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Introduction to the modelling poject and to nullclines

Logistic equation and two species competition model.
Let xi(t); i = 1; 2: be populations of two species. Each of the species grows

with intrinsic growth rate ri in case when in�nite resources are available:

x0i = rixi; ri > 0:

Limited resources lead to competition within the population and a limited

growth rate for the large size of the population: ri(1 � xi
Ki
). This model is

called the logistic equation:

x0i = rixi

�
1� xi

Ki

�
(1)

The competition between di¤erent species leads to a decrease in each pop-

ulation with the decreasing rate proportional to the competitor population

size: ��1x2 for the population x1 and ��2x1 for the population x2 with
competition coe¢ cients �1 > 0 and �2 > 0. The corresponding system of

equations describes the evolution of two competing species:

x01 = r1x1

�
1� x1

K1

�
� �1x1x2 (2)

x02 = r2x2

�
1� x2

K2

�
� �2x2x1

What are natural questions to pose about an environmental
model?
1. Existence and uniqueness of solutions

2. Positivity of solutions is important for chemical and environmetal

models where variables have meaning of mass or number of individuals.

3. We look for sustainable evolutions like equilibrium points, in particular
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stable and asymptotically stable equilibriums (states of coexistence), periodic

solutions.

4. Find if all solutions are bounded when t!1 ?

5. Phase portrait gives a feeling of the global picture of all possible

solutions for di¤erent initial states. We would like to be able to classify qual-

itatively di¤erent pictures of the phase portrait depending on combinations

of parameters in the system: large or small competition coe¢ tients �1 > 0

and �2 > 0 in comparison with r1; K1 et.c.

6. Nullclines are lines where one of the components of velocity is zero.

They separate areas where components of velocity are positie and negative.

Example of nullclines.

x0(t) = 2x(1� x
2
)� xy

y0(t) = y

�
9

4
� y2

�
� x2y

x - nullclines: 2x(1� x
2
)� xy = x (2� y � x) = 0

x = 0 (y � axis)

x+ y = 2 =)

x

2
+
y

2
= 1 straight_line_through_points : (2; 0)_and_(0; 2)

y - nullclines: y
�
9
4
� y2

�
� x2y = y

�
9
4
� y2 � x2

�
= 0

y = 0 (x-axis)

x2 + y2 =
9

4
=

�
3

2

�2
circle

Red lines are x - nullclines, blue lines are y - nullclines. Four equilibrium

points are intersection points of x and y - nullclines. We can mark by arrows
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the directions of velocity in x and y directions in di¤erent parts of the phase

plane.
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Exercise. Try to sketch the phase portrait using these directions of

velocities.
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1.1 Stability of equilibrium points by linearization.

We consider in this chapter of the course properties of solutions of I.V.P to

nonlinear autonomous systems of ODEs

x0(t) = f(x(t)); x(0) = � (3)

where f : G ! RN is locally Lipschitz with respect to x. J is and interval
and G � RN is a non-empty open set.
We will consider in this chapter of the course the stability of equilibrium

points x� of such nonlinear systems (f(x�) = 0) in connection with properties

of corresponding linearized systems in the form

y0(t) = Ay(t) (4)

where A = Df
Dx
(x�) is a Jacoby matrix of the function f calculated in an

equilibrium point of interest.

De�nition. (p. 115, L.R.) A function f is called locally Lipschitz in G

if for any point y 2 G there is a neighborhood V (y) and a number L > 0

(depending on V (y)) such that for any v; w 2 V (y)

kf(v)� f(w)k � L kv � wk

Example. Functions having continuous partial derivatives are locally

Lipschitz function. (Exercise)

De�nition: A solution x(t) : I ! RN is called maximal solution to an
I.V.P. if it cannot be extended to a larger time interval.

1.2 Peano existence theorem.

The theorem by Peano, states that if f : G ! RN is continuous, the the

I.V.P. (3) above has a solution (not unique!!!) for any � 2 G on some, might

4



be small time interval (��; �). (Theorems 4.2, p. 102; )
We will consider Peano theorem it at the end of the course.

1.3 Picard and Lindelöf�s existence and uniqueness

theorem.

The theorem by Picard and Lindelöf, states that if f : G ! RN is locally

Lipschitz, then the I.V.P. (3) above has a unique solution for any � 2 G on
some, might be small time interval (��; �). (Theorems 4.17, p. 118; Theorem
4.22, p.122.)

We will formulate it in a more general form and will prove it at the end

of the course.

1.4 De�nition of stable equilibrium points (repetition).

De�nition: A point x� 2 G is called an equilibrium point to the equation

(3) if f(x�) = 0:

The corresponding solution x(t) � x� is called an equilibrium solution.

De�nition. (5.1, p. 169, L.R.)
The equilibrium point x� is said to be stable if, for any " > 0; there is

� > 0 such that, for any maximal solution x : I ! G to (3) such that 0 2 I
and kx(0)� x�k � � we have kx(t)� x�k � " for any t 2 I \ R+. Below a
picture is given in the case x� = 0.
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De�nition. (5.14, p. 182, L.R.)
The equilibrium point x� of (3) is said to be attractive if there is � > 0 such

that for every � 2 G with k� � x�k � � the following properties hold: the

solution x(t) = '(t; �) to I.V.P. with x(0) = � exists on R+and '(t; �)! x�

as t!1.
De�nition. We say that the equilibrium x� is asymptotically stable

if it is both stable and attractive.

In the analysis of stability we will always choose a system of coordinates

so that the origin coincides with the equilibrium point. In the course book

this agreement is applied even in the de�nition of stability.

De�nition. The equilibrium point x� is said to be unstable if it is not

stable. It means that there is a "0 > 0; such that for any � > 0 there is point

x(0) : kx(0)� x�k � � such that for some t0 2 I we have kx(t0)� x�k > "0:(a
formal negation to the de�nition of stability)

1.5 Stability and instability of the equilibrium point

in the origin for autonomous linear systems.

Origin is an equilibrium point for all linear systems of ODE. If the matrix

A is degenerate namely if det(A) = 0, there can appear lines or in higher

dimensions - hyperplanes of equilibrium points in addition to the origin,

corresponding to the non-trivial kernel of the matrix A.

The following general statement about stability and instability of the

equilibrium in the origin for arbitrary autonomous linear systems of ODEs

follow immediately from the Corollary 2.13 in L.&R.

Theorem. (Propositions 5.23, 5.24, 5.25, pp. 189-190, L.R.)
Let A 2 CN�N be a complex matrix.
Then three following statements are valid for the system x0(t) = Ax(t)

1. The origin is asymptotically stable equilibrium point if and only if

Re� < 0 for all � 2 �(A).
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2. The equilibrium point in the origin is stable if and only if Re� � 0

for all � 2 �(A) and all eigenvalues � with Re� = 0 are semisimple

(the number of linearly independent eigenvectors to � is equal to the

algebraic multiplicity m(�) of �)

3. The equilibrium point in the origin is unstable if and only if there is at

least one eigenvalue � with Re� > 0 or an eigenvalue � with Re� = 0

that is not semisimple.

(3. is a direct consequence of 2. )

Proof is a simple exrecise based on the de�nitions of stability and as-

ymptotic stability and on the Corollary 2.13 about the properties of

kexp(At)k and kexp(At)�k

De�nition. Matrix A with the property Re� < 0 for all � 2 �(A) is

called Hurwitz matrix.
OBS!
We point out that the origin is an asymptotically stable equilibrtium for

systems of ODEs x0(t) = Ax(t) with Hurwitz matrix A.

One of the goals of today lecture is to show that under certain limitations

on the function h(x), h(0) = 0 the asymptotic stability of the equilibrium

point in the origin for the non-linear system

x0(t) = Ax+ h(x) (5)

x(0) = � (6)

is valid if the matrix A is Hurwitz (has all eigenalues � with Re� < 0).
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1.6 Inhomogeneous linear systems of ODEs with con-

stant coe¢ cients.

Corollary. Duhamel formula, autonomous case. (Corollary 2.17, p.
43)

Consider the inhomogeneous system

x0(t) = Ax(t) + g(t)

with continuous or piecewise continuous function g : R ! RN . Then the
unique solution to the I.V.P. with initial data

x(0) = �

is represented by the Duhamel formula:

x(t) = exp(At)� +

Z t

0

exp(A(t� �))g(�)d� (7)

Proof of the Corollary: check that the formula gives a solution and show
that it is unique.

x(t) = exp(At)� +

Z t

0

exp(A(t� �))g(�)d�

= exp(At)� + exp(At)

Z t

0

exp(�A�)g(�)d�

= exp(At)

�
� +

Z t

0

exp(�A�)g(�)d�
�

x0(t) = A exp(At)

�
� +

Z t

0

exp(�A�)g(�)d�
�
+ exp(At) exp(�At)g(t)

= Ax(t) + g(t)

for all points t where g(t) is continuous. Di¤erence z(t) = x(t)�y(t) between
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two solutions x(t) and y(t) satis�es the homogeneous systems z0(t) = Az(t)

and zero initial condition z(0) = 0 and the integral equation: z(t) =R t
0
Az(�)d�. The same reasoning as before, using the Grönwall inequality,

or just a reference to the uniqueness of solutions to homogeneous systems

implies that z � 0.

1.7 Stability of equilibrium points to linear systems

perturbed by a small right hand side.

Theorem (Theorem 5.27, p. 193, L.R.) Let G � RN be a non-empty open
subset with 0 2 G. Consider the nonlinear di¤erential equation

x0(t) = Ax(t) + h(x) (8)

x(0) = � (9)

where A 2 RN�N and h : G! RN is a continuous function satisfying

lim
z!0

h(z)

kzk = 0: (10)

If A is Hurwitz, that is Re� < 0 for all � 2 �(A), then 0 is an asymptotically
stable equilibrium of 8.

Moreover, there is � > 0 and C > 0 and � > 0 such that for k�k < �
the solution x(t) to the initial value problem with initial data

x(0) = �

exists for all t 2 R+ ad satis�es the estimate

kx(t)k � C k�k e��t

Proof. (This proof is required at the exam)
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The main tool in the proof is the following integral form of the I.V.P.

based on the Duhamel formula.

x(t) = exp(At)� +

Z t

0

exp(A(t� �))h(x(�))d�

If Re� < 0 for all � 2 �(A) then there is � > 0 such that Re� < ��
(strictly smaller!) for all � 2 �(A) and

kexp(At)k � Ce��t (11)

for some constant C > 0.

We can choose " > 0 such that C" < � and using (10) choose �" such

that for kzk < �", z 2 G

kh(z)k
kzk < " (12)

kh(z)k < " kzk (13)

It follows from properties of h :limz!0
h(z)
kzk = 0:

We know from Peano theorem that the solution to the equation (8) exists

on some time interval t 2 [0; �) (another �!!!)
We apply Duhamel formula (7) for solutions to the equation of interest

(8):

x(t) = exp(At)� +

Z t

0

exp(A(t� �))h(x(�))d�

As long as x(�) under the integral, belongs to the ball fx : kxk < �"g � G,
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we apply the triangle inequality for integrals and estimates (11) and (12):

kx(t)k � kexp(At)k k�k+
Z t

0

kexp(A(t� �))k kh(x(�))k d�

kx(t)k � Ce��t k�k+
Z t

0

Ce��(t��)" kx(�)k d�

Ce��t k�k+ e��t
Z t

0

C"e�(�) kx(�)k d�

Introduce the function y(t) = kx(t)k e�t. Then multiplying the last inequality

by e�t

kx(t)k e�t � C k�k+
Z t

0

C"
�
kx(�)k e�(�)

�
d�

we arrive to

y(t) � C k�k+
Z t

0

(C") y(�)d�

The Grönwall inequality implies that

ky(t)k � C k�k e(C")t

and multiplying back with e��t

kx(t)k � C k�k e�(��C")t (14)

kx(t)k � C k�k e��t (15)

It is valid as long as kx(t)k < �"!!!
Now we can choose � = � � C" > 0, by choosing " small enough, � =

min
�
1
2
�"=C; �"=2

	
and k�k < �: This choice of initial conditions implies that

kx(t)k � �"; (16)
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as long as this solution exists (!!!)

Lecture 9.

Summary of the Lecture 8.
1. Duhamel formula for linear autonomous ODEs with given right hand

side.

x0(t) = Ax(t) + g(t)

x(0) = � (17)

x(t) = exp(At)� +

Z t

0

exp(A(t� �))g(�)d�

2. Stability of equilibrium for the linear autonomous ODE perturbed by

a "small" right had side.

x0(t) = Ax(t) + h(x(t)) (18)

x(0) = � (19)

where h(0) = 0; limkzk!0
kh(z)k
kzk = 0:

If A is a Hurwiz matrix (all � 2 �(A) have Re� < 0);then the origin is
asymptotically stable and there is a � > 0 such that if k�k < � then the

solution x(t) exist for all t 2 R+
and

kx(t)k � C k�k e��t

for some C > 0 and � > 0.

x(t) = exp(At)� +

Z t

0

exp(A(t� �))h(x(�))d�
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Applying the estimate kexp(At)k � Ce��t we were able to show that for
k�k < � with � = min

�
1
2
�"=C; �"=2

	

kx(t)k � C k�k e�(��C")t (20)

kx(t)k � C k�k e��t (21)

supposing that

kx(t)k � �"; (22)

These statements are valid for some short time interval where the solution

exists.

(Important theoretical argument! Check similar argument in
Lemma 4.9, p. 110 in LR )
The last estimate implies in fact an important conclusion that the solution

must exist in fact on the whole R+, because supposing the opposite, namely
that there is some maximal existence time tmax; leads to a contradiction.

Let consider this important argument. It consists of two steps.

1) We use the continuity and boundedness of the solution x(t) on [0; tmax)

together with the integral form of the equation

x(t) = � +

Z t

0

Ax(�)d� +

Z t

0

h(x(�))d�

The set fx(t) : t 2 [0; tmax)g (that is the orbit of the solution), is bounded
according to (16). The closure C of this set is therefore compact. The function

h(x) is continuous on G and is therefore bounded on the compact set C.

For any sequence ftkg1k=1 such that tk ! tmax the sequence of values

fx(tk)g1k=1is a Cauchy sequence and therefore has a limit

lim
k!1

x(tk) = �
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because

kx(tm)� x(tk)k �
Z tm

tk

Ax(�)d� +

Z tm

tk

h(x(�))d�

 �����Z tm

tk

kAk kx(�)k d�
����+ ����Z tm

tk

kh(x(�))k d�
���� � C jtm � tkj ! 0; m; k !1

This limit is unique and independent of the sequence ftkg1k=1 by a similar
estimate. Therefore we can extend x(t) up to the point tmax as

x(tmax)
def
= � = lim

t!tmax
x(t)

The extended function x(t) will be continuous on [0; tmax].

2) Now using an existence theorem (Peano or Picard-Lindelöf) for non-

linear systems of ODEs, we conclude that there is a solution y(t) to the

equation

y0(t) = Ay + h(y)

on the time interval [tmax; tmax + �) with the initial condition y(tmax) = � =

x(tmax) at time tmax. This solution is evidently an extension of the original

solution x(t) to a larger time interval, that contradicts the our supposition.

Therefore the solution x(t) can be extended to the whole R+ and satis�es
the estimate (16). It in turn implies that this solution must satisfy the desired

estimate

kx(t)k � C k�k e��t

and implies the asymptotic stability of the equilibrium point in the origin.�
This theorem implies immediately the following result on the stability of

equilibrium points by linearization.

Theorem.On stability of equilibrium points by linearization. (Corol-
lary 5.29, p. 195)
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Let f : G ! RN , G � RN be a non empty open set with 0 2 G , f be

continuous and f(0) = 0:Let f be di¤erentiable in 0 and A be the Jacoby

matrix of f in the point 0: A = D(f)(0):

Aij =
@fi
@xj

(0); i; j = 1; :::N

If A is a Hurwitz matrix (all eigenvalues � 2 �(A) have Re� < 0), then
the equilibrium point of the system

x0(t) = f(x(t))

in the origin is asymptotically stable.

Proof. Consider the function h(z) = f(z)� Az. Then by the de�nition
of Jacoby matrix kh(z)k = kzk ! 0 as z ! 0. An application of the theorem

about stability of a small perturbation of a linear system to the function

f(z) = Az + h(z) proves the the claim. �
The following general theorem by Grobman and Hartman that we for-

mulate without proof is a strong result on connection between solutions to a

nonlinear system

x0(t) = f(x(t)); (23)

x(0) = � (24)

with right hand side f(x) close to an equilibrium point x�, f(x�) = 0 and

solutions to the linearized system

y0(t) = Ay (25)

y(0) = � � x� (26)

with constant matrix A that is Jacobi matrix of the right hand side f in the
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equilibrium point x�, A = D(f)(x�):

Aij =
@fi
@xj

(x�); i; j = 1; :::N

�
De�nition. An equilibrium point x� of the system (23) is called hyper-

bolic if for all eigenvalues � 2 �(A) it is valid that Re� 6= 0.
Theorem. (Grobman-Hartman) A formulation and a (di¢ cult!)

proof can be found as Th. 9.9 at the page 266, in the book by
Teschl: http://www.mat.univie.ac.at/%7Egerald/ftp/book-ode/index.html

Consider an I.V.P. for a autonomous system of di¤erential equations

x0(t) = f(x(t)); (27)

x(0) = � (28)

Let f 2 C1(B), in BR(x�) = f� : k� � x�k < R g � G and x� 2 G be a
hyperbolic equilibrium point of (23): f(x�) = 0:

Then there are neighborhoods U1(x�) and U2(x�) of x� and an invertible

continuous mapping R : U1(x�)! U2 (x�) such that R maps shifted solutions

x�+e
At(��x�) to the linearized system (25) onto solutions x(t) = '(t; R(�))

of the non-linear system (23) with initial data

� = R(�); � = R�1 (�)

R
�
x� + e

At(� � x�)
�
= '(t; R(�))

and back

R�1 ('(t; �)) = x� + e
At(R�1 (�)� x�)

as long as x� + eAt(R�1 (�)� x�) 2 U1(x�).�
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Various classes of topologically equivalent equilibrium points in the plane:

a) asymptotically stable, b) center, c) saddle point, d) unstable:

In higher dimensions there is a larger variety of topologically di¤erent

con�gurations of phase protraits around equilibrium points.

Example on application of the Grobman - Hartman theorem
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Consider the system

x01 = �1
2
(x1 + x2)� x21

x02 =
1
2
(x1 � 3x2)

It has two equilibrium points: one in the origin (0; 0) and the second one

is (�2=3;�2=9):We �nd them by expressing x1 = 3x2 , from the equation
1
2
(x1 � 3x2) = 0, substituting to the equation �1

2
(x1 + x2) � x21 = 0, and

solving the quadratic equation �1
2
(3x2 + x2)� 9x22 = 0 for x2.

�1
2
(3x2 + x2)� 9x22 = �x2 (9x2 + 2) = 0:

and its linearization in the origin:

x01 = �1
2
(x1 + x2)

x02 =
1
2
(x1 � 3x2)

The linearized system has matrix A =

"
�1
2
�1
2

1
2

�3
2

#
, characteristic polyno-

mial: �2 + 2� + 1 = 0, eigenvalues: �1;2 = �1. The only eigenvector is"
1

1

#
. The origin is a stable for both systems. This equilibrium point is

asymptotically stable.

On the other hand we see that another equilibrium (�2=3;�2=9) of the
non-linear system seems to be a saddle point.

We check it now. For an arbitrary point we need �rst to calculate the

Jacoby matrix of the right hand side in the system x0 = f(x) in an arbitrary

point x 2 R2
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[Df ]ij (x) =
@fi
@xj

(x)

[Df ] (x) =

"
@f1
@x1
(x) @f1

@x2
(x)

@f2
@x1
(x) @f2

@x2
(x)

#
=

"
�1=2� 2x1 �1=2

1=2 �3=2

#

Calculating the Jacoby matrix in the second equilibrium point (�2=3;�2=9)
we get the matrix for the linearization of the right hand side in this point:

A =

"
�1=2� 2(�2=3) �1=2

1=2 �3=2

#
=

"
5
6
�1
2

1
2
�3
2

#

The characteristic polynomial is p(�) = �2 � �tr(A) + det(A). tr(A) =

5=6� 3=2 = �2
3
. det(A) = 5

6

�
�3
2

�
� 1

2

�
�1
2

�
= �1: Therefore p(�) = �2 +

2
3
��1. Eigenvalues are real and have di¤erent signs because the determinant
det(A) of A is negative. We do not need to calculate them to make these

conclusions.

Therefore the linearized system

y0 = Ay

has a saddle point in the origin. The non-linear system also has a sad-

dle point con�guration in the phase portrait close to the equilibrium point

(�2=3;�2=9) according to the Grobman-Hartman theorem. This equilib-
rium point is unstable. If we like to sketch a more precise phase portrait

for the linearized system we can calculate eigenvalues and eigenvectors. But

we can only guess the global phase portrait for the non-linear system (how

local phase portraits connect with each other). We give below phase por-

traits for the non-linear system and for the linearized system around each of

equilibrium points.
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Phase plane for the linearized system around the equilibrium point

(�2=3;�2=9)

Counterexample to the Grobman - Hartman theorem.
A system such that the linearized system has a center (stable) but the

non-linear has an unstable equilibrium point.

20



Consider the system

dx1
dt

= x2 + (x
2
1 + x

2
2)x1

dx2
dt

= �x1 + (x21 + x22)x2

The origin (0; 0) is an equilibrium point and the linearized system in this

point has the form

x0 =

"
0 1

�1 0

#
x

The origin is a center that is a stable equilibrium point.

Consider the equation for r2(t) = x21(t)+x
2
2(t):We derive it by multiplying

the �rst equation by x1 and the second by x2 and considering the sum of the

equations leading to

x1
dx1
dt
+ x2

dx2
dt

=
1

2

d (x1)
2

dt
+
1

2

d (x2)
2

dt
=
1

2

d

dt

�
r2(t)

�
=
�
r2(t)

�2
We see that the solution to this equation z = r2

1

2

dz

dt
= z2

dz

z2
= 2dtZ

dz

z2
=

Z
2dt

�1
z
= 2t+ C

�1
z(0)

= C

�1
z
= 2t+

�1
z(0)

z = r2
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with separable variables with arbitrary initial data r(0) is

r2(t) =
r2(0)

1� 2r2(0)t

The solution r2(t) is increasing with time and tends to in�nity with t rising

and blows up in �nite time.

The equilibrium (0; 0) to the nonlinear system is unstable. The phase

portraits of the nonlinear system and the linearized system are qualitatively

di¤erent in this example when eigenvalues to the Jacoby matrix of the right

hand side of the nonlinear system in the equilibrium point have real parts

equal to zero.

Example on application of the Grobman - Hartman theorem
Find for which values of the parameter a the origin is an asymptotically

stable equilibrium, stable equilibrium, unstable equilibrium of the following

system:(
x0 = y

y0 = �ay � x3 � a2x
(4p)

Solution. Consider the Jacoby matrix of the right hand side in the

equatiuon.

A(x; y) =

"
0 1

�a2 � 3x2 �a

#
. It�s value in the origin is A(0; 0) ="

0 1

�a2 �a

#
, with characteristic polynomial: p(�) = �2 + a�+ a2.

Eigenvalues are �1;2 = �a
2
�
q

a2

4
� a2 = �a

2
� i
q

3a2

4
komplex eigenalues

with real part Re�1;2 = �a
2
.

The Grobman - Hartman theorem about stability by linearization imples

that the origin is asymptotically stable when a > 0 and is unstable when

a < 0.

For a = 0 linearization does not give any information about sta-
bility because in this case Re�1;2 = 0. In this case the system is reduced to
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(
dx
dt
= y

dy
dt
= �x3

and we can �nd an equation for orbits (traces of solutions on

the phase plane) of the system from an ODE with separable variables:

dy

dx
=

dy=dt

dx=dt
=
�x3
y

ydy = �x3dxZ
ydy = �

Z
x3dx

y2

2
= �x

4

4
+ C

x4

4
+
y2

2
= C

1.2510.750.50.250-0.25-0.5-0.75-1-1.25

1.25

1

0.75

0.5

0.25
0

-0.25

-0.5

-0.75

-1

-1.25

x

y

x

y

Solutions to the ODE in the case when a = 0 will be periodic and go

along �attened ellipses in the picture.

Example. Stability by linearization for the pendulum with fric-
tion.

x01(t) = x2(t)

x02(t) = � 
m
x2(t)�

g

l
sin(x1(t))
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Linearized equation around (0; 0) is

x01(t) = x2(t)

x02(t) = � 
m
x2(t)�

g

l
x1(t)

The matrix of the system is

A =

"
0 1

�g
l
� 
m

#

tr(A) = � 
m
< 0; det(A) = g

l
> 0. Therefore the Re� < 0 for all

� 2 �(A). For small friction coe¢ cient  the equilibrium will be focus,

for large friction it will be a stable node. An intermediate case with stable

improper node is also possible.

Point out that the case with zero friction:  = 0 cannot be treated by

linearization, because the linearized system has a center in the origin. The

non-linear system has in fact also a center in the origin, but we cannot prove

it by means of linearization. We will consider this case later by di¤erent

means.
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The linearization of the equation around (�; 0).

Linear approximation for sin around �. Let (x1 � �) = y1(t):

sin(x1) = sin(�) + cos(�)(x1 � �) +O(x1 � �)2 � �(x1 � �) = �y1(t)

y1(t) = x1(t)� �; y01(y) = x01(t)

therefore

x1(t) = y1(t) + �; x
0
1(y) = y

0
1(t)

x2(t) = x01 = y
0
1(t)

Introducing y2 = y01 = x2; we get x2 = y2

sin(x1) = sin(�) + cos(�)y1 +O(� � x1)2

;

x01(t) = x2(t)

x02(t) = � 
m
x2(t)�

g

l
sin(x1)

y01(t) = y2(t)

y02(t) = � 
m
y2(t)�

g

l
(�y1)

The linearized equation around (�; 0)

y01(t) = y2(t)

y02(t) =
g

l
y1(t)�



m
y2(t)
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The matrix of the system is

A =

"
0 1
g
l
� 
m

#

Characteristic polynomial: p(�) = �2 �
�
� 
m

�
�� g

l
.

tr(A) = � 
m
< 0; det(A) = �g

l
< 0. The equilibrium is always a saddle

point (instable).

Example on application of the Grobman - Hartman theorem

Find all stationary points of the system of ODE

(
x0 = ey � ex

y0 =
p
3x+ y2 � 2

and

investigate their stability by linearization.

1. Solution.

We �nd stationary points by pointing out that the �rst equation implies

y = x and then
p
3x+ x2� 2 = 0 implies 3x+ x2� 4 = (x+ 4) (x� 1)

= 0 and therefore two roots x1 = 1 and x2 = �4 follow.

We have two stationary points: (1; 1) and (�4;�4).

The Jacobi matrix is J(x; y) =

24 �ex ey

3

2
p
3x+y2

yp
3x+y2

35
J(1; 1) =

"
�e e
3

2
p
3+1

1p
3+1

#
=

"
�e e
3
4

1
2

#
The trace of J(1; 1) is tr (J(1; 1)) =

1=2� e < 0

det (J(1; 1)) = e(�1=2� 3=4) = �5
4
e < 0 it implies that the stationary

point (1; 1) is has one negative and one postive eigenvalue and therefore

is a saddle point and is unstable by the Grobman Hartman theorem.

The characteristic equation for a 2x2 matrix A is �2�tr(A)��det(A) =
0:

In this particular situation it is �2 +
�
e� 1

2

�
�� 5

4
e = 0:
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Eigenvalues are: �1 = �1
2
e + 1

4
� 1

4

p
16e+ 4e2 + 1, �2 = �1

2
e + 1

4
+

1
4

p
16e+ 4e2 + 1.

J(�4;�4) =
"
�e�4 e�4

3
4

�4
2

#
=

"
�e�4 e�4

3
4

�2

#
.

The trace of J(�4;�4) is tr (J(�4;�4)) = �2� e�4 < 0.

det (J(�4;�4)) = e�4
�
2� 3

4

�
= 5

4
e�4 > 0: Therefore the the real parts

of eigenvalues are negative and the stationary point (�4;�4) is an
asymptotically stable equilibrium by the Grobman Hartman theorem.

The characteristic equation is �2 + (e�4 + 2)�+ 5
4
e�4 = 0.

Eigenvalues are : �1 = �1
2
e�4 � 1� 1

2

q
1
e8
� 1

e4
+ 4; �2 = �1

2
e�4 � 1 +

1
2

q
1
e8
� 1

e4
+ 4
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Example on the application of the Grobman - Hartman theorem(
x0 = y

y0 = �y � x� x2
Nullclines of this system have equations y = 0 ( x - nullcline), and y =

�x� x2

21.751.51.2510.750.50.250-0.25-0.5-0.75-1-1.25-1.5-1.75-2 0

-0.5

-1

-1.5

-2

-2.5

-3

-3.5

-4

-4.5

-5

x
y

x
y

(y - nullcline). Draw directions of velocities on nullclines!

Equilibrium points are intersection popints of di¤erent nullclines: (0; 0)

and (�1; 0):

Jacobi matrix of the right hand side in the ODE isA(x; y) =

"
0 1

�1� 2x �1

#
:

Jacobi matrix in the origin is

"
0 1

�1 �1

#
, the characteristic polynomial

is p(�) = �2+�+1, eigenvalues are�1
2
i
p
3� 1

2
; 1
2
i
p
3� 1

2
. Real parts of eigen-

values are negative and therefore the origin is stable focus, asymptotically

stable equilibrium.

Jacobi matrix in the point (�1; 0) is
"
0 1

1 �1

#
, the characteristic polyno-

mial is p(�) = �2+��1;eigenvalues are �1
2

p
5� 1

2
; 1
2

p
5� 1

2
. One is negative,

another is positive, the equilibrium point is a saddle point and is unstable.

One can also just point out that det

"
0 1

1 �1

#
= �1 < 0 that implies the

same conclusion using Poincare diagram without calculating eigenvalues.
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