
April 5, 2022

Exercises in ODE and modeling MMG511/TMV162. Spring 2022.
Weeks 1,2 . Linear systems of ODE with constant coe¢ cients.
It is recommended to solve problems marked "Homework" and "solve in the

class". They cover most of typical cases.
Find general solutions to following ODEs and sketch phase portraits

for systems in plane:

786. r0 = Ar with A =
�
2 1
3 4

�
;

789.
�
x0 = x+ y
y0 = �2x+ 3y

790.
�
x0 = x� 3y
y0 = 3x+ y

791.
�
x0 + x+ 5y = 0
y0 � x� y = 0

792.
�
x0 = 2x+ y
y0 = �x+ 4y - Homework

852. r0 = Ar with A =
�
1 1
2 0

�
;

853. r0 = Ar with A =
�
1 �2
2 �3

�
; give as an exercise in the class ?

854. r0 = Ar with A =
�
3 �2
4 �1

�
; - demonstration in the class. Com-

plex eigenvalues.

856. r0 = Ar with A =

24 1 �2 2
1 4 �2
1 5 �3

35 ; - Homework
857. r0 = Ar with A =

24 �1 �2 2
�2 �1 2
�3 �2 3

35 ;
858. r0 = Ar with A =

24 �3 2 2
�3 �1 1
�1 2 0

35 ; - Homework complex eigenva-
lies

1



859. r0 = Ar with A =

24 3 �3 1
3 �2 2
�1 2 0

35 ; - solve in the class complex
eigenvalues

861. r0 = Ar with A =

24 0 1 1
1 0 1
2 2 1

35
862. r0 = Ar with A =

24 0 1 1
1 1 0
�1 0 1

35 ; - solve in the class

863. r0 = Ar with A =

24 �2 1 2
�1 0 2
�2 0 3

35 ; - Homework
864. r0 = Ar with A =

24 0 1 �1
1 0 �1
2 2 �3

35 ; complicated case when eigenvec-
tors must be chosen in a clever way

865. r0 = Ar with A =

24 4 2 �2
1 3 �1
3 3 �1

35 ; - solve in the class
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Calculate Jordans canonical matrices and �nd canonical basis for
the following matrices.
It is nice to take one simple example, and a couple of larger examples. Some

are suggested below.

6.4.23. A =
�
11 4
�4 3

�
; Homework

6.4.51. A =

24 4 1 1
�2 1 �2
1 1 4

35
6.4.63. A =

24 �2 �1 1
5 �1 4
5 1 2

35 ; Homework
6.4.64. A =

24 3 �1 1
�2 4 �2
�2 2 0

35
6.4.65. A =

24 �4 4 2
�1 1 1
�5 4 3

35
6.4.66. A =

24 3 0 �1
�2 1 1
3 �1 �1

35
861. A =

24 0 1 1
1 0 1
2 2 1

35 Homework

862. A =

24 0 1 1
1 1 0
�1 0 1

35

863. A =

24 �2 1 2
�1 0 2
�2 0 3

35
864. A =

24 0 1 �1
1 0 �1
2 2 �3

35 ;Homework
865. A =

24 4 2 �2
1 3 �1
3 3 �1

35
Calculate eA for following matrices A. Solve a couple of example

2x2 and two examples 3x3.

868. A =

�
0 1
�1 0

�
; 869. A =

�
2 1
0 2

�
; 870. A =

�
3 �1
2 0

�
; 871.

A =

�
�2 �4
1 2

�
;
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872. A =

24 0 1 0
0 0 0
0 0 2

35; 873. A =
24 2 1 0
0 2 1
0 0 2

35 ; 859.
24 3 �3 1
3 �2 2
�1 2 0

35(di¢ cult
case with two complex conjugate eigenvalues)
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Answers and solutions.

Theoretical background. We use the formula

x(t) = eAtx0 =
sX
j=1

 "
mj�1X
k=0

(A� �jI)k
tk

k!

#
x0;je�jt

!

for solutions with initial data

x(0) = x0 =
sX
j=1

x0;j

with x0;j 2 E(�j; A) - components of x0 in the generalized eigenspaces E(�j; A)
= ker(A� �j)mj of the matrix A. Here s is the number of distinct eigenvalues �j
to A and mj is the algebraic multiplicity of the eigenvalue �j. We point out that
Cn = E(�1; A)� E(�2; A)� ::: �E(�s; A).
General solution can be expressed more explicitely by �nding a basis of Cn

in terms of eigenvectors vj and generalized eigenvectors v
(k)
j k = 1; :::l � mj � 1

corresponding to all distinct eigenvalues to A: �j, j = 1; :::s; so that components
x0;j of x0 on to the generalized eigenspaces are expressed in the form

x0;j = :::Cpvj + Cp+1v
(1)
j + Cp+2v

(2)
j :::

including all linearly independent eigenvectors corresponding to �j (it might be
several eigenvectors vj corresponding to one �j ) and corresponding linearly inde-
pendent generalized eigenvectors for example calculated as it is suggested below.
Eigenvectors and generalized eigenvectors is convenient to calculate as a chain

of vectors satisfying the following recursive chain of equations

(A� �jI) vj = 0;

(A� �jI) v0;1j = vj

(A� �jI) v0;2j = v0;1j
e:t:c:

(A� �jI) v0;nj�1j = v
0;nj�2
j

It is not always possible to run this algorithm from the top downward, de-
pending on the matrix and the choice of the eigenvectors. Sometimes the only
way is to �nd a generalised eigenvector v0;nj�1j using the de�nition solving the

equation: (A� �jI)nj v0;nj�1j = 0 for nj such that (A� �jI)nj�1 v0;nj�1j 6= 0: Af-
ter that one can apply the same algorithm in the upward direction. Substituting
this expression for x0 in to the general formula above and carrying out all matrix-
matrix and matrix-vector, multiplications one gets a general solution. Keep in
mind that (A� �jI) vj = 0 and (A� �jI)2 v0;1j = 0 e.t.c., so many terms in the
expressionhPmj�1

k=0 (A� �jI)k t
k

k!

i
x0;j for x0;j = Cpvj +Cp+1v

(1)
j +Cp+2v

(2)
j + ::: are zero.
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786. Answer. r = C1et
�
1
�1

�
+ C2e

5t

�
1
3

�
789. Answer. x = e2t (C1 cos t+ C2 sin t); y = e2t [(C1 + C2) cos t+ (C2 � C1) sin t]
790. Answer. x = et (C1 cos 3t+ C2 sin 3t); y = et [C1 sin 3t� C2 cos 3t]
791. Answer. x = (2C2 � C1) cos 2t � (2C1 + C2) sin 2t; y = C1 cos 2t +

C2 sin 2t
792. Answer. x = (C1 + C2t) e3t; y = (C1 + C2 + C2t) e3t

852. Answer. r = C1e2t
�
1
1

�
+ C2e

�t
�
1
�2

�
853. Solution: A =

�
1 �2
2 �3

�
:A,

characteristic polynomial: �2 + 2� + 1 = 0 has a double eigenvalue: � = �1;
and one eigenvector: v =

�
2
2

�
:

Generalized eigenvector v(1) =
�
x
y

�
satis�es the equation�

2 �2
2 �2

� �
x
y

�
=

�
2
2

�
=) 2x� 2y = 2; y = 1, x = 2; v(1) =

�
2
1

�
.

Observe that v and v(1) are linearly independent (not parallel).
Therefore any initial data r0 can be represented as r0 = C1v + C2v

(1) and
solution to I.V.P. with initial data r0 will be

r(t) = eAtr0 = C1e
�tv + [I + (A� �I) t] e�tC2v(1)

= C1e
�t
�
2
2

�
+ e�tC2

��
1 0
0 1

�
+ t

�
2 �2
2 �2

���
2
1

�
=

= C1e
�t
�
2
2

�
+ C2

�
e�t
�
2
1

�
+ t

�
2
2

��
= C1e

�t
�
2
2

�
+ C2e

�t
�
2t+ 2
2t+ 1

�
�
854. Answer. r = C1et

�
cos 2t

cos 2t+ sin 2t

�
+ C2e

t

�
sin 2t

sin 2t� cos 2t

�
Solution. A =

�
3 �2
4 �1

�
, characteristic polynomial: �2 � 2�+ 5 = 0;

eigenvectors:v1 =
��

1
1 + i

��
$ �1 = 1� 2i;and v2 =

��
1

1� i

��
$ �2 =

1 + 2i.

A complex solution is x�(t) = e(1�2i)t
�

1
1 + i

�
.

Two linearly independent solutions can be chosen as real and imaginary part of
x�(t) and can be used for representing a general solution as x(t) = C1Re [x�(t)]+
C2 Im [x

�(t)] :

e(1�2i)t
�

1
1 + i

�
= et (cos 2t� i sin 2t)

�
1

1 + i

�
= et

�
cos 2t� i sin 2t

(1 + i) cos 2t+ (1� i) sin 2t

�
=

6



et
�

cos 2t� i sin 2t
cos 2t+ sin 2t+ i (cos 2t� sin 2t)

�
= et

�
cos 2t

cos 2t+ sin 2t

�
�i et

�
sin 2t

(sin 2t� cos 2t)

�

Answer follows as linear combination of real and imaginary parts:
x(t) = C1Re [x

�(t)] + C2 Im [x
�(t)]. �

856. Answer. r = C1e2t

24 01
1

35+ C2et
24 1
�1
�1

35+ C3e�t
24 1
�1
�2

35
857. Answer. r = C1et

24 01
1

35+ C2
24 2 cos t

2 cos t
3 cos t� sin t

35+ C3
24 2 sin t

2 sin t
3 sin t+ cos t

35
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Hints to �nding complex eigenvectors.

858. Answer r = C1e�2t

24 0
1
�1

35+ C2e�t
24 cos 2t
� sin 2t
cos 2t

35+ C3e�t
24 sin 2t
cos 2t
sin 2t

35
Two linearly independent solutions can be chosen as above, as real and imag-

inary part of one of the complex conjugate complex solutions x�(t) corresponding
to a complex eigevalue and can be used for representing a general solution. A
complication in the present case is to �nd complex eigenvectors satisfying a ho-
mogeneous system of three equations.24 �3 2 2

�3 �1 1
�1 2 0

35, characteristic polynomial: p(�) = �3 + 4�2 + 9�+ 10,
roots: �1 = �2, �2 = �1 � 2i, �3 = �2 = �1 + 2i. The real root one can

guess, two other are found from a quadratic equation.
An eigenvector corresponding to the eigenvalue �2 = �1� 2i satis�es homo-

geneous system with matrix A� �2I:

A��2I =

24 �3� (�1� 2i) 2 2
�3 �1� (�1� 2i) 1
�1 2 � (�1� 2i)

35 =
24 �2 + 2i 2 2

�3 2i 1
�1 2 1 + 2i

35
Change order of rows and multiply the �rst row by �1:24 1 �2 �1� 2i
1� i �1 �1
3 �2i �1

35,
Multiply the second row by the conjugate 1 + i of it�s �rst non-zero

element 1� i to simplify Gauss elimination and use that (1 + i) (1� i) =
1 + 1 = 2:
In general for z = a+ ib and it�s complex conjugate z = a� ib

z z = (a+ ib)(a� ib) = a2 + b2 = jzj2

!

24 1 �2 �1� 2i
2 �1� i �1� i
3 �2i �1

35!
24 1 �2 �1� 2i
0 3� i 1 + 3i
0 6� 2i 2 + 6i

35!24 1 �2 �1� 2i
0 3� i 1 + 3i
0 0 0

35!
Multiply the second row by the conjugate 3 + i of it�s �rst non-zero

element 3� i an use that (3 + i)(3� i) = 9 + 1 = 10:

!

24 1 �2 �1� 2i
0 (3� i) (3 + i) (1 + 3i) (3 + i)
0 0 0

35 =
24 1 �2 �1� 2i
0 10 10i
0 0 0

35
!

24 1 �2 �1� 2i
0 1 i
0 0 0

35!
24 1 0 �1
0 1 i
0 0 0

35
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Choosing components in v2 as x3 = 1 we get x2 = �i, and x1 = 1 and

v2 =
1
�i
1
.

The second complex eigenvector corresponding to the conjugate eigenvalue �3
is complex conjugate to v2 because the matrix A is real: v2 = v3 and �2 = �3 are
congugate.
�

859. Answer. r = C1e�t

24 1
1
�1

35+C2et
24 cos t� sin tcos t

sin t

35+C3et
24 cos t+ sin tsin t

� cos t

35
Solution. A =

24 3 �3 1
3 �2 2
�1 2 0

35 :, eigenvectors:
The characteristic polynomial is : �3 � �2 + 2 = (�+ 1)

�
�2 � 2�+ 2

�
= 0:

Eigenvectors to the eigenvalue �2 = 1 � i are found from the homogeneous
system of equations with matrix24 2 + i �3 1

3 �3 + i 2
�1 2 �1 + i

35!
24 1 �2 1� i

3 �3 + i 2
2 + i �3 1

35
Hint to �nding complex eigenvectors.
Multiply the last row by the conjugate of the �rst element to sim-

plify Gauss elimination: !

24 1 �2 1� i
3 �3 + i 2

(2 + i) (2� i) �3 (2� i) (2� i)

35 =!
24 1 �2 1� i
3 �3 + i 2
5 �6 + 3i 2� i

35!24 1 �2 1� i
0 3 + i �1 + 3i
0 4 + 3i �3 + 4i

35
Multiply rows 2 and 3 by conjugates of pivot elements in each row

to simplify Gauss elimination:

!

24 1 �2 1� i
0 (3 + i) (3� i) (�1 + 3i) (3� i)
0 (4 + 3i) (4� 3i) (�3 + 4i) (4� 3i)

35!
24 1 �2 1� i
0 10 10i
0 25 25i

35!
24 1 �2 1� i
0 1 i
0 0 0

35!24 1 0 1 + i
0 1 i
0 0 0

35
Chose x3 = 1, x2 = �i, x1 = �1� i.
The second eigenvector corresponding to the conjugate eigenvalue is complex

conjugate because the matrix A is real: v2 = v3 and �2 = �3 are congugate.

Eigenvectors and eigenvalues are: v1 =

24 1
1
�1

35$ �1 = �1; v2 =

24 �1� i�i
1

35$
�2 = 1� i; v3 =

24 �1 + ii
1

35$ �3 = 1 + i,
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Eigenvalues are all simple, therefore eigenvectors are linearly independent and
general complex solutions are expressed as x(t) =

P3
k=1Cke

�ktvk. If we look for
general real solutions that is natural for a real matrix A, we can use solution
real and imaginary parts of the complex solution x�(t) = v2e

�2t as two linearly
independent real solutions to the ODE in addition to e�1tv1.

x�(t) = e(1�i)t

24 �1� i�i
1

35 = et(cos t�i sin t)
24 �1� i�i

1

35= et
24 � (1 + i) cos t� (1� i) sin t�i cos t� sin t

cos t� i sin t

35
=et

24 � (1) cos t� (1) sin t� (i) cos t� (�i) sin t� sin t� i cos t
cos t� i sin t

35 = et
24 � cos t� sin t� sin t

cos t

35+iet
24 � cos t+ sin t� cos t

� sin t

35
We choose solutions et

24 cos t+ sin tsin t
� cos t

35 and et
24 cos t� sin tcos t

sin t

35 that are� Im(x�(t))
and �Re(x�(t) as two linearly independent solutions in addition to the solution

e�t

24 1
1
�1

35 corresponding to �1 = �1: The general solution is their linear combi-
nation as in the answer, because they are linearly independent and the dimension
of the solutions space is 3 for the system of three linear ODEs.
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861. Answer r = C1e3t

24 11
2

35+ C2e�t
24 1
�1
0

35+ C3e�t
24 1
0
�1

35
862. Answer. r = C1

24 1
�1
1

35+ C2et
24 0
�1
1

35+ C3et
24 �1
�t� 1
t

35
Solution. A =

24 0 1 1
1 1 0
�1 0 1

35, characteristic polynomial: �3 � 2�2 + � = 0.
Observe that �3 � 2�2 + � = � (�� 1)2 = 0

Eigenvectors: v1 =

24 1
�1
1

35 $ �1 = 0 with simple eigenvalue �1; v2 =24 0
�1
1

35$ �2 = 1,

where �2 is a multiple eigenvalue with albebraic multiplicity n2 = 2:

A � �2I =

24 �1 1 1
1 0 0
�1 0 0

35. generalized eigenvector v(1)2 =

24 xy
z

35 satis�es the
equation

(A� �2I) v(1)2 = v2 or in matrix form:

24 �1 1 1
1 0 0
�1 0 0

3524 xy
z

35 =
24 0
�1
1

35 .
Corresponding equations are:

8<:
�x+ y + z = 0

x = �1
�x = 1

=) x = �1; y = �1;

z = 0; v(1)2 =

24 �1�1
0

35
For arbitrary initial data x0 2 R3; x0 = C1v1 + C2v2 + C3v

(1)
2 the general

solution is expressed as:

x(t) = eAtx0 = C1e
�1tv1 + C2e

�2tv2 + [I + (A� �2I) t] e�2tv(1)2

Calculate the last term:

[I + (A� �2I) t] v(1)2 =

0@24 1 0 0
0 1 0
0 0 1

35+ t
24 �1 1 1
1 0 0
�1 0 0

351A24 �1�1
0

35 =24 �t+ 1 t t
t 1 0
�t 0 1

3524 �1�1
0

35 =
24 �1
�t� 1
t

35
Collect all terms and get the answer. Observe that one can multiply any term

in the answer with �1 or with any other number, the answer will be still correct.
One can get di¤erent answers choosing eigenvectors v1 and v2 in di¤erent ways.�
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863. Answer. r = C1e�t

24 20
1

35+ C2et
24 11
1

35+ C3et
24 2t

2t
2t+ 1

35
864. Answer. r = C1e�t

24 1
�1
0

35+ C2e�t
24 01
1

35+ C3e�t
24 t+ 1t

2t

35
Solution. A =

24 0 1 �1
1 0 �1
2 2 �3

35, characteristic polynomial: �3 + 3�2 + 3�+ 1 =
(1 + �)3, multiple eigenvalue � = �1 with multiplicity 3.
The matrix has two linearly independent eigenvectors satisfying the homoge-

neous equation (A� �I) v = 0.

A��I =

24 1 1 �1
1 1 �1
2 2 �2

35, Gauss elimination leads to the equation x1+x2�x3 =
0 that has two free variables x2 and x3

A possible choice of linearly independent eigenvectors is v1 =

24 1
�1
0

35 and
v2 =

24 01
1

35 if we like to get an answer similar to one given above.
The column space Col (A� �I) is one-dimensional and consists of vectors

C

24 11
2

35 = Cv with arbitrary real C. Therefore the system (A� �I)u = b is

solvable if and only if b = Cv.
It means that we cannot build a generalized eigenvector solving equations

(A� �I) v(1)1 = v1 or (A� �I) v(1)2 = v2 because by chance these two eigenvectors
both do not bellong to Col (A� �I).

One can proceed by two ways. Observe that the vector v =

24 11
2

35 belongs to
Col (A� �I) and is an eigenvector: (A� �I) v = 0.
Therefore the equation (A� �I) v(1) = v has a solution. Consider correspond-

ing extended matrix and carry out Gauss elimination on it:24 1 1 �1 1
1 1 �1 1
2 2 �2 2

35 �!
24 1 1 �1 1
0 0 0 0
0 0 0 0

35. There are two free variables and a
2-dimensional space of solutions v(1) with the simplest ones being

24 10
0

35 ;
24 01
0

35 ;24 0
0
�1

35 :
12



The choice of a generalized eigenvector v(1) =

24 10
0

35 leads to the general
solution in the form

r(t) = exp(At)(C1v1 + C2v1 + C3v
(1))

= C1e
�tv1 + C2e

�tv2 + C3e
�t(v(1) + tv)

equivalent to the one given in the answer.
Another and possibly simpler solution in this situation could be just us-

ing the de�nition of generalized eigenvectors and trying to solve the equation
(A� �I)2 v(1) = 0. On this way we observe that (A� �I)2 = 0. This relation
is non-trivial, because in general only (A� �I)3 = 0 must be valid for a matrix
with characteristic polynomial p(z) = (z + 1)3:
It means that ALL vectors in R3 are generalized eigenvectors. It is a natural

conclusion because we have only one eigenvalue of multiplicity 3, the same as the
dimension of the problem.
To complement eigenvectors v1 and v2 with a linearly independent generalized

eigenvector we could choose ANY vector in R3 linearly independent of eigenvec-
tors v1 and v2 chosen before.

The vector v(1) =

24 10
0

35 is a generalized eigenvector and is linearly indepen-
dent of the eigenvectors v1 =

24 1
�1
0

35 and v2 =
24 01
1

35chosen before. With such
choice of the basis we arrive to the same answer as before.

We could also choose vector v =

24 11
2

35 and the equation (A� �I) v(1) = v

to build a generalized eigenvector. The general solution would have the following
form:

r(t) = exp(At)(C1v1 + C2v + C3v
(1)) =

= C1e
�tv1 + C2e

�tv + C3e
�t(v(1) + tv)

= C1e
�tv1 + (C2 + tC3) e

�tv + C3e
�tv(1)

or with explicit coordinates:

r = C1e
�t

24 1
�1
0

35+ (C2 + tC3) e�t
24 11
2

35+ C3e�t
24 10
0

35
Point out that this solution has di¤erent form comparing with the one in the

answer. One can supply in�nitely many correct answers by di¤erent choices of
the basis representing initial conditions.�
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865. Answer. r = C1e2t

24 1
�1
0

35+ C2e2t
24 10
1

35+ C3e2t
24 2t+ 1t

3t

35
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1 Calculation of matrix exponent exp(A). An-

swers and some solutions to exercises.

Answers.

868. A =

�
0 1
�1 0

�
; eA =

�
cos(1) sin(1)
� sin(1) cos(1)

�
; 869. A =

�
2 1
0 2

�
;

eA =

�
e2 e2

0 e2

�
;

870. A =
�
3 �1
2 0

�
; eA =

�
2e2 � e e� e2
2e2 � 2e 2e� e2

�
; 871. A =

�
�2 �4
1 2

�
;

eA =

�
�1 �4
1 3

�
; 872. A =

24 0 1 0
0 0 0
0 0 2

35; eA =

24 1 1 0
0 1 0
0 0 e2

35; 873.

A =

24 2 1 0
0 2 1
0 0 2

35 ; eA =
24 e2 e2 e2

2

0 e2 e2

0 0 e2

35 = e2
24 1 1 1

2

0 1 1
0 0 1

35
859.

24 3 �3 1
3 �2 2
�1 2 0

35 ;

exp(A) = e

24 (cos 1 + sin 1)� e�2 + (cos 1� sin 1) � (cos 1 + sin 1) + e�2 �e�2 + (cos 1� sin 1)
(cos 1) + (sin 1)� e�2 � (sin 1) + e�2 (cos 1)� e�2
� (cos 1) + (sin 1) + e�2 (cos 1)� e�2 (sin 1) + e�2

35

Hints to the calculation of eA = T exp(J)T�1.
One can apply formulas for solution of linear ODE �rst and use the fact that

columns with index i in eA are values of solutions x(1) to x0 = Ax at time t = 1
corresponding to initial data x(0) = ei = [0; :::0; 1;+:::0]T :Vectors ei are colums
with index i from the unit matrix I.

x(t) = exp(At)�

Examples of calculations of exp(A)
Solutions to 869, 872, 873 are just explicit formulas for Jordan�s blocks and

matrices in canonical Jordan�s form.
Jordan�s block:

J =

266666664

� 1 0 ::: 0 0
0 � 1 ::: 0 0
...
...
...
. . .

...
...

0 0 0 ::: 1 0
0 0 0 ::: � 1
0 0 0 ::: 0 �

377777775
15



exp(Jt) = e�t

266666664

1 t t2=2 ::: tm�2

(m�2)!
tm�1

(m�1)!
0 1 t ::: tm�3

(m�3)!
tm�2

(m�2)!
...
...

...
. . .

...
...

0 0 0 ::: t t2=2
0 0 0 ::: 1 t
0 0 0 ::: 0 1

377777775
Matrices in canonical Jordan�s form:

J =

26664
J1 O O O
O J2 O O
...

...
. . .

...
O O O Jk

37775

exp (J) =

26664
exp (J1) O O O
O exp (J2) O O
...

... :::
...

O O O exp (Jk)

37775

16



The next example of calculation of exp(A) is speci�c because the
real matrix has complex eigenvalues!
We can diagonalise it and write the answer in complex form, but it will be

di¢ cult to see that the result is a real matrix.

Solution to 868. A =

�
0 �1
1 0

�
; This matrix has complex eigenvalues

�1;2 = �i :

The set of matrices of the structure
�
a �b
b a

�
have the same properties with

respect to matrix multiplication and addition as complex numbers of the form

a + ib. In particular matrices of the form
�
a 0
0 a

�
behave as real numbers and

matrix
�
0 �1
1 0

�
behave as imaginary unit i.

It makes that we can apply the Euler formula

exp(a+ ib) = exp(a)(cos(b) + i sin(b))

for computing

exp

��
a �b
b a

��
= exp

��
a 0
0 a

��
exp

��
0 �b
b 0

��
= exp(a)

�
cos(b) � sin(b)
sin(b) cos(b)

�
It implies immediately that exp(A) = exp

�
0 �1
1 0

�
=

�
cos(1) sin(1)
� sin(1) cos(1)

�
Another general way to calculate exponents of matrices. (particu-

larly useful for matrices having complex eigenvalues)
We use here general solution to the equation x0 = Ax:
We clarify �rst in which way it can be used.

� For any matrix B the product Bek gives the column k in the matrix B.

� Therefore the column k in exp(A) is the product exp(A)ek, where vector
ek is a standard basis vector, or colum with index k from the unit matrix
I.

� On the other hand exp(At)� is a solution to the equation x0 = Ax with
initial condition x(0) = �

� The expressions xk(t) = exp(At)ek is a solution to the equation x0 = Ax
with initial condition x(0) = ek

� Therefore the value of the solution in time t = 1: xk(1) = exp(A)ek gives
the column k in the matrix exp(A)

� Having the general solution for example in the case of dimension 3:

x(t) = C1	1(t) + C2	2(t) + C3	3(t)

17



in terms of linearly independent solutions 	1(t), 	2(t), 	3(t); we can for
every k �nd sets of constants C1;k,C2;k,C3;k, corresponding to each of the
initial data ek: Namely we solve equations

C1;k	1(0) + C2;k	2(0) + C3;k	3(0) = ek ; k = 1; 2; 3

� that are equivalent to the matrix equation

[	1(0);	2(0);	3(0)]

24 C1;1 C1;2 C1;3
C2;1 C2;2 C2;3
C3;1 C3;2 C3;3

35 = [e1; e2; e3] = I
� Values at t = 1 of corresponding solutions:

xk(1) = C1;k	1(1) + C2;k	2(1) + C3;k	3(1) = exp(1 � A)ek

give us columns exp(1 � A)ek in exp(A).

� In matrix form this result can be expressed as24 C1;1 C1;2 C1;3
C2;1 C2;2 C2;3
C3;1 C3;2 C3;3

35 = [	1(0);	2(0);	3(0)]�1

exp(A) = [	1(1);	2(1);	3(1)]

24 C1;1 C1;2 C1;3
C2;1 C2;2 C2;3
C3;1 C3;2 C3;3

35
= [	1(1);	2(1);	3(1)] [	1(0);	2(0);	3(0)]

�1

We demonstrate this idea using the result on the general solution
from the problem 859.

We can calculate exp

0@24 3 �3 1
3 �2 2
�1 2 0

351A, eigenvalues: �1 = �1; �2 = 1 � i;
�3 = 1 + i
General solution to the system x0 = Ax is:

x(t) = C1	1(t) + C2	2(t) + C3	3(t)

= C1e
�t

24 1
1
�1

35+ C2et
24 cos t� sin tcos t

sin t

35+ C3et
24 cos t+ sin tsin t

� cos t

35
and introducing shorter notations for each term: x(t) = C1	1(t) +C2	3(t) +

C3	3(t):
We calculate initial data for arbitrary solution by

18



x(0) = C1	1(0) + C2	3(0) + C3	3(0)=C1

24 1
1
�1

35+ C2
24 11
0

35+ C3
24 1
0
�1

35
x(0) = [	1(0);	3(0);	3(0)]

24 C1C2
C3

35 =
24 1 1 1
1 1 0
�1 0 �1

3524 C1C2
C3

35
exp(A) has columns that are values of x(1) for solutions that satisfy initial

conditions r(0) = e1, e2; e3 and therefore

24 1 1 1
1 1 0
�1 0 �1

3524 C1;1C2;1
C3;1

35 =
24 10
0

35 = e1;24 1 1 1
1 1 0
�1 0 �1

3524 C1;2C2;2
C3;2

35 =
24 01
0

35 = e2;
24 1 1 1
1 1 0
�1 0 �1

3524 C1;3C2;3
C3;3

35 =
24 00
1

35 =
e3;

We solve all three of these systems for

24 C1;kC2;k
C3;k

35 in one step as a matrix

equation 24 1 1 1
1 1 0
�1 0 �1

3524 C1;1 C1;2 C1;3
C2;1 C2;2 C2;3
C3;1 C3;2 C3;3

35 = I
It is equivalent to the Gauss elimination of this extended matrix:

24 1 1 1 1 0 0
1 1 0 0 1 0
�1 0 �1 0 0 1

35 :The
result will be the inverted matrix:24 C1;1 C1;2 C1;3

C2;1 C2;2 C2;3
C3;1 C3;2 C3;3

35 =
24 1 1 1
1 1 0
�1 0 �1

35�1 =
24 �1 1 �1
1 0 1
1 �1 0

35
It can also found by applying Cramer�s rule.
We arrive to the expression of the matrix exponent by collecting these results

through the matrix multiplication:

exp(At) = [	1(t);	2(t);	3(t)]

24 C1;1 C1;2 C1;3
C2;1 C2;2 C2;3
C3;1 C3;2 C3;3

35

exp(At) =

24 e�t et (cos t� sin t) et (cos t+ sin t)
e�t et cos t et sin t
�e�t et sin t �et cos t

3524 �1 1 �1
1 0 1
1 �1 0

35 =
=

24 et (cos t+ sin t)� e�t + et (cos t� sin t) �et (cos t+ sin t) + e�t �e�t + et (cos t� sin t)
(cos t) et + (sin t) et � e�t � (sin t) et + e�t (cos t) et � e�t
� (cos t) et + (sin t) et + e�t (cos t) et � e�t (sin t) et + e�t

35
and �nally for t = 1 we get exp(A)
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exp(A) = e

24 (cos 1 + sin 1)� e�2 + (cos 1� sin 1) � (cos 1 + sin 1) + e�2 �e�2 + (cos 1� sin 1)
(cos 1) + (sin 1)� e�2 � (sin 1) + e�2 (cos 1)� e�2
� (cos 1) + (sin 1) + e�2 (cos 1)� e�2 (sin 1) + e�2

35
�
Solution to 870. A =

�
3 �1
2 0

�
Characteristic polynomial: p(�) = �2 � 3�+ 2; eigenvalues: �1 = 1; �2 = 2

A� I =
�
2 �1
2 �1

�
; A� 2I =

�
1 �1
2 �2

�
;

Eigenvectors: v1 =
�
1
2

�
$ �1 = 1; v2 =

�
1
1

�
$ �2 = 2

The matrix is diagonalisable: A = TDT�1;D =
�
1 0
0 2

�
; T =

�
1 1
2 1

�
;

(Cramer�s rule)
�
a b
c d

��1
= 1

det(A)

�
d �b
�c a

�
;

T�1 =

�
1 1
2 1

��1
= (�1)

�
1 �1
�2 1

�
=

�
�1 1
2 �1

�
;

exp(A) = T exp(D)T�1 =

�
1 1
2 1

�
exp

��
1 0
0 2

���
�1 1
2 �1

�
=�

1 1
2 1

���
e1 0
0 e2

���
�1 1
2 �1

�
;��

e 0
0 e2

���
�1 1
2 �1

�
=

�
�e e
2e2 �e2

�
T exp(D)T�1 =

�
1 1
2 1

� �
�e e
2e2 �e2

�
=

�
2e2 � e e� e2
�2e+ 2e2 2e� e2

�

Solution to 871. A =
�
�2 �4
1 2

�
;

characteristic polynomial: �2 = 0, multiple eigenvalue � = 0.

eigenvector v =
�
2
�1

�
, the only linearly independent because there is only

on free variable.
A generalised eigenvector can be found from the equation (A� 0I) v(1) = v.�
�2 �4 2
1 2 �1

�
, Gaussian elimination:

�
�1 �2 1
0 0 0

�
A generalised eigenvector can be chosen as v =

�
1
�1

�
. T =

�
v; v(1)

�
=�

2 1
�1 �1

�
:

Jordan matrix is J =
�
� 1
0 �

�
=

�
0 1
0 0

�
; exp(J) =

�
1 1
0 1

�
20



exp(A) = TJT�1; T�1 =
��

2 1
�1 �1

���1
=

�
1 1
�1 �2

�
(by Cramer�s rule)

exp(A) = TJT�1 =

�
2 1
�1 �1

� �
1 1
0 1

� �
1 1
�1 �2

�
=
�
2 3
�1 �2

� �
1 1
�1 �2

�
=�

�1 �4
1 3

�
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2 Jordan matrices. Answers and some solutions

Answers to problems 861-865 on canonical Jordan matrices can be derived from
answers to solutions of corresponding di¤erential equations above.
Answers.

6.4.23. J =
�
7 1
0 7

�
; V =

�
4 0
�4 1

�
Solution.

A =

�
11 4
�4 3

�
characteristic polynomial: p(X) = X2�14X+49 = (X � 7)2

A� 7I =
�
4 4
�4 �4

�
, v =

�
4
�4

�
; (A� 7I)v(1) = v;

�
4 4 4
�4 �4 �4

�
,

row echelon form:
�
1 1 1
0 0 0

�
, v(1) =

�
0
1

�
6.4.51. J =

24 3 1 0
0 3 0
0 0 3

35; V =
24 1 1 0
�2 0 1
1 0 �1

35 :
Solution.

A =

24 4 1 1
�2 1 �2
1 1 4

35, characteristic polynomial: p(X) = X3 � 9X2 + 27X �

27 = (X � 3)3 = 0

A� 3I =

24 1 1 1
�2 �2 �2
1 1 1

35, v =
24 1
�2
1

35 2 Col(A� 3I)(!!!!!), w =
24 0
1
�1

35,
- eigenvectors

(A� 3I) v(1) = v;

24 1 1 1 1
�2 �2 �2 �2
1 1 1 1

35, row echelon form:
24 1 1 1 1
0 0 0 0
0 0 0 0

35;
v(1) =

24 10
0

35
(A� 3I)w(1) = w;

24 1 1 1 0
�2 �2 �2 1
1 1 1 �1

35, row echelon form:
24 1 1 1 0
0 0 0 �1
0 0 0 0

35
no solution to this system.
Point out that in this exercise similarly to exercise 864, the matrix (A� �I)

has one-dimensional column space.

Here in the exercise 6.4.51, this matrix is (A � �I) =

24 1 1 1
�2 �2 �2
1 1 1

35 :
Its columns space Col(A) is the line through the origin parallel to the vector

vc =

24 1
�2
1

35 . Point out also that this vector is an eigenvector.
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For the inhomogeneous system for the generalized eigenvector (A��I)v(1) = v
for some eigenvector v to have a solution the right hand side must be from the
column space. It makes that possible choice of a chain of generalized eigenvectors
is limited in this case by a one dimensional subspace of eigenvectors parallel to
the vector vc: Point out that in the exercise 6.4.51 we need a chain of generalised
eigenvectors to �nd a transformation T�1AT = J of the matrix A to a canonical
Jordan�s form J .
In the case with the Exercise 864 we had more freedom because we looked for

any basis of eigenvectors and generalised eigenvectors to build a general solution
to the system x0 = Ax.
In both examples (A� �I)2 = 0 (check it!). It implies that any vector z 2 R3

satis�es the equation
(A� �I)2z = 0

and is a generalised eigenvector in this case. We are free just to choose a vector
that is not a usual eigenvector (not belonging to the envelope of two eigenvectors
you have already found). It would be enough to derive a general solution to the
system x0 = Ax.
But as we pointed out before, if we like to �nd the transformation matrix in

exercise 6.4.1, we need to �nd a chain of generalised eigenvectors.
A way around the corner is to put all the problem up set down. Choose �rst

ANY vector v(1) that satis�es the equation

(A� �I)2v(1) = 0

and is NOT and eigenvector, as a generalized eigenvector. We can try vector

v(1) =

24 2
�1
1

35 :
Then calculate corresponding eigenvector v in the chain as

(A� �I)v(1) = v24 1 1 1
�2 �2 �2
1 1 1

3524 2
�1
1

35 =
24 2
�4
2

35
Point out that the eigenvector v that we have got is automatically in the one
dimensional Col(A) subspace. We have built one chain of generalised eigenvectors
to A:
After that we need to �nd the second eigenvector that is linearly indepen-

dent of v (in this simple case not parallel to). The eigenvector

24 0
�1
1

35 has this
property.

6.4.63. J =

24 �2 1 0
0 �2 0
0 0 3

35 ; V =

24 �2 1 0
2 1 1
2 �1 1

35;
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Solution.

A =

24 �2 �1 1
5 �1 4
5 1 2

35, characteristic polynomial: X3 + X2 � 8X � 12 =

(X � 3) (X + 2)2 = 0

A�3I =

24 �5 �1 1
5 �4 4
5 1 �1

35, Gaussian elimination:
24 �5 �1 1
0 �5 5
0 0 0

35, row ech-
elon form:

24 1 0 0
0 1 �1
0 0 0

35,
v =

24 01
1

35;
A + 2I =

24 0 �1 1
5 1 4
5 1 4

35, Gaussian elimination:
24 5 1 4
0 �1 1
0 0 0

35, row echelon
form:

24 1 0 1
0 1 �1
0 0 0

35
w =

24 �22
2

35; (A+ 2I)w(1) = w;
24 0 �1 1 �2
5 1 4 2
5 1 4 2

35, Gaussian elimination:24 5 1 4 2
0 �1 1 �2
0 0 0 0

35, row echelon form:
24 1 0 1 0
0 1 �1 2
0 0 0 0

35; w(1) =

24 1
1
�1

35;
6.4.64. J =

24 2 0 0
0 2 0
0 0 3

35 ; V =
24 1 0 �1
1 1 2
0 1 2

35 :
A =

24 3 �1 1
�2 4 �2
�2 2 0

35
6.4.65. J =

24 1 1 0
0 1 0
0 0 �2

35; V =

24 �4 2 1
�3 2 0
�4 �1 1

35
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