
April 26, 2022

Lecture notes on non-linear ODEs: existence, extension, limit sets, periodic

solutions.

Plan of the chapter

1. Peano theorem on existence of solutions (without proof), Theorem. 4.2,

p. 102.

2. Existence and uniquness theorem by Picard and Lindelöf . Th. 4.17,

p. 118 (for continuous f(t; x), locally Lipschitz in x), (Proof comes in the last

week of the course)

Th.4.22, p.122 (for piecewise continuous f(t; x), locally Lipschitz in x).

3. Maximal solutions. Openness of the maximal existence interval. Prop.

4.4., p. 107.

4. Existence of Maximal solutions. Theorem 4.8.

5. Extensibility of bounded solutions to the boundary time point of the

interval. Lemma 4.9, p. 110.

6. Corollary 4.10, p. 111, on solutions enclosed in a compact, implying

"in�nite" maximal interval.

7. Properties of limits of maximal solutions. Theorem 4.11, p. 112 on

the property of solutions with "�nite" maximal interval Imax, to escape any

compact subset C in the space domain C �G.

8. On in�nite existence interval for systems with linear growth estimate

for the right hand side. Proposition 4.12, p. 114.

9. Transition map. De�nition p. 126. Transition property of the transition

map. Translation property for autonomous systems.
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Theorem 4.26, p. 126. (similar to Chapman - Kolmogorov relations for

transition matrix)

10. Openness of the domain and smoothness of transition map.Theorem

4.29, p. 129.

11. Autonomous systems. §4.6.1. Example 4.33., p. 139. of a transition

map.
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Lecture 10
Plan

0. Repition of stability by lnearization. Example.
1. Repetition of existence results.Uniqueness.
2. Extension of solutions to a maximal interval. Exercises on

maximal intervals.
3. Lemma on extention of solution to a boundary point of the

time interval.
4. Corollary about "eternal life" for solutions contained in a

compact.
5. Corollary about escaping of compacts for "short living" so-

lutions.

0.1 Non-linear systems. Existence and uniqueness of solutions.

Second half of the course deals with initial value problems for non-linear systems of ODE�s,

non-autonomous:

x0(t) = f(t; x); f : J �G! Rn; x(�) = � (1)

with J � R - an interval, G � Rn, open, � 2 J , � 2 G; f - continuous in J �G,

The set J �G is a "cylinder" in Rn+1 with the bottom G. In R2 if G is an interval J �G

is just a rectangle.

and autonomous systems of ODE�s:

x0(t) = f(x); f : G! Rn; x(�) = � (2)

that are a particular case of (1) with G � Rn, open, � 2 J = R, � 2 G, f - continuous in G;

where the right hand side f in the equation is independent of the time variable t running

over the whole R. The practical meaning of this kind of systems is that the "velocity" f

of the system depends only on the position x, but not on time t. So independently of the
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starting time � the output x(t) of an evolution depends only on the shift in time t � � . It

lets to choose always � = 0 for autonomous systems.

In many situations the equivalent integral form of I.V.P. is convenient to use:

x(t) = � +

Z t

�

f(s; x(s))ds (3)

Another option for requirements to f that is considered in the book by Logemann Ryan

is that f is supposed to be piecewise continuous in t and locally Lipschitz with respect to

x. We will not consider this case systematically in this part of the course.

Theorem 4.2, p. 102. Peano theorem.

For each (� ; �) in J � G there exists at least one solution to (1) de�ned on a (possibly

small) time interval I � J , � 2 I.

Point out that solutions are not unique leading to branching of the trajectory of solution

on the picture.

This result implies also the solvability of the problem (2) that is just a particular case.

Exercise. Show that the I.V.P. x0= 3
p
x; x(0) = 0, has non-unique solutions.

The uniqueness of solutions to I.V.P. needs additional requirements on regularity of f(t; x)

with respect to x variable. A standard requirement is that f(t; x) is supposed to be locally

Lipschitz with respect to the space x variable.

We repeat here the de�nition of locally Lipschitz functions.
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De�nition.(p. 115) Locally Lipschitz function

Let D � Rn be a non-empty set. A function g : D ! RM is said to be locally Lipschitz

if for any z 2 D there is a set U � D, relatively open in D; z 2 U; and a number L � 0

(which may depend on U) such that

kg(u)� g(w)k � L ku� wk ; 8u;w 2 U

If L is independent of the choice of U , the function is called globally Lipschitz.

Similarly one de�nes functions locally Lipschitz with respect to a part of variables.

De�nition.(p. 118)

Let G � R�n be a non-empty open set, J be an interval in R. A function f : J �G! Rn

is said to be locally Lipschitz with respect to x 2 G if for any (� ; x) 2 J � G there is a set

S�U � J �G, relatively open in J �G and a number L � 0 (which may depend on S�U)

such that

kg(s; x)� g(s; y)k � L kx� yk ; 8(s; x); (s; y) 2 S � U

A theorem that gives conditions for both existence and uniquness of solutions to (1) is

called the Picard-Lindelöf theorem

We will prove it in the last week of the course by applying the Banach contraction

principle, that is the second main approach in analysis to existence of solutions to non-linear

equations.

Theorem. Picard-Lindelöf. Theorem 4.17, p. 118 (variant with continuous f):

Let with J � R - an interval, G � Rn, open, � 2 J , � 2 G; f be continuous in J � G.

If f is locally Lipschitz with respect to its second argument x 2 G, then there is a unique

maximal solution x : Ix ! Rn to the I.V.P. problem (1): Any other maximal solution with

the same initial conditions must coinside with x(t):

De�nition. p. 106.

An extension (proper extension) of the solution x : I ! Rn is a solution ex : eI ! Rn to

the di¤eretial equation (1) such that ex(t) = x(t) 8t 2 I, I � eI, eI 6= I.
De�nition. By maximal solution we mean here the solution that cannot be extended to

a larger time interval.
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A simpler version of this theorem states just that a "local" solution to (1) on a possibly

small time interval I � J ; � 2 I, exists and is unique in the sense that any two solutions

x and y must coinside on the intersection of the time intervals Ix and Iy where they are

de�ned.

Proof of local uniqueness uses the integral form of the problem and the argu-

ment with the Grönvall inequality that was in a similar fashion applied earlier

to linear systems.

The same argument with the Grönvall inequality can be used for proving

well posedness of the I.V.P., namely that solutions to initial value problem (1)

considered as functions of three variables t, � , �: x(t) = '(t; � ; �) are continuous and in fact

even locally Lipschitz with respect to all three variables t, � , �. Proof to this property is

given in the next lecture.
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0.2 Extensions, maximal solutions and their properties.

The condition in the Proposition 4.12 is not necessary, but simple examples show solutions

that blow up in �nite time in future or in the past if this condition is not satis�ed, as for

example the equation x0 = x2:

We consider in this section the problem (1) with f continuous and satisfying conditions

in the Peano theorem implying existence (but not uniqueness) of "local solutions x : I ! Rn

on an interval I � J .

De�nition. p. 106. Maximal solution and maximal interval of existence.

The interval I is a maximal interval of existence and x is called maximal solution to a

di¤erential equation if x does not have an extension to a larger interval that is a solution to

the same di¤erential equation (1).

We suggest some simple examples of maximal solutions and maximal intervals that can

be calculated explicitely.

Exercise 4.6

J = [�1; 1]; G = R; f : J �G! R;

(� ; �) = (0; 1)

z0(t) = f(t; z)

f(t; z) =
3z2
p
1� jtj
2

J = [�1; 1]

t 2 [0; 1]
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dz

dt
=

3z2
p
1� t
2

dz

z2
=

3
p
1� t
2

dt

�1
z

= � (1� t)3=2 + C

�1 = �1 + C; (� ; �) = (0; 1)

C = 0

z =
1

(1� t)3=2
; t 2 [0; 1)

The solution cannot be extended to the right "last" time point t = 1 in the domain of

the equation. It blows up with t! 1.

t 2 [�1; 0];

dz

dt
=
3z2
p
1 + t

2
; t � 0

dz

z2
=

3
p
1 + t

2
dt

�1
z

= (1 + t)3=2 + C

�1 = 1 + C; (� ; �) = (0; 1)

C = �2
�1
z

= (1 + t)3=2 � 2

z =
1

2� (1 + t)3=2
; t 2 [�1; 0];

The maximal interval Imax = [�1; 1) - is relatively open in [�1; 1] because

[�1; 1) = [�1; 1] \ (�2; 1)

with an open interval (�2; 1):
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Exercise 4.7

J = (�1; 1); G = (�1; 1):Initial condition is t = � = 0; z = 0

f(t; z) =
1p

(1� t) (1� z)

dz

dt
=

1p
(1� t) (1� z)Z p

1� zdz =

Z
dtp
(1� t)

2

3
(z � 1)3=2 = �2

p
1� t+ C

2

3
(�1) (1) = �2 + C; t = 0; z = 0

4=3 = 2� 2=3 = C
2

3
(z � 1)3=2 = �2

p
1� t+ 4

3
2

3
(1� z)3=2 = 2

p
1� t� 4

3

(1� z)3=2 = 3
p
1� t� 2

(1� z) =
�
3
p
1� t� 2

�3=2
z = 1�

�
3
p
1� t� 2

�3=2

lim
t!5=9

x(t) = 1

Imax = (�1; 5=9)

because the right hand side f(t; z) does not exis for z = 1. The maximal interval Imax is

open.
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Proposition 4.4. Openess of maximal intervals.

Let x : I ! G be a maximal solution to I.V.P. (1):The maximal interval I is relatively

open in J (just open if J = R).

It means that I = J \O for some open set O � R.

�
Proof. Consider the case when J is an open interval J = (a; b). Suppose that the

maximal interval of a maximal solution to I.V.P. I � J is not open, for example is (�; !].

In this case the point (!; x(!)) 2 J�G and there is a solution to the di¤erential equation

with initial conditions (!; x(!)); existing on a small time interval [!; ! + ") with ! + " < b.

This solution is an extension of the original solution. It is a contradiction because we

supposed that (�; !] was a maximal interval for the maximal solution x(t). Other cases are

considered similarly.�
Example

For example the interval [�1; 0:5) is relatively open in [�1; 1) and in [�1; 1] ;because with

the open interval (�2; 0:5)

(�2; 0.5) \ [�1; 1) = [�1; 0:5)

(�2; 0.5) \ [�1; 1] = [�1; 0:5)

Theorem 4.8. p. 108. Existence of maximal solutions.

Every solution to a di¤erential equation (1) can be extended to a maximal solution.

�
Idea of the proof ( not required at exam)

In the case when solutions are unique (for example f is locally Lipschitz with respect

to x); one can build the maximal interval of existence just as a union of domains for all

extensions of a given solution. Because of the uniqueness of solutions, trajectories cannot

make branches in this case and this construction leads to a unique maximal solution that at

each time point t attains the value of one of the extensions de�ned at this time point. The

uniqueness of solutions makes that this de�nition is consistent.

In the general case when trajectories can create branches, the union of extensions can
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have a tree like geometry, or even be an n-dimensional set. In this case the proof uses Zorn

lemma (see appendix in the course book) to choose a maximal solution. It has an existence

interval including all existence intervals of all extensions, but is possibly not unique.

The following technical lemma is the main tool in several argu-
ments about maximal solutions.
Lemma 4.9. p. 110. On the extension to the boundary point of the open

existence time interval for a bounded solution having the closure of the orbit in

G; ( it was in fact considered before)

Let x : I ! G be a solution to the di¤erential equation (1) and denote a = inf I;

b = sup I.

(1) If b is in J and not in I (I is open in the right end), and the closure O+ of the orbit

O+ = fx(t) : t 2 [� ; b)g is a compact subset of G,(the closure does ot reach the boundary

of G)

then there is a solution y : I [ fbg ! G to (1) that is an extension of x.

(2) a similar statement is valid for the "backward orbit" O� = fx(t) : t 2 (a; � ]g and

extension of x to the left end point a.

Comment. Compact sets are sets that are bounded and closed.

Proof. We prove (1).

x(t) = � +

Z t

�

f(s; x(s))ds
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Let C be the closure of the forward orbit O+ = fx(t); t 2 [� ; b)g. Assume that b 2 J n I

and that C is a compact in G.

The continuous function f(t; z) must be bounded on the compact [� ; b]� C.

kf(t; z)k < M; (t; z) 2 [� ; b]� C

It will imply that the limit

� = lim
t!b

Z t

�

f(s; x(s))ds

is well de�ned for continuous and uniformly bounded function under the integral.

We prove it by observing that for any sequence ftkg1k=1 ; tk < b, tk ! b, with k !

1;integrals
nR tk

�
f(s; x(s))ds

o1
k=1

form a Cauchy sequence:

Z tp

�

f(s; x(s))ds�
Z tm

�

f(s; x(s))ds

 = Z tp

tm

f(s; x(s))ds

 �M jtp � tmj ! 0; p;m!1

that has a limit � independent of the sequence ftkg1k=1. The uniquness of the limit is shown

by repeating a similar argument.

lim
t!b
x(t) = � + lim

t!b

Z t

�

f(s; x(s))ds = � + �

Then the solution x(t) = � +
R t
�
f(s; x(s))ds to the I.V.P. can be extended to the closed

interval [� ; b] by setting x(b) = � + �.�

The following Corollary is a direct consequence of the Lemma 4.9 and Proposition 4.4

and gives a su¢ cient condition for a maximal solution to have an in�nite maximal interval

(if J is in�nite) or a maximal interval "i�nite with respect to" J , which meaning is speci�ed

exactly below.
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Corollary 4.10, p. 111. "Eternal life" of solutions with orbits enclosed in a

compact.

Let x : Imax ! G be a maximal solution to (1).

Suppose that the "future" half - orbit O+ = fx(t) : t 2 Imax \ [� ;1)g of the maximal

solution x(t) is contained in a compact subset C of G: O+ � C.

Then the corresponding maximal interval of existence Imax is in�nite to the right (future)

if [� ;1) � J ), or "in�nite to the right with respect to J" if sup(J) >1; meaning that the

maximal solution exists on [� ;1) \ I = [� ;1) \ J that is the whole part of J to the right

of the initial time � .

�
� Similar statement is valid for the "backward orbit" O� = fx(t) : t 2 (a; � ]g. Suppose

that the "backward orbit" is contained in a compact subset C of G,

Then the corresponding maximal interval of existence Imax is in�nite to the left (past)

if (�1; � ] � J and is in�nite to the left (past) "with respect to" J , that means that the

maximal solution exists on (�1; � ] \ I = (�1; � ] \ J , that is the whole part of J to the

left of the initial time � .

� If the whole orbit O = fx(t) : t 2 Imaxg of the maximal solution x(t) is contained in a

compact subset C of G: O � C, then the corresponding maximal interval of existence is the

wole time domain for f : Imax = J (Imax = R if J = R). It means that the maximal solution

x exists both in the whole past and whole future for the equation.�
Proof. The proof is easy to carry out by a contradiction argument that follows from the

Lemma 4.9 and the fact that a maximal interval must be open (relatively to J).

Suppose that the statement of the Corollary is wrong and for example the right end b of

the maximal interval Imax is smaller then sup J (right point in the time domain J). Then

the fact that the orbit O+ is contained in a compact C � G implies that the closure of

O+ belongs to C: O+ � C and is compact (colsed and bounded: It implies by Lemma 4.9,

that the solution can be extended to the point b. It is a contradiction, because the maximal

interval must be open.

We can also extend the solution from t = b <sup(J) further to a larger interal [b; b + ")
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by applying the existence theorem for the initial point (b; x(b)). It is also a contradiction.

�
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Lecture 11
Summary of Lecture 10

0. Nullclines, Grobman Hartman theorem and their applications.

1. Existence theorems.

2. Maximal solutions. Examples.

3. Extension of a trajectory with compact closure of the orbit in the domain - to the

boundary point of the open existence interval.

4. "Eternal" existence time for solution with an orbit contained in a compact.

How to show that a solution has the orbit inside a compact set without solving

the equation?

We consider here autonomous systems with f independent of the time variable.

De�nition. A set Q is called positively invariant or !- invariant for a system of di¤er-

ential equations if all trajectories of maximal solutions starting inside Q stay inside Q for all

future t in it�s maximal interval.

�
We consider here an idea how to show that solutions to a non-linear autonomous system

of di¤erential equations belong to a compact set.

A general idea that is used to answer many questions about behaviour of solutions (tra-

jectories) of the equations, is the idea of test functions.

We �nd a test function V (x) that has some simple level sets @Q = fx : V (x) = Cg that

are closed curves (or surfaces in higher dimensions) enclosing a bounded domain Q in G.

Typical examples are V (x; y) = x2 + y2=R2 - circle or radius R; or V (x; y) = x2

a2
+ y2

b2
=1

- ellipse, et.c.

� Show that a particular level set @Q bounds a positively - invariant set Q we check the

sign of the directional derivative of V along the velocity in the equation: Vf (x) = (rV � f) (x)

for all points on the level set fV (x) = Cg for a particular constant C.

� rV (x) is a normal vector to the level set of V that goes through the point x:Therefore

the sign of Vf (x) = (rV � f) (x) shows if trajectories go to the same side of the level set as

the gradient rV (if Vf (x) > 0) or to the opposite side (if Vf (x) < 0).
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� If all trajectories go inside a bounded set Q, then all trajectories starting inside Q will

stay inside Q forever.

Example.

Consider the following system of ODEs:

8<: x0 = 2y

y0 = �x� (1� x2)y
:

Find a compact around the origin that no trajectories escape.

Solution.

We try the test function V (x; y) = x2 + 2y2. It has level sets in form of ellipses and

inde�nite terms in the expression of directional derivative along trajectories cancel:
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Vf (x; y) =
d

dt
V (x(t); y(t)) = rV (x; y) �

24 x0(t)
y0(t)

35 =
=

�!
N � �!f =

=

24 2x
4y

3524 2y

�x� (1� x2)y

35
= 4xy � 4xy � 4y2(1� x2) = �4y2(1� x2) � 0

rV (x; y) is a normal vector to level sets of the form:

x2 + 2y2 = C

Vf (x; y) = 4xy � 4xy � 4y2(1� x2) = �4y2(1� x2) � 0 that is not positive for jxj � 1.

We see that trajectories of the system will enter the level set of the function V (x) if

jxj � 1, namely for points inside the stripe jxj � 1 in the plane. Level sets of V (x) = C

are ellipses oriented along coorinate axes. The largest one inside the stripe jxj � 1 must go

through the point (1; 0). We choose corresponding value of the constant C in the equation

for this leel set.

We put y = 0, x = 1; into te equation x2 + 2y2 = C and conclude that C = 1. The

desired level set is x2 + 2y2 = 1.

Trajectories starting inside the compact bounded by this ellips stay inside it forever. It

implies in particular that all solutions exist on the interval [� ;1).

10.80.60.40.20-0.2-0.4-0.6-0.8-1

0.625

0.5
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0.25

0.125
0

-0.125

-0.25
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-0.5

-0.625

x

y

x

y
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Consider an I.V.P.

x0(t) = f(t; x); f : J �G! Rn; x(�) = � (4)

with J � R - an interval, G � Rn, open, � 2 J , � 2 G; f - continuous in J � G. The set

J �G is a "cylinder" in Rn+1 with the bottom G.

The following Theorem describes the situation in a sense opposite to the previous Corol-

lary 4.10. It describes the behaviour of maximal solutions to the I.V.P. above having bounded

maximal interval Imax (if J is R), or in the case when the interval J has bounded endpoints

itself, it describes maximal solutions with maximal interval Imax such that sup Imax < sup J

or inf J < inf Imax.

Theorem 4.11, p.112. "Short living" maximal solutions escape any compact.

Let x : I ! G be a maximal solution to (1) with maximal interval of existence I � J

and assume that I is not the whole J : I 6= J . Denote endpoints of I as � = inf(I);

! = sup(I):Then one of endpoints does not belong to I:

1) ! 2 J n I

or

2) � 2 J n I .

Statement of the Theorem:

1) In the �rst case ! 2 JnI for each compact C � G, there is an "escaping time moment"

� 2 I; � < !, such that x(t) "escapes" C at time � and never comes back: x(t) =2 C for all

t 2 (�; !).

This property can be further geometrically speci�ed. If G 6= Rn the trajectory x(t) tends

to the boundary @G of G with t ! ! (if G is bounded). It can also tend to in�nity if G

has "branches" going to in�nity in Rn. If G = Rn, then kx(t)k ! 1; as t ! !. This

statement is formulated formally as:

lim
t!!

min fdist(x(t); @G); 1= kx(t)kg = 0; for G 6= Rn (5)

kx(t)k ! 1; as t! !; for G = Rn
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2) Similar statements are valid for limits of x(t) as t! � for the maximal solution having

maximal interval with the left end point � "in the past" belonging to J .

Proof. (the proof in the course book is incomplete)

We consider the case 1). The fact that the maximal solution must at some time leave

any compact C follows from the previous Corollary 4.10 by contradiction, because a solution

that stays in a compact must have a maximal interval in�nite to the right or [� ;1) \ I =

[� ;1)\J . It contradicts to the condition that ! 2 J n I that means that the given maximal

x(t) solution does not reach the maximal possible time in J .

A more sophisticated argument shows that in our situation the solution x(t) must at

some time � leave any compact C "forever". There is a "last visit" time � < !, such that

x(t) never enters C again after this time.

Suppose the opposite, namely that there is a monotone sequence of times ftmg1m=1 such

that tm % ! with m!1 such that x(tm) 2 C.

C is a compact, therefore there must exist a subsequence (for which we will keep the

same notation ftmg1m=1); such that with m!1 tm % ! and x(tm)! x� 2 C .

Choose an r so small that the ball B((!; x�); r) with the center (!; x�) would belong to the

domain of the equation: B((!; x�); r) � J�G. Choose a smaller ball B � B((!; x�); 2") with

" = r=3. Then the closure B of B also belongs to the domain of the equation: B � J �G.
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Denote by M = sup
�
kf(t; x)k : (t; x) 2 B

	
the supremum of the continuous function

kf(t; x)k on the compact B.

Using that tm % !; and the boundedness of kf(t; x)k < M on B, we will observe that

the index m can be chosen so large that the trajectory f(t; x(t) : t 2 [tm; !)g of the solution

x(t) for t 2 [tm; !), on the short time interval [tm; !; ) belongs to B.

It can be observed by considering the integral form of the di¤erential equation and using

the estimate M = sup
�
kf(t; x)k : (t; x) 2 B

	
for f on B:

x(t) = x(tm) +

Z t

tm

f(s; x(s))ds

x(t)� x� = x(tm)� x� +
Z t

tm

f(s; x(s))ds

kx(t)� x�k � kx(tm)� x�k+ jt� tmjM

� "; m > m�

where kx(tm)� x�k ! 0 withm!1, and for t 2 [tm; !) we have jt� tmjM � j! � tmjM !

0 with m!1. We can choose m > m� so large that the right hand side in the inequality

will be smaller than ".

Therefore kx(t)� x�k � ", jt� tmj � " and the trajectory f(t; x(t) : t 2 [tm; !)g belongs

to B � B((!; x�); 2") and is bounded:

Therefore the closure of the orbit fx(t) : t 2 [tm; !)g is compact and belongs to G:

Therefore according to the Lemma 4.9 the solution x(t) can be extended up to the time

! and also beyond it, to an even larger time interval [tm; ! + �). This fact contradicts the

given condition that x(t) is the maximal solution with the maximal interval Imax having

sup Imax = !.

The property that x(t) tends to the boundary of G can be shown in the following way.
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If G is bounded, one can construct a rising sequence of compact sets fCng1n=1 ; Cn � Cn+1
� G like "blowing up ballons" tending to the boundary @G of G so that dist(Cn; @G) !

0 as n ! 1 . For each of these sets there is a time �n such that x(t) leaves Cn and

therefore has dist(x(t); @G) < dist(Cn; @G) for t > �n. This construction proves the fact

that dist(x(t); @G)! 0 as t! !.

In the case of G = Rn one can choose a sequence of test compact sets fCng1n=1 as balls

with centers in the origin and radii rn tending to in�nity with n!1 leading together with

the "escaping property" to conclusion that kx(t)k ! 1; as t! !.

The third case with unbounded G with non-empty boundary @G can be proven by a

combination of the above arguments.�

Proposition 4.12, p. 114 on "eternal" solutions for equations with linear

bound for the right hand side. (proof required at exam)

Consider the initial value problem

x0(t) = f(t; x(t)); x(�) = �

where f : J � RN ! RN ; continuous and locally Lipschitz in x:

Assume that for any compact interval K � J there is L > 0 such that for t 2 K the
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following estimate holds for the right hand side:

kf(t; x)k � L(1 + kxk): (6)

If x : I ! RN is a maximal solution to the equation x0(t) = f(t; x(t)), then I = J . In

particular if J = R, the maximal solution is de�ned for all t.

Proof.

De�ne ! = sup I, � = inf I . We use proof by contradiction. Suppose that the statement

of the theorem is not true, for example that ! 2 J and ! =2 I and that � < !.

Let choose the constant L such that the (6) for f is valid for t 2 [� ; !].Then, using the

integral form of the I.V.P. and the triangle inequality implies the following estimate

kx(t)k � kx(�)k+
Z t

�

kf(s; x(s))k ds � kx(�)k+ L
Z t

�

(1 + kx(s)k) ds

= kx(�)k+ L(t� �) +
Z t

�

L kx(s)k ds

for all t 2 [� ; !):

The Grönvall inequality implies that kx(t)k bounded by a constant C for t on [� ; !): It

makes that the corresponding orbit fx(t); t 2 [� ; !)g is bounded and therefore has a compact

closure in RN : The Lemma 4.9 implies that the solution can be extended to the closed

interval [� ; !] and actually by the existence theorem to an even larger interval beyond !. It

contradicts to the supposition that I is a maximal interval for x(t).�
Proof for the case when � 2 J and � =2 I; � < � is treated similarly.

Example. f(x) = sin(x2 + t) (3x
2+t)

(1+jxj) , t 2 (0;1) satis�es conditions in the theorem.

0.3 Transition map

Existence theorems by Picard and Lindelöf (Theorems 4.17 and 4.22 ) imply that for any

point � ; � 2 J � G there is a unique maximal solution that is convenient to consider as a

function

x(t) = '(t; � ; �) : J � J �G! G
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of three variables equal to the maximal solution x of (1). It is a common situation in

applications that one is interested not in properties of one solution, but in a description

as a whole of the family of solutions with all possible initial data. This type of problems

constitute modern theory of di¤erential equations and dynamical systems and motivates

introducing the following notion.

De�nition. p. 126. Transition map. The mapping '(t; � ; �) de�ned above is called

transition map.

Transition map for autonomous systems. In the case of autonomous systems there

is no meaning in considering di¤erent initial times � , because all solutions are functions of

the time shift t� � . In this case we consider transition mappings '(t; �) : J �G! G with

'(t; �) = x(t); '(0; �) = �

being the maximal solution of (2) with initial condition x(0) = �.

Local �ow or local dynamical system corresponding to an autonomous system of

di¤erential equations.

In the modern theory of ODE and dynamical systems the mapping '(t; �) corresponding

an autonomous di¤erential equation is often called the local �ow or the local dynamical

system corresponding to the di¤erential equation.

Notation

If the maximal interval I� corresponding to the initial point � coinsides with R we say

that the solution '(t; �) is global. If I� = R for all � 2 G then '(t; �) is said to be a �ow or

a dynamical system on G.

Example 4.33 of a transition map.

G = R; f : G! R; f(x) = x2; for � = 0; x(t) � 0:

Initial data x(0) = �
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dx

dt
= x2;

Z
dx

x2
=

Z
dt;

�1
x
= t+ C

�1
x
= t� 1

�
; �1

x
=
t� � 1
�

x(t) =
�

(1� t�)

The maximal interval for � = 0; x(t) � 0: is I� = R

The maximal interval for � > 0, I� = (�1; 1=�):

The maximal interval for � < 0, I� = (1=�;1)

'(t; �) =
�

(1� t�) ; D(') = f(t; �) 2 R� R; t� < 1g

The domain D of ' is an open set. The function '(t; �) is continuous and even locally

Lipschitz:

Proposition. Theorem 4.34, p.139 (consequence of Th. 4.29, p. 129)

The domain D = f(t; �) 2 I� �G, � 2 Gg of the transition map '(t; �) is open and

'(t; �) is continuous and even locally Lipschitz in D:

Proof of the Lipschitz property with respect to each of the variables t and � follows

from the integral form of the I.V.P., and for � variable - from an application of Grönwall

inequality similar to the proof of uniqueness of solutions to I.V.P:
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We give a proof for Lipschitz property with respect to initial data �.

Consider di¤erence of two solutions x(t) and y(t) to I.V.P.

x0 = f(t; x(t)); x(�) = �

y0 = f(t; y(t)); y(�) = �

de�ned on a set S � U including (� ; �)such that the local Lipschitz property is valid for

f(t; x) on S � U:

x(t) = � +

Z t

�

f(s; x(s))ds

y(t) = � +

Z t

�

f(s; y(s))ds

x(t)� y(t) = 0 +

Z t

�

f(s; x(s))� f(s; y(s))ds

kx(t)� y(t)k = k� � �k+
Z t

�

f(s; x(s))� f(s; y(s))ds
 �

� k� � �k+
Z t

�

kf(s; x(s))� f(s; y(s))k ds �

� k� � �k+
Z t

�

L kx(s)� y(s)k ds

= k� � �k+ L
Z t

�

kx(s)� y(s)k ds

The Grönvall inequality

kx(t)� y(t)k � k� � �k � exp(L (t� �)) = 0

implies that solutions x(t) and y(t) must coinside in the case when initial conditions are

the same: � = �, and are locally Lipschitz with respect to initial conditions. The Lipschitz

property with respect to time variables t and � follows similarly. �

26



Lecture 12
Summary of Lecture 11

1. Method of test functions for �nding a positiely invariant compact set enclosing all

trajectories that start inside it .

2. Escaping of compact property for "short living" solutions.

3. "Eternal" solutions are guaranteed for equations with linear bound on the right hand

side.

4. Transition mapping x(t) = '(t; � ; �) and it�s properties: the openess of the domain

and the local Lipschitz porperty with respect to both variables. Example.

Point out that in the later part of the course we always suppose that conditions of the

Picard-Lindelöf theorem are satis�ed: the right hand side f(t; x) of the ODE is locally

Lipschitz with respect to x.

Proposition. Translation invariance of the transition mapping for autonomous

systems

(a non-linear version of the Chapman-Kolmogorov relation) Theorem 4.35,

p. 140 -141.

The transition mapping '(t; �) for an autonomous ODE has the following properties

(1) '(0; �) = � for all � 2 G

(2) if � 2 G and � 2 I� = Imax(�) - maximal interval for �, then

I'(�;�) = (I�)� �

'(t+ � ; �) = '(t; '(� ; �)); 8t 2 I� � �

Proof of this statement is similar to the proof of the Chapman - Kolmogorov relations

for linear systems.
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We consider �rst a trajectory '(:::; �) starting at the point � 2 G at time t = 0 and

�nishing at time � at the point '(� ; �) (blue curve on the picture). Then we continue this

movement from the last point '(� ; �) during time t (red curve) coming �nally to the point

'(t; '(� ; �)) in the right hand side of the equation in the conclusion of the theorem.

The fact that solutions are unique (meaning that trajectories have no branches) and the

equation is autonomous (velocity �eld f is independent of time) makes that this movement

is equivalent to just moving with the �ow starting from the point � during the total time

t + � , that is the left hand side in the equation. The illustration here is borrowed from the

proof for the linear systems but is otherwise completely abstract. The only di¤erence here is

that we have a superposition '(t; '(� ; �)) of transfer mappings in the non-linear case instead

of the product of transfer matrices in the linear case (which corresponds to a superposition

for linear mappings).
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