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Lecture 12
Limit sets (attractors), positively invariant sets, periodic

solutions, limit cycles
for non-linear autonomous ODEs - dynamical systems.

Plan

� Semi - orbits. Limit sets. p. 142. Positively (negatively) invariant sets p. 142.

� Existence of an equilibrium point in a compact positively invariant set. Theorem 4.45,

p. 150.

� Planar systems. Periodic orbits. Poincare-Bendixson theorem. (only idea of the proof

is discussed) Theorem 4.46, p. 151.

� Examples on applications of Poincare-Bendixson theorem.

� Generalized Poincare-Bendixson theorem. (missed in the course book, only formulation

is given)

0.1 Introduction to limit sets and their properties.

We consider �ows or dynamical systems corresponding to autonomous di¤erential equations

_x = f(x); f : G! RN ; x(0) = � (1)

with f locally Lipschitz and denote by '(t; �) the transition mapping or the local �ow

generated by f . For � 2 G let I� = (��; !�) denote the open maximal interval - the interval

of existence of maximal solution to (1):
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De�nition. (Positive semi-orbit)

We denote by O(�) the orbit of the solution to (1); O(�) = fx(t) : t 2 (��; !�)g.

We de�ne the positive semi-orbit O+(�) = fx(t) : t 2 [0; !�)g of � - for future; and nega-

tive semi-orbit (for the past) O�(�) = fx(t) : t 2 (��; 0]g o /f � - for the past.

De�nition. (Limit point of �)

� A point z 2 RN is called an ! - limit point of � (or of it�s positive semi-orbit O+(�) or

it�s orbit O(�)); if there is a sequence of times ftng 2 [0; !�) tending to the "maximal time

in the future", tn % !� such that '(tn; �)! z as n!1

� Similarly a point z 2 RN is called an � - limit point of � (or it�s negative semi-orbit

O�(�) or it�s orbit O(�)) if there is a sequence of times ftng 2 (��; 0] tending to the "minimal

time in the past", tn & �� such that '(tn; �)! z as n!1.

De�nition. (! - limit set)

The ! - limit set 
(�) of � (or it�s positive semi-orbit O+(�) or it�s orbit O(�)) is the set

of all it�s !- limit points (in future) of �.

A trajectory approaching the ! - limit set of the Lorentz system
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x0 = ��(x� y)

y0 = rx� y � xz

z0 = xy � bz

for � = 10; r = 28, b = 8=7:

De�nition

The � - limit set 
(�) of � (or it�s negative semi-orbit O�(�) or it�s orbit O(�)) is the set

of all it�s �- limit points (in the past).

! -limit set that is a periodic orbit.

De�nition. Positively invariant set (it is often called ! - invariant set )

A set U � G is said to be positively invariant under the local �ow '(t; �) generated by

f if for each starting point � 2 U from U the corresponding positive semi - orbit O+(�) is

contained in U .

It means that all trajectories x(t) starting in U stay in U as long as they exist in future:

One de�nes sets negatively invariant similarly, but with respect to the past.
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Positively invariant sets are sometimes rather naturally called ! - invariant sets.

De�nition

One also says that the set U is just invariant with respect to the �ow '(t; �) if O(�) � U

for all � 2 U . It means that all trajectories going through � belong to U both in the "whole

past" and in the "whole future".

Remark

We know that compact positively invariant sets include trajectories that have "in�nite"

maximal existence time in the future: J \ [0;1). It makes it meaningfull to investigate limit

sets of trajectories that are contained especially in compact positively invariant sets.

The �rst step in this kind of investigation is to identify possibly small positively invariant

sets, that localize solutions. The second step is to classify and to identify ! - limit sets that

can be contained there. It particular one is interested in �ning ! - limit sets for particular

given systems.

0.2 Methods of hunting positively - invariant sets (there is a sep-

arate pdf �le with this text)

A system of ODEs has naturally many positively - invariant sets, for example the whole

domain G is always a positively - invariant set, but it is not very interesting. We like to

�nd possibly narrow positively invariant sets showing more precisely where trajectories or

solutions to the equation tend when time t tends to the upper bound of the maximal time

interval.

How to �nd a positively - invariant set?

Method 1. A general idea that is used to answer many questions about behaviour of

solutions (trajectories) to ODEs, is the idea of test functions. One checks if the velocities

f(x) are directed inside or outside with respect to the sets like Q = fx 2 U : V (x) � Cg or

Q = fx 2 U : V (x) � Cg de�ned by some simple test functions V : U ! R, U � G: The

advantage of the idea with test functions is that one does not need to solve the equation to

use it.
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� It is convenient to �nd a test function V (x) that has a level set @Q = fx : V (x) = Cg

that is a closed curve (or surface in higher dimensions) enclosing a bounded domain Q.

Typical examples are V (x; y) = x2 + y2=R2 - circle or radius R; or V (x; y) = x2

a2
+ y2

b2
=1

- ellipse,

or more complicated ones as V (x; y) = x6 + ay4 - smoothed rectangle shape or squeezed

ellipse.

�The equation V (x; y) = x2 + xy + y2 = C - gives an ellipse rotated in �=4 and having

axes A and B related as A=B =
p
3etc.

� To show that a particular level set @Q bounds an positively - invariant set Q we check

the sign of the directional derivative Vf of V along the velocity f(x) in the equation x0 = f(x):

dV (x(t))=dt = Vf (x) = (rV � f) (x)

for all points on the level set fV (x) = Cg for a particular constant C.

� Point out that the gradient rV (x) is the normal vector to the level set fV (x) = Cg

that goes through the point x. Therefore the sign of Vf (x) shows if the trajectories towards

the same side of the level set as the gradient rV (if Vf (x) > 0) or towards the opposite side

(if Vf (x) < 0).

� Then if V (x) is rising for x going out of Q, and Vf (x) < 0 then the domain Q inside

this level set @Q (curve in the plane case) will be positively - invariant. Similarly if V (x) is

decreasing out of this level set, and Vf (x) < 0 on the level set @Q then the domain Q inside

this level set will be positively - invariant.

In the opposite case the complement to Q that is RNnQ will be positively - invariant

and trajectories '(t; �) starting in this complement: � 2 RNnQ will never enter Q.

First integrals. A very particular case of test functions are functions that are constant

on all trajectories '(t; �) of the system. It means that d
dt
V ('(t; �)) = Vf (x) = (rV � f) (x) �

0. In this case all level sets of the �rst integral are invariant sets, because velocities f(x) are

tangent vectors to the level sets in this case. Such functions are called �rst integrals and

represent conservation laws in ODEs. Usually but not always, such test functions have the

meaning of the total energy in the system. In this particular case each level set is a union
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of orbits to the di¤erential equation.

An interesting property of �rst integrals is that their level sets consist of

orbits.

Method 2. If it is sometimes di¢ cult to guess a simple test function giving one closed

formula for the boundary of an positively - invariant set as in the Method 1, then one can

try to identify a boundary for a positively - invariant set as a curve (or a surface in higher

dimensions) consisting of a number of simple peaces, for example straight segments.

The simplest positively - invariant set of such kind would be a rectangle (a rectangular

box in higher dimensions) with sides parallel to coordinate axes. Then a simple check that

this rectangle is a positively - invariant is just to check the sign of x1 or x2 - components of

f(x) on these segments, showing that trajectories go inside or outside of the rectangle.

A bit more complicated analysis is necessary to show that no trajectories can approach

these segments in �nite time (if one of the segments belongs to the boundary @G of G where

the equation is not de�ned).

Application to Poincare Bendixson theorem

One searches often positively - invariant sets with special properties. For example to

apply the Poincare-Bendixson theorem for systems in the plane formulated later in this

course, one needs to �nd a positively - invariant set that does not contain any equilibrium

points.
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Example of �nding positively - invariant sets and ! - limit sets with help of polar

coordinates and the simple test function r(x; y) =
p
x2 + y2.

Consider the system

x0 = �ay + f(r)x

y0 = ax+ f(r)y

where r =
p
x2 + y2: We will try to �nd an explicit expression for the corresponding �ow

by introducing polar coordinates x = cos(�)r, y = sin(�)r. We di¤erentiate r(t) using

expressions for r and for x0, y0 in the equation, and arrive to following formulas:

�
r(t)2

�0
= 2rr0 = (x2 + y2)0 = 2xx0 + 2yy0

= 2x(�ay + f(r)x) + 2y (ax+ f(r)y) = 2f(r)
�
x2 + y2

�
= 2f(r)r2

Therefore:

r0 = f(r)r

The equation for the polar angle � can be derived by di¤erentiating tan(�(t)):

(tan (�(t)))0 = �0
�

1

cos2(�)

�
=
�y
x

�0
=
y0x� x0y
x2

=
ax2 + f(r)xy � (�ay2 + f(r)xy)

x2
=
ax2 + ay2

x2
=
a(x2 + y2)

x2
=

a

cos2 �

Therefore

�0 = a

The equation for r(t) can be solved by integration:

Each positive root r� to f(r) corresponds to a periodic trajectoty r(t) = const = r(0) =

r�, �(t) = �(0) + at

This periodic orbit will attract trajectories, that start nearby if df
dr
(r�) < 0. For r < r�

inside the circle r = r� f(r) > 0 and correspondingly r0 = f(r)r > 0. For r > r� outside the

circle r = r� we have f(r) < 0 and correspondingly r0 = f(r)r < 0. It implies that the circle
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r = r� will be an ! - limit set 
(�) for points � close to the circle r = r�).

If r� is a root of f where the �rst term in Taylor series is c(r � r�)2 with c > 0, then

nearby trajectories will be attracted to the periodic orbit r(t) = r� from inside, and will run

away from the periodic orbit from the outside of it.�
Example.

An example of this type with tree periodic solutions, orbit r = 1 and r = 3 (red) are !

- limit sets for points � close to the set r = 1 and to the set r = 3 , the orbit of one of them

with r = 2 (blue) is an � - limit set for points � close to the set where attractor consists of

limit points r = 2 :

f(r) = (1� r2)(3� r)(4� r2)

a = �10

3.532.521.510.50
0

-12.5

-25

-37.5

r

f(r)

r

f(r)

We have dr=dt = f(r)r
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In the following example from the course book such kind of system is considered for one

more particular function f(r).

Exercise 4.16, p. 140.

Solution. The equations in polar form follow from the general argument above.

We solve the equation for r :

dr

dt
= r(1� r2)

dr

r(1� r2) = dt

1

r(1� r2) =
1

r
� 1

2 (r + 1)
� 1

2 (r � 1)
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Z
dr

r(1� r2) = ln r � 1
2
ln
�
r2 � 1

�
ln r � 1

2
ln
�
r2 � 1

�
= t+ C

C = ln j�j � 1
2
ln
�
j�j2 � 1

�
ln r � 1

2
ln
�
r2 � 1

�
�
�
ln j�j � 1

2
ln
�
j�j2 � 1

��
= t

exp(t) = exp

�
ln r � 1

2
ln
�
r2 � 1

�
� ln j�j+ 1

2
ln
�
j�j2 � 1

��
rp
r2 � 1

q
j�j2 � 1
j�j = exp(t)

(r2 � 1)
r2

j�j2�
j�j2 � 1

� = exp(�2t)�
r2 � 1

�
j�j2 = r2

�
j�j2 � 1

�
exp(�2t)

r2(j�j2 +
�
1� j�j2

�
exp(�2t)) = j�j2

r2 =
j�j2

(j�j2 +
�
1� j�j2

�
exp(�2t))

r =
j�jq

(j�j2 � 1� j�j2 exp(�2t))

Example 4.37. p. 142. Do it as exercise.

Let f : R2 ! R2 be as in the Exercise 4.16, the generator of a local �ow considered

above.

Let � be an open unit disc in R2; namely � = f(z1; z2) 2 R2 : z21 + z22 < 1g :

Show that sets �, @�;R2n� are invariant and �nd for every � 2 R2 the corresponding

! and � limit set.

Remark. In the case k�k > 1 solutions '(t; �) have the maximal interval I� that is not

the whole R, but is bounded in the past I� = (��;1):

The calculation of �� using the explicit solution found in the exercise 4.16 is given here:
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k�k2 +
�
1� k�k2

�
e�2t = 0

k�k2

k�k2 � 1
= e�2t

ln

0@
q�
k�k2 � 1

�
k�k

1A = t = �� < 0

The phase portrait is the following:

12



0.3 Dynamical systems in plane. Poincare Bendixson theorem,

periodic solutions and more positively invariant sets.

Theorem. Poincare-Bendixson theorem.

Suppose that � 2 G � R2 is such that the closure of the positive orbit O+(�) is compact

and is contained in G and the ! - limit set 
(�) does not contain equilibrium points.

Then the ! - limit set 
(�) is an orbit of a periodic solution.�

Counterexample: an annulus containitng no periodic orbits, because it is a

region of attraction containing an attracting equilibrium.

De�nition of ! - limit cycle

A periodic orbit 
 (an orbit corresponding to a periodic solution) is called an ! - limit

cycle (or often just a limit cycle) if 
 = 
(�) for some starting point � 2 Gn
: namely that


 is an !-limit set for some point � outside 
.

This de�nition excludes the case of phase portraits completely �lled periodic orbits, as

the system

x0 = �y;

y0 = x;

having all orbits being circles around the origin corresponding to periodic solutions.
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Hint to applications. It is di¢ cult to check conditions in the Poincare-Bendixson

theorem as they are.

It is much easier to check that there is a compact positively invariant set C � G � R2

such that � 2 C. Then the ! - limit set 
(�) � C is not empty. If C contains no equilibrium

points, then the closure of 
(�) cannot contain equilibrium points either and by the Poincare-

Bendixson theorem 
(�) is an orbit of a periodic solution.

One fundamental fact about positively invariant sets is the following.

Theorem 4.45. p. 150, L&R (slightly generalised, without proof)

Suppose that C � G � R2 is non-empty and compact and is homeomorphic to a circular

disc (has no holes). If C is positively invariant under the �ow '(t; �), then C must contain

at least one equilibrium point for the corresponding ODE.

Proof of this theorem is based in the Bohl-Brouwer �xed-point theorem about the exis-

tence of �xed points x = F (x) of a continuous mapping F : C ! C for a compact C � Rn

homeomorphic to a ball. See an Appendix in L.R.

De�nition. Two sets A and B in Rn are homeomorphic if there is a continuous invertible

mapping (homeomorphism) � : A! B;and ��1 : B ! A.

The Theorem 4.45 has an important practical consequence for the application of the

Poincare Bendixson theorem.

Remark. Considering any periodic orbit in the planeR2 we see that it encloses a compact

positively invariant set Q homeomor�c to a round disc (it follows from Jordan�s lemma).

Theorem 4.45 suggests that Q includes at least one equilibrium point if the di¤erential

equation is de�ned on Q. It means that any periodic orbit in plane must surround at least

one equilibrium point. It makes that typical compact positively - invariant set C considered

for applying the Poincare-Bendixson theorem should be a closed ring shaped set with at

least one hole in the middle including an equilibrium point.
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Check list for application of the Poincare-Bendixson theorem for �nding

periodic solutions.

� One starts with applying one of the two methods above to �nd a compact positively -

invariant set Q:

� Then we consider if Q has an equilibrium inside. Usually there is one such if our

intuition is not wrong. Therefore the set Q does not satisfy conditions in the Poincare-

Bendixson theorem yet. It is only the �rst step to the goal.

� Suppose there is just one equilibrium point x� insideQ. It might be that this equilibrium

is asymptotically stable and attracts all trajectories starting in Q: Then there is no periodic

orbit inside Q.

� To have a periodic orbit in Q we need to �nd a "hole" H around the equilibrium

x� such that no trajectories enter it. Then the closure of the set QnH without the hole

will be a compact ring - shaped set (annulus) that is positively invariant and contains no

equilibrium points. Then all trajectories x(t) starting in QnH will have a non-empty ! -

limit set that according to the Poincary Bendixson theory is a periodic orbit. There can be

several periodic orbits in QnH that are ! - limit sets for di¤erent trajectories. There can

also be some periodic orbits that are not ! - limit sets!
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� The "hole"H that repells trajectories can be found using the method of test functions,

sometimes using the same test function V as one used to identify Q, just choosing di¤erent

level sets for Q and for H.

� Alternatively one can use the linearization to show that this equilibrium is a repeller,

namely an unstable node or an unstable spiral, and therefore trajectories cannot enter some

small neighbourhood of the equilibrium in the middle of the setQ. This method is convenient

in the case when the equilibrium is not the origin.

� One must check at the end that the positively invariant annulus (the closed ring shaped

domain) does not include equilibrium points (no at the boundary either!).

It is often simpler to do it after carrying out estimates for Vf by �rst checking zeroes of

Vf (x) = 0 that contain naturally all equilibrium points but is a scalar equation, and then

checking zeroes of the system f(x) = 0.
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Examples on Poincare-Bendixson�s theorem

Example. Show that the following system has a periodic solution.

x0 = y

y0 = �x+
�
1� x2 � 2y2

�
y

The only equilibrium is in the origin. We try to �nd a compact positively invariant set

using the method with test function.

We try the simples test function V (x; y) = (x2 + y2)=2:

Vf (x; y) =
d

dt
V (x(t); y(t)) = rV (x; y) �

24 x0(t)
y0(t)

35 =
= rV (x; y) � f(x; y) = �

�
x2 + 2y2 � 1

�
y2 � (�)0

We observe from the expression in the inequality that a particular curve: the ellipse with

the equation

x2 + 2y2 = 1

separates points (x; y) where Vf (x; y) � 0 and Vf (x; y) � 0:

The negative sign of Vf (x; y) says that trajectories go inside the level set of V (a circle

in this case) going through the point (x; y).

The positive sign of Vf (x; y) says that trajectories go outside the level set of V going

through the point (x; y).

The half axes of ellipse x2 + 2y2 = 1 are expressed from the transformed equation

x2

12
+

y2�
1=
p
2
�2 = 1

We �nd the largest level set (circle) of V (x; y) inside this ellipse (red) x2 + y2 = 1=2 and

the smallest level set of V (x; y) outside this ellipse (blue) x2 + y2 = 1 to get the smallest

positive invariant set C = f(x; y) : 1=2 � x2 + y2 � 1gthat includes a periodic orbitbecause
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there are no equilibrium points inside it because the origin is the only equilibrium point for

the system.

10.80.60.40.20-0.2-0.4-0.6-0.8-1

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

x

y

x

y

As Theorem 4.45 and examples considered before suggest, the positively invariant set we

look for applying the Poincare Bendixson theorem must have a shape of annulus with a hole

in the middle that contains at least one equilibrium point. The next Proposition gives a

particular hint how to �nd the "hole" for such an annulus domain with less e¤ort by using

the Grobman-Hartman theorem that we studied earlier.
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Lecture 12
Proposition about the existence of a limit cycle.

Exercises on hunting periodic solutions and limit cycles.
More results about ! - limit sets in the plane.

Bendixson�s theorem about the non-existence of periodic
solutions.

De�nition of ! - limit cycle

A periodic orbit 
 (an orbit corresponding to a periodic solution) is called an ! - limit

cycle (or often just a limit cycle) if 
 = 
(�) for some starting point � 2 Gn
: namely that


 is an !-limit set for some point � outside 
.

This de�nition excludes the case of phase portraits completely �lled periodic orbits, as

the system

x0 = �y;

y0 = x;

having all orbits being circles around the origin corresponding to periodic solutions.

Proposition 4.56. p. 165.

Let C � G be a compact set that is positively invariant under the local �ow (dynamic

system) '(t; �) generated by the equation x0(t) = f(x): Assume that an the point x� is an

interior point in C and is the only equilibrium point in C: Assume that f is di¤erentiable

in x�. Let A be the Jacoby matrix of f in x�:
Df
Dx
(x�) = A: Let eigenvalues of A have both

eigenvalues with positive real parts: Re�1;2 > 0.

Then there exists at least one ! - limit cycle in C.

�
Proof is an exercise on application of Grobman-Hartman theorem.
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Exercise. Rectangular positively invariant set and application of the Poincare

Bendixson theorem.

Consider the following system of ODEs :8<: x0 = 10� x� 4xy
1+x2

y0 = x
�
1� y

1+x2

�
a) show that the point (x�; y�) with coordinates x� = 2 and y� = 5 is the only equilibrium

point and is a repeller;

b) �nd a rectangle [0; a]� [0; b] in the �rst quadrant x > 0, y > 0 bounded by coordinate

axes and by two lines parallel to them, that is a compact positively invariant set. Explain
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why the system must have at least one periodic orbit in this rectangle.

1. Solution.

a) x� = 2 and y� = 5 is an equilibrium point:
�
1� 5

1+22

�
= 0; and 10 � 2 � 4�2�5

5
=

10� 2� 8 = 0.

The Jacobi matrix is A =

24 �4 y
x2+1

+ 8x2 y

(x2+1)2
� 1 �4 x

x2+1

� y
x2+1

+ 2x2 y

(x2+1)2
+ 1 � x

x2+1

35 . It is calculated as:
r
�
10� x� 4xy

1+x2

�
=

24 �4 y
x2+1

+ 8x2 y

(x2+1)2
� 1

�4 x
x2+1

35������
x=2; y=5

=

24 �455 + 8 (4) 5
25
� 1

�4 � 2
5

35 =
24 �4 + 32

5
� 1

�8
5

35 =
24 7

5

�8
5

3524 1: 4

�1: 6

35
r
�
x
�
1� y

1+x2

��
=

24 � y
x2+1

+ 2x2 y

(x2+1)2
+ 1

� x
x2+1

35������
x=2; y=5

=

24 �5
5
+ 2(4) 5

25
+ 1

�2
5

35
=

24 �1 + 8
5
+ 1

�2
5

35 =
24 1: 6

�0:4

35
The Jacobi matrix in x�, y� is A =

24 1:4 �1:6

1:6 �0:4

35, characteristic polynomial: �2��+
2 = 0,

trace(A) = 1 > 0, det(A) = 2 > [trace(A)]2

4
= 1

4
that corresponds to an unstable

spiral and it is a repeller, eigenvalues are: �1 = 0:5 +
p
0:25� 2 = 0:5 + i

p
1:75,

�2 = 0:5�
p
0:25� 2 = 0:5� i

p
1:75.

It implies by the Grobman-Hartman theorem, that trajectories cannot enter a small

open domain with the center the equilibrium point (2; 5) inside and some small diameter

": We do not need to (and cannot) specify " here.

b) Observe that the closed �rst quadrant is a positively invariant set.8<: x0 = 10� x� 4xy
1+x2

y0 = x
�
1� y

1+x2

�
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For x = 0 (on the y - axis) we have _x = 10 > 0:It implies that trajectories go inside

the �rst quadrant through the y - axis.

For y = 0 and x > 0 (on the x - axis) we have y0 = x > 0:

Observe that _x < 0 for x > 10; y > 0 . It implies that the stripe y � 0, x 2 [0; 10] is

positively invariant.

Then for y > 0 also that _y < 0 for y > 1 + x2 and x > 0;.

It implies that the rectangle [0; 10]� [0; 101] is a positively invariant compact set. Ex-

cluding a small open set H" containing the equilibrium point (2; 5) and small diameter

" we get a positively invariant compact set [0; 10] � [0; 101] nH" without equilibrium

points that according to the Poincare Bendixson theorem must include at least one

periodic orbit because each trajectory starting in this set has a non-empty ! - limit set

that is a periodic orbit. So in principle there can be several periodic orbits surrounding

this equilibrium point.
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Example. 3.9.1 (from A-P)

Show that the following equation has a limit cycle (a periodic orbit that is an ! - limit

set of at least one solution)

x01 = x2

x02 = �x1 + x2
�
1� 3x21 � 2x22

�
write the system in polar coordinates:

r = r sin2 �
�
1� 3r2 cos2 � � 2r2 sin2 �

�
�0 = �1 + 1

2
sin(2�)

�
1� 3r2 cos2 � � 2r2 sin2 �

�
a) Observe that with r = 1=2

r0 =
1

4
sin2 �

�
1� 1

2
cos2 �

�
� 0

with equality only at � = 0 and � : Thus fx : r > 1=2g is positively invariant (trajectories

do not enter the circle r < 1=2.

b) The same equation for r0 implies that

r0 � r sin2 �
�
1� 2r2

�
Thus the annulus C =

�
x : 1=2 < r < 1=

p
2
	
is positively invariant. The only �xed point

to the system is outside this annulus. Therefore here is at least one periodic orbit in C that

is an ! limit set for all trajectories starting in C (and therefore is a limit cycle).

The solution above used in fact a test function V (x1; x2) = r(x1; x2).

One could instead of the analytical approach shown above, use a more so�sticated argu-

ment, based on considering the better adopted test function V (x1; x2) = 3x21 + 2x
2
2 having

ellipses as level sets curves: const = 3x21 + 2x
2
2.
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Exercise 4.21, p. 158

Consider the system z0 = f(z1; z2) :

z01 = z2 + z1g(z1; z2)

z02 = �z1 + z2g(z1; z2)

g(z1; z2) = 3 + 2z1 � z21 � z22

Prove that the system has at least one periodic solution.

Solution.

Consider the test function V (z1; z2) =
�
z21+z

2
2

2

�
. It�s level sets are circles around the

origin.

dV (z1(t); z2(t))

dt
= Vf (z1; z2) = rV � f(z1; z2) =

24 z1
z2

35 �
24 z2 + z1g(z1; z2)

�z1 + z2g(z1; z2)

35
=

�
z21 + z

2
2

�
g(z1; z2) =

�
z21 + z

2
2

� �
3 + 2z1 � z21 � z22

�
= r2(4� (1� z1)2 � z22)

The circle 4 = (1� z1)2 + z22 has center in the point (1; 0) and radius 2

32.521.510.50-0.5-1-1.5-2-2.5-3

3

2.5

2

1.5

1

0.5
0

-0.5

-1

-1.5

-2

-2.5

-3

x

y

x

y

Inside this circle 4�(1� z1)2�z22 > 0 and therefore rV �f(z1; z2) > 0: Outside this circle

4 � (1� z1)2 � z22 < 0 and therefore rV � f(z1; z2) < 0. Therefore as it is easy to see from
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the picture, rV � f(z1; z2) � 0 on the circle z21 + z22 = 1 with center in the origin beause it is

contained inside the circle 4 = (1� z1)2+ z22 , and rV � f(z1; z2) � 0 on the circle z21 + z22 = 9

with center in the origin beause it is situated outside the circle 4 = (1� z1)2 + z22 , :

The ring shaped set C: 1 � r � 3 is a positively invariant compact set.

The origin is the only equilibrium point for the system, because from the expression

Vf (z1; z2) = rV � f(z1; z2) = r2g(z1; z2) it follows that other equilibrium points must be

situated on the circle g(z1; z2) = 0 = 4� (1� z1)2 � z22 . Substitution g(z1; z2) = 0 into the

system leads to the conclusion that there are no equilibrium points on this circle.

Therefore the Poincare Bendixson theorem implies that there exists at least one periodic

orbit contained in the ring shaped set C.

Exercise. 3.8.2.

Solve a similar problem for the function g(z1; z2) = 3 + z1z2 � z21 � z22 :

Example. Show that the following system of ODEs has a periodic solution.
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8<: x0 = x� 2y � x (2x2 + y2)

y0 = 4x+ y � y (2x2 + y2)
(4p)

Solution. Consider the following test function: V (x; y) = 2x2 + y2. Denoting the right

hand side in the equation by vectorfunction F (x; y) we conclude that

Vf = rV �f = 4x2�8xy�4x2 (2x2 + y2)+8xy+2y2�2y2(2x2+y) = 2 (1� (2x2 + y2)) (2x2+

y2):

It implies that the elliptic shaped ring: R = f(x; y) : 0:5 � (2x2 + y) � 2g is a positive

invariant compact set for the ODE, because velocity vectors are directed inside of this ring

both on it�s outer and inner boundaries ( rV � F < 0 for (2x2 + y) = 2 and rV � F > 0 for

(2x2 + y) = 0:5.

The origin is the only equilibrium point of the system. It is not so easy to see

from the system of equations itself. But one can see it easier by cheching �rst zeroes

of Vf (x; y) that is a scalar function and evidently must be zero in all equilibrium points..

We observe that V (x; y) = 2x2 + y2 is positive de�nite and rV � f(x; y) = 0 only if

(x; y) = (0; 0) or if (2x2 + y2) = 1:But it is easy to see from the expression for the right

hand side for the ODE that in the last case (x; y) cannot be equilibrium point because the

right hand side becomes linear with nondegenerate matrix and is zero only in the origin

(x; y) = (0; 0). The equation for equilibrium points on the level set (2x2 + y2) = 1 is the

following:8<: 0 = x� 2y � x = �2y

0 = 4x+ y � y = 4x
By the Poincare-Bendixson theorem the positively invariant set R not including any

equilibrium point must include at least one orbit of a periodic solution.�
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Generalized Poincare-Bendixson�s theorem.

The following theorem gives a more complete description of the types of ! - limit sets in

the plane R2:

Theorem (generalized Poincare-Bendixson)

Let M be an open subset of R2 and f : M ! R2 and f 2 C1. Fix � 2 M and suppose

that 
(�) 6= ;, compact, connected and contains only �nitely many equilibrium points.

Then one of the following cases holds:

(i) 
(�) is an equilibrium point

(ii) 
(�) is a periodic orbit

(iii) 
(�) consists of �nitely many �xed points fxjgand non-closed orbits 
 such that !

and � - limit points of 
 belong to fxjg.

V (x; y) = y + 2x2 � 1. Vf (x; y) = 4x (y + x2 � �x(V (x; y)))� 2(1 + y)xjy=1�2x2 =

= 4x(1� 2x2) + 4x3 � 2x(2� 2x2) = 4x� 4x+ 4x3 � 4x3 = 0

fy(x; y)jy=�1 = 0

A(0; 0) =

24 � 1

�2 0

35 ; detA = 2; trA = � > 0. Therefore the equilibrium point (0; 0) is

a repeller, unstable spiral.
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