ds is bounded from below for
t > 0 (cannot go to —oo with ¢, — +oo for some for some sequence of times {t;},-, ).

Solution to 7.

Formulation of the problem. Suppose that the linear system z’ = A(t)x is defined on an open
interval (a,w) containing the origin whose right-hand end point is w < 0o and the norm of every solution
has a finite limit as t — w.

Show that there is a solution converging to zero as t — w if and only if [* trA(s)ds = —co.

Hint: Use Abels formula and the fact that a matrix has a nontrivial kernel if and only if its determinant
is zero.

Solution. We show first implication <=, that if fow trA(s)ds = —oo, then there must exist a solution
converging to zero with other conditions satisfied.

Suppose opposite, that all solutions z(t) to the system have a limit of the norm strictly positive:
}er:} |z(t)|| = Cz > 0 (we remind the condition in the problem that all solutions have a limit }gr; |x(t)]])-

There must exist a monotone sequence {t;},~ that converges to w: klim tr = w, such that ®(¢,0) has
a limit along this sequence of times: klim O (ty,0) = &,. It follows from the property that any bounded

sequence in a complete vector space must have a convergent subsequence and from the fact that columns
in ®(¢,0) are uniformly bounded solutions to the ODE.
The condition that [°trA(s)ds = —oo means that lim 5 trA(s)ds = —oco. The Abel-Liouville formula

implies that
t
lim det(%(£,0) = det(#(0,0)) exp (}im / trA(s)ds)) ~0
—w —% Jo
Therefore for the sequence {#;},° it follows that

0= lim det ®(ty,0) = det lim ®(ty,0) = det @, =0

k—oo
We conclude that the limit matrix ®, has a non-trivial kernel, namely there is a vector ¢ = [cy, ¢a, ..., ¢,]T
such that ®,c = 0.
Therefore limy_,o, ®(tg,0)c = ®,c = 0. It means that the solution z,(t) to the system =’ = A(t)x with

initial condition x,(0) = ¢ has the property limy_, z.(t;) = 0 (here klim ty = w)
It contradicts to our supposition that all solutions have }im |z(t)|| — C, > 0.1

The implication = in the exercise means that if there is a solution z,(t) such that lim; ., z.(t) = 0
then ["trA(s)ds = —oo.

Consider ¢ = x,(0). Consider a basis {b;};_, in R” with b; = {. Consider the matrix W (¢) (Wronskian)
that has columns that are solutions to the system 2’ = A(t)x with initial conditions {b;};_,. Then the
Abel formula for W (t) reads:

det (W (1)) = det (W/(0)) exp ( /0 t trA(s)ds))



The limit of this determinant with ¢ tending to w is zero

lim det(W(£)) = 0

t—w

because the first column z,(¢) in the Wronsky matrix W (t) tends to zero. It is possible if and only if
lim,_, fot trA(s)ds = [ trA(s)ds = —co because

t—w t—w

0 = Tim det (1 (£) = det(1V/(0)) exp (lim /0 t trA(s)ds))

and columns in W (0) are linearly independent and therefore det (1/(0)) # 0.1

Solution to 7a.(Corollary 2.33, p. 59)

Show that if lim inf, fti tr(A(s))ds = +oo then the equation 2’ = A(t)z has an unbounded solution.
Hint: use Abel’s formula.

Solution.We remind that the transfer matrix ®(¢, 7) satifies the initial value problem:

d

7 O(t,7) = At)P(t, 1)

O(r,7) = 1
Arbitrary solution to the initial problem z/(t) = A(t)x(t), x(7) = £ will be expressed as

o(t) = @(t,7)¢

According to Abel - Liouville’s formulaand Euler formula for complex numbers

|det(®(t,0))] =

exp ( /0 t tr(A(s)ds)

Therefore, if Re (f; tr(A(s)ds) > 0 then

det(®(0,0)) exp ( /0 t tr(A(S)ds) ‘ _

exp (Re < /0 t tr(A(s)ds))'
exp <Re /0 ’ tr(A(s)ds)‘ S 1,

On the other hand det(®(p,0)) is a product of eigenvalues p,, to the monodromy matrix ®(p,0) with
multiplicities my, (it follows from the structure of similar Jordan matrix)

|det(®(p, 0))] =

|det(®(p, 0 I—Hlﬂklm’“

To have this product greater than 1 we must have at least one eigenvalue p, with | /Lp} >1. There-
fore, according to one of Floquet theorems, there is a solution xz(t) that is not bounded and therefore
limsup,_, ., [|z(t)]| = cc. B

Solution to 9.

Abel’s formula for fundamental matrix solution is det(¥(¢)) = det(¥(0)) exp ( fot trA(s)ds) . For

det(exp(tA)) = det(I) exp (f(f trAds) = exp (ttrA)

det((I +eA) + O(e?)) = det((I +cA) + O(?) — exp(cA) + exp(cA)) = det(exp(eA) + O(g?)) =
det (exp (e trA)) + O(g?)



=exp (etrAd) + O(e?) = 1 +etr (A) + O(£?).

One can also give a direct proof considering an expansion of det((I +cA) + O(g?)) according to the
addition rool for determinants and observing that the only terms of order zero and one in ¢ — 0 in the
determinant are 1 and € A;;. Adding the last ones leads to ¢ tr (A).

Solution to 10.

Consider the flow ¢(¢,x) corresponding to the autonomous equation y' = f(y), y € R" mapping the
domain €2 to the domain as ; = {y = ¢(t,z),x € Q} where y is the solution to the ODE ¢’ = f(y) with
initial data y(0) = z € Q.

Show that L (Vol()) = Jo, div (f) dy. Hint: use the result of Ex.9.

(Vol(Q fQ dx

Con81der1ng derivative of the integral is useful to have the integration over a fixed domain and function
under the integral depending on time. To implement this idea we introduce a change of variables such that
the domaln of integration for time ¢ coinsides with the "initial" domain €y and

(Vol(2)) = [, dv = [, ‘det [Dd)” ] dx

Con81der this integral for t — 0.

L (t r) =2 [Tz+1tf(0,2)+ 0] = [I+tL f(0,z) +O(t})], for t — 0

det [A-o(t, )T det [I +t£= f(0,2) + O(t?)] =1+ ttr [ f(0, x)} +O(t?) > 0, for t — 0

and )det [ ot ” = det [2o(t,2)]

tr[ f(0, x)] = div (f(0,z))

(Vol(Qt fQ div (f(0,x)) dz

The same argument works naturally for any time ¢.

Solution to 11.

11. Show directly that the area of a unit disk is preserved when it is transformed forward to 2 time
units by the flow, corresponding to the system 2’ = y, ' = x. Hint: consider the system in new variables
r4+yand x—y

Solution.

Remind first that the ormula for transformation of area and volume integrals under a transformation

of variables.
Let ¢ : R™ — R" be a C! mapping (havng continuous derivatives) and A C R", B C R", B = ¢(A).Then

/ f(z dz-/f Ydet(J(o(z))dx

where J(¢(z)) is the Jacoby matrix of the mapping ¢.
For volume of the transformed set ¢(A) the formula simplifies by inserting f(z) = 1:

Vol($(A)) = /qb L ] laet(r(6 @) s

For a linear transformation of A generated by the linear equation with the transfer matrix ®(¢,0) the
Jacoby matrix for each time ¢ is the transfer matrix itself:

J(¢(x)) = @(t,0)

and this formula for the volume of the transformed set A looks as:

Vol(®(t,0)(A)) = [I)(t)(A)dz:/A|det((I>(t,0))|d$

=I

/A det(B(0.0)) exp ( /0 ttr(A(s)ds) dz
_ /A exp ( /Ottr(A(s)ds)
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The particular problem here is reduced to calculating the determinant of the transfer matrix of the given
system of equations:

r =Y
"=
or
r = Ar
01
ity
tr(4A) = 0

with constant matrix A, that simplifies the formula for the volume even more.

Vol(®(,0)(A)) = /A exp < /Ot [trA]ds)
/A loxp (¢ [trA] ds)| dr /A loxp (¢ [trA] ds)| da

= /Ada: = Vol(A)

dr =

It shows that the transfer mapping of this system (or flow corresponding to this system as one says in
the theory of dynamical systems) preserves volume. It implies that any disc will preserve it’s arean under
this mapping in fact at any time.



