
1 Banach�s contraction principle. Picard-Lindelöf

theorem.

We consider in this chapter the theorem by Picard and Lindelöf about existence and

uniqueness of solutions to the initial value problem to the system of di¤erential equa-

tions in the form

x0(t) = f (t; x(t)) (1)

x(�) = � (2)

Here f : J � G ! Rn is a vector valued function continuous with respect to time
variable t and space variable x. J is an interval; G is an open subset of Rn.
One can reformulate the I.V.P. (1),(2) in the form of the integral equation

x(t) = � +

Z t

�

f (s; x(s)) ds (3)

If f is continuous, then these two formulations are equivalent by the Newton-

Leibnitz theorem.

If f is only peacewise continuous in time t, then these formulations are equialent

on intervals of continuity of f in time and solutions can be glued by continuity of the

solution in the points were the derivative in time doses not exist.

Fixed points of operators.

Consider a vector space X with a subset C � X and an operator K : C ! C:

De�nition
A point x 2 C is called the �xed point of the operator K on the set C if

K(x) = x (4)

A general idea behind the analysis of many types of non-linear equations is to refor-

mulate them as a �xed point problem.

Consider the right hand side of the integral equation (3) corresponding to the I.V.P

as an operator

K(x)(t)
def
= � +

Z t

�

f (s; x(s)) ds

1



acting from the vector space of vector valued continuous functions C(I); where I � J
is a closed interval including � . Point out that t can be smaller than � (t < �):

The expression kxkC(I) = supt2I kx(t)k de�nes a norm on the space C(I) because

it satis�es the triangle inequality and we know that uniformly convergent sequences

of continuous functions on the compact set (I in this case) converge to continuous

functions.

This space is even complete. It means per de�nition that Cauchy sequences of

functions in C(I) converge uniformly to continuous functions. It means more explicitely

that if the sequence fxng 2 C(I) has the Cauchy property:

kxm � xnkC(I) = sup
t2I
kxm(t)� xn(t)kC(I) !

m;n!1
0

then there is a continuous function x 2 C(I) such that xn !
n!1

x uniformly on I, or

what is the same, kxn � xkC(I) !n!1 0:
De�nition.
We call a normed vector space a Banach space if it is complete with respect to it�s

norm.

This notion was introduced by Polish mathematician Stefan Banach who lead the

greatest school in functional analysis at the university of Lwiv in Poland in the �rst

half of the 20th century.

Examples.
1) The space C(I) is a Banach space.

2) Elementary examples of Banach spaces are given by Rn supplied with norms
kxkp = (

Pn
i=1 jxij

p)
1=p with p � 1.

3) A slight extension of this example is a set lp, p � 1 of real sequences fxig1i=1 with
�nite norms in the form kxkp = (

P1
i=1 jxij

p)
1=p.

4) One of the most popular classes of Banach spaces is the space of "integrable

functions" f : G! R where G � Rn, with norms kfkLp =
�R
G
jf(z)jp dz

�1=p
"Integrable functions" and the integral here are in the sense of Lebesque, that is a

contemporary notion of integral, studied in the course "Integration theory" given for

master and for PhD students.

Remark.
We point out for convenience that di¤erent norms are used through out the text.

Notation kk means usual euclidean norm in Rn: For a Banach space X the notation

kxkX means the norm in the space X:
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The operator K de�ned above, acts from C(I) to itself. It makes that the I.V.P.

above can be considered as a �xed value problem (4) on the whole C(I) or on some
subset of it.

A classical theorem that guarantees the existence and uniqueness of �xed points

to non-linear operators in Banach and more generally in metric spaces, is Banach�s

contraction principle.

De�nition. Operator K : A ! A; where A � X; and X is a Banach space, is

called contraction on A if there is a constant 0 < � < 1 such that for any x; y 2 A

kK(x)�K(y)kX � � kx� ykX

Example. An elementary example is a smooth (at least C1) functionK acting from

an interval [a; b] to itself and having absolute value of the derivative
�� d
dt
K(t)

�� < � < 1
for all t 2 [a; b]. By intermediate value theorem for any x; y 2 [a; b] there is a point
c 2 (x; y) such that K(x)�K(y) = (x� y)K 0(c).Therefore

jK(x)�K(y)j = j(x� y)j jK 0(c)j � � j(x� y)j

It implies that K is a contraction in on the interval [a; b].

Example: K(x) = 0:5 (x� 0:25x3) + 0:2 on [�1; 1]

10.50-0.5-1

1

0.5

0

-0.5

-1

x

K(x)

x

K(x)

Another example could be a Lipschitz function with Lipschitz constant L strictly

smaller then one: L < 1.
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Banach�s contraction principle.

Theorem
Banach�s contraction principle.
Let A be a non-empty closed subset of a Banach space X and K : A ! A be a

contraction operator with contraction constant � < 1 (strictly smaller than 1!)

Then there is a unique �xed point x to K in A such that Kx = x:

More over, ifKn(x0)
def
= K(K(:::K(x0)):::) is the operatorK applied to itself n times

then for arbitrary initial approximation x0 2 A, successive approximations Kn(x0)

satisfy the estimate

kKn(x0)� xkX �
�n

1� � kK(x0)� xkX

Proof is based on showing that the sequence of approximations fxng1n=0 de�ned
by the equations

x1 = K(x0)

:::

xn+1 = K(xn)

with an arbitrary initial approximation x0 2 A, converge to some x 2 A that is the
unique �xed point of K in A.

It follows by induction that

kxn+1 � xnkX = kK(xn)�K(xn�1)kX � � kxn � xn�1kX
� � kK(xn�1)�K(xn�2)kX � �

2 kxn�1 � xn�2kX
:::

� �n kx1 � x0kX

We will show that fxng1n=0 is a Chauchy sequence using telescoping sequences. Let
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m > n:

kxm � xnkX =

= kxm � xm�1 + xm�1 � xm�2 + :::+ xn+1 � xnkX
triangle_inequality

� kxm � xm�1k+ kxm�1 � xm�2k+ :::+ kxn+1 � xnk
�

�
�n + �n�1 + :::+ �m�1

�
kx1 � x0kX

= �n
�
1 + � + :::�m�n�1

�
kx1 � x0kX

� �n
= 1
1���

1 + � + :::�m�n�1 + :::
�
kx1 � x0kX

� �n
�

1

1� �

�
kx1 � x0kX ! 0; n!1; � < 1

The Banach space X is complete therefore the limit limn!1 xn = x exists. The set

A is closed, therefore x 2 A.
Claim: x is a �xed point to K.
It is a non-trivial step in many approximation methods to show that an existing

limit of approximations is a solution to the non-linear equation of interest. Here the

convergence is strong, that makes the proof of the clime straightforward.

We see it by tending to the limit in the expression for xn:

xn+1 = K(xn)

lim
n!1

xn+1 = lim
n!1

K(xn) = K(lim
n1
xn)

x = K(x)

and using the continuity of K.

The last question we must answer is the uniqueness of the �xed point to K in A.

Suppose that there is another �xed point ex to K in A. Consider the norm of the

di¤erence x� ex:
kx� exkX = kK(x)�K(ex)kX � � kx� exkX , � < 1

It is possible only if x� ex = 0.
Finally we prove the estimate of the error in the approximations.
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kxm � xnkX � �n
�

1

1� �

�
kx1 � x0kX

lim
m!1

kxm � xnkX � �n
�

1

1� �

�
kx1 � x0kX

norm_is_a_continuous_function


 lim
m!1

xm � xn




X

� �n
�

1

1� �

�
kx1 � x0kX

kx� xnkX � �n
�

1

1� �

�
kx1 � x0kX

�
Elementary exercises on Banach�s contraction principle.
Show using Banach�s contraction principle that the polynomial K(x) = x2 � 0:4

has a �xed point K(x) = x.

Solution consists of two steps.

i) Find a set B � R where K(x) has the contraction property: jK(x)�K(y)j �
� jx� yj, � < 1, for x; y 2 B
ii) Find a subset A � B that the function K maps into itself: K : A! A.

i) K 0(x) = 2x < 1 =) x 2 [�0:5 + �; 0:5� �]
ii) The set [�0:5 + �; 0:5� �] satis�es the requirement.

210-1-2
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y
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0.5

0.25

0

-0.25

-0.5

x

y

x

y

7



Picard-Lindelöf theorem.

Picard-Lindelöf theorem.
Here f : J � G ! Rn is a vector valued function continuous in J � G: J is

an interval; G is an open subset of Rn. Let in addition suppose that f is Lipschitz
continuous with respect to the second argument with the Lipschitz constant L > 0:

kf(t; x)� f(t; y)k � L kx� yk ;8x; y 2 G

(We could suppose a weaker condition that this Lispchitz property is only local, but

will not do it because it would make the proof just slightly longer without changing

main ideas).

Then for any (� ; �) 2 J �G the initial value problem

x0 = f(x; t)

x(�) = �

has a unique solution on some time interval including � . �
Remark. This local solution can always be extended to a unique maximal solution.

We considered maximal extensions earlier in the course.

Proof to the Picard-Lindelöf theorem.
The proof is based on using the integral form of the I.V.P.

x(t) = � +

Z t

�

f (s; x(s)) ds

and applying Banach�s contraction principle to it. We use the Banach space of contin-

uous functions x : I ! Rnon some compact interval I � J .
The application of Banach�s principle here consists of two steps.

� The �rst step is to �nd a time interval I1 and a closed subset A � C(I1) such

that the operator K de�ned by

K(x)(t) = � +

Z t

�

f (s; x(s)) ds

maps A to itself: K : A! A:

� The second step is to �nd a time interval I2 such that the contraction property for
the operator would be valid on a subset of C(I2): Finally we will choose the smallest
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of I1 and I2 for both properties to be valid and will conclude the result.

We consider here �rst the case with t on some interval [� ; � +Tfirst] 2 J ; Tfirst > 0
and try to �nd a solution on this time interval (actually on some shorter time interval

[� ; � + T ] with T < Tfirst ). Considering a time interval backword direction in time is

similar

We choose �rst a closed ball B(�; �) = fx : kx� �k � �g such that it belongs to G:
B(�; �) 2 G.
Our intension is to �nd solution in the set of continuous functions x : [� ; � + T ]

! Rn such that the solution x(t) = '(t; � ; �) 2 B(�; �) for all t 2 [� ; � + T ] and

therefore supt2[�;�+T ] kx(t)� �k � �. It is a closed ball

A = kx� �kC([�;�+T ]) = sup
t2[�;�+T ]

kx(t)� �k � �

in the in�nitely dimensional space C([� ; � + T ]).

Our goal in the proof is to �nd such an interval [� ; �+T ] that this set A in C([� ; �+

T ]) and the operator K satisfy conditions in the Banach contraction principle.

The function f(t; x) is continuous on the compact set in V = [� ; � +Tfirst]� B(�; �)
that is a cylinder in Rn+1; and therefore

M = sup
(t;x)2V

kf(t; x)k <1

Point out that here we still operate on the "large" initial time interal [� ; � +Tfirst]:

The constant M controls how large is the velocity f(t; x) inside the set V = [� ; � +

Tfirst]� B(�; �)(yellow in the picture). CorrespondinglyM controls how fast the (blue)

trajectory x(t) = '(t; � ; �) can go away from the initial point �:

According to the integral equation for x

x(t) = � +

Z t

�

f (s; x(s)) ds

and by the estimate for f above, x(t) must be inside the "angle" bounded by the cone

kx� �k =M(t� �) in Rn+1:
We give here two pictures illustrating the proof, a one dimensional picture:

and a two-dimensional picture:

We are going to estimate kK(x)(t)� �k and choose the length T of the time interval
[� ; � + T ] in such a way that for any x(t) 2 B(�; �) for t 2 [� ; � + T ], it follows that
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K(x(t)) does not escape the ball B(�; �) around � in G.

kK(x(t))� �k � �

for t 2 [� ; � + T ].
It would imply after taking the supremum over t 2 [� ; � + T ] that

sup
t2[�;�+T ]

kK(x)(t)� �k = kK(x)� �kC([�;�+T ]) � �

for kx� �kC([�;�+T ]) � �. Here we do not suppose that x(t) is a solution to the
equation.
We start with proving the �rst inequality:

kK (x) (t)� �k =




Z t

�

f (s; x(s)) ds





 � Z t

�

kf (s; x(s))k ds � TM

Point out that it is just the eulidean norm k:::k calculated for each time point t
here (no index at the norm sign) !

We observe that choosing T < �=M we get that kK (x) (t)� �k � � for t 2 [� ; �+T ].
Taking supremum of the left hand side over t 2 [� ; � + T ] we arrive to

kK(x)� �kC([�;�+T ]) � �

It means that for

T < �=M

the operator K maps the closed ball A in C([� ; � + T ]) de�ned by the inequality

kx� �kC([�;�+T ]) � �, into itself:
K : A! A

Now we check conditions such that the operator K would be a contraction on the

set A with once again suitably chosen time interval T .

Consider �rst the di¤erence kK (x) (t)�K (y) (t)k, for arbitrary t 2 [� ; � + T ]:
We apply the triangle inequality, the Lipschitz property of the function f , and

estimate the integral by the length of the interval times maximum of the function

under it.
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kK (x) (t)�K (y) (t)k =





Z t

�

f (s; x(s))� f (s; y(s)) ds




 triangle inequality

�

�
Z t

�

kf (s; x(s))� f (s; y(s))k ds

Lipschitz property
� L

Z t

�

kx(s)� y(s)k ds �
sup

� LT sup
s2[�;�+T ]

kx(s)� y(s)k = LT kx� ykC([�;�+T ])

Calculating supremum over t 2 [� ; � + T ] of the left hand side we arrive to the
inequality

kK (x)�K (y)kC([�;�+T ]) � LT kx� ykC([�;�+T ])

It implies that choosing the length of the time interval

T < 1=L

we get the contraction property:

kK (x)�K (y)kC([�;�+T ]) � � kx� ykC([�;�+T ]) ; 0 < � < 1

Now choosing the time interval T < min(1=L, �=M) we conclude that the operator

K maps the closed ball A in C([� ; � + T ]) de�ned by

A =
n
x 2 C([� ; � + T ]), kx� �kC([�;�+T ]) � �

o
into itself: K : A ! A and that K is a contraction on A: kK (x)�K (y)kC([�;�+T ]) �
� kx� ykC([�;�+T ]), � < 1, for any x; y 2 A:
By the Banach contraction principle K has for T < min(1=L, �=M) a unique �xed

point x in A that is the solution to the integral equation (3) corresponding to the I.V.P.

and also to the original initial value problem.�
Example. Banach�s contraction principle applied to a non-linear integral

operator.
(exam 2019 june)
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Consider the following (nonlinear!) operator

K(x)(t) =

Z 2

0

B(t; s) [x(s)]2 ds+ g(t);

Fixed point problem to solve:

x = K(x)

acting on the Banach space C([0; 2]) of continuous functions with norm kxkC([0;2]) =
kxkC = sup

t2[0;2]
jx(t)j. Here B(t; s) and g(t) are continuous functions and jB(t; s)j < 0:5

for all t; s 2 [0; 2] :
Estimate the norm kK(x)�K(y)kC([0;2]) for the operator K(x)(t):
Find requirements on the function g(t) such that Banach�s contraction principle

implies that K(x)(t) has a �xed point.

Solution.
Banach�s contraction principle. Let B be a nonempty closed subset of a Banach

space X and let the non-linear operator K : B ! B be a contraction:

kK(x)�K(y)kX � � kx� ykX ; � < 1

Then K has a �xed point x = K(x) such that

kKn(x0)� xkX �
�n

1� �

for any x0 2 B. Here Kn(x0) = (K(K(:::K(x0):::)) is the n -fold superposition of

the operator K with itself.

We like to have the estimate kK(x)�K(y)kC([0;2]) � � kx� ykC([0;2]) for x; y in
some closed subset B of C([0; 2]).
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jK(x)(t)�K(y)(t)j �
����Z 2

0

jB(t; s)j
��[x(s)]2 � [y(s)]2�� ds����

=

����Z 2

0

jB(t; s)j � jx(s)� y(s)j � jx(s) + y(s)j ds
����
taking sup

t;s2[0;2]

�

�
Z 2

0

ds

 
sup

t;s2[0;2]
jB(t; s)j

! 
sup
s2[0;2]

jx(s)� y(s)j
!
�

�
 
sup
s2[0;2]

jx(s)j+ sup
s2[0;2]

jy(s)j
!

= 2 � 0:5 kx� ykC([0;2])
�
kxkC([0;2]) + kykC([0;2])

�
=

= kx� ykC([0;2])
�
kxkC([0;2]) + kykC([0;2])

�
We take supremum over t 2 [0; 2] of the left hand side and get

kK(x)�K(y)kC([0;2]) � kx� ykC([0;2])
�
kxkC([0;2]) + kykC([0;2])

�
We can choose a ball B � C([0; 2]) such that for any x, y 2 B it follows kxkC +

kykC � � < 1; for example B can be taken as a set of continuous functions with

kxkC([0;2]) � �=2. On this set K will be a contraction because

kK(x)�K(y)kC � � kx� ykC ; � < 1:

To apply Banach�s principle we need also that K maps B into itsel·f, namely that

kK(x)kC([0;2]) � �=2 for kxkC([0;2]) � �=2.
It gives a requirement on function g(t).

K(x)(t) =

Z 2

0

B(t; s) [x(s)]2 ds+ g(t);

kK(x)kC([0;2]) � 2� 0:5� kxk2C([0;2]) + kgkC([0;2]) � (�=2)
2 + kgkC([0;2]) � �=2

Conclusion is that kgkC([0;2]) = supt2[0;2] jg(t)j � �=2�(�=2)
2 = �=2 (1� �=2) implies

that K : B ! B, where

B =
n
x(t) 2 C([0; 2]) : kx(t)kC([0;2]) � �=2

o
15



Therefore K has a unique �xed point in the ball B in C([0; 2]). �
Example. (exam. 2018 january)

1. Consider the following initial value problem: y0 = sin(y)t2; y(1) = 2.

a) Reduce the initial value problem to an integral equation and give a general de-

scription of iterations approximating the solution as in the proof to the existence

and uniqueness theorem by Picard and Lindelöf. (2p)

b) Find a time interval such that these approximations (Picard iterations) con-

verge to the solution of the initial value problem. (2p)

Solution.

We introduce an integral equation equivalent to the ODE y0 = f(t; y) by the

integration of the right and left hand sides in the equation:

y(t) = y(1) +

Z t

1

f(s; y(s))ds:

Taking y0(t) = y(1) we de�ne Picard iterations by the recurrense relation

yn+1(t) = y(1) +

Z t

1

f(s; yn(s))ds:

yn+1 = K(yn)

K(y) = y(1) +

Z t

1

f(s; y(s))ds

For the particular equation it looks as

yn+1(t) = y(1) +

Z t

1

sin(yn(s))s
2ds = K(yn)(t):

Fixed point problem:

y = K(y)

The Banach contraction principle gives existence and uniqueness of solutions by

showing that the operator K is a contraction:

kK (y)�K (w)kX � � ky � wkX ; � < 1
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on some closed set B; y; w 2 B, of a Banach space X, such that K maps B into
itself.

A hidden question in the practical application, is that in applications we must �nd

this Banach space X and this closed set B where these conditions are satis�ed.

One proves the existence and uniqueness theorem by showing that at some time

interval the integral operator K(y; t) = y(1) +
R t
1
sin(y(s))s2ds in the right hand

side is a contraction in C([1; T ]) for some unknown time interval [1; T ] :

kK(w)�K(u)kC([1;T ]
def
= sup

t2[1;T ]
jK(w; t)�K(u; t)j

< � sup
t2[1;T ]

jw(t)� u(t)j = � kw � ukC([1;T ]

� < 1, in some ball kw � y(1)kC([1;T ] = supt2[1;T ] jw(t)� y(1)j � R in the space
C([1; T ]) of continuous functions on [1; T ], and maps this ball into itself:

sup
t2[1;T ]

jK(w; t)� y(1)j � R

and applying the Banach contraction theorem to K(y; t).

We estimate �rst kK(w)�K(u)kC([1;T ] = supt2[1;T ] jK(w; t)�K(u; t)j

We will �nd T such that the contraction property is valid:

kK(w)�K(u)kC([1;T ] = sup
t2[1;T ]

����Z t

1

sin(w(s))s2ds�
Z t

1

sin(u(s))s2ds

���� �
� � sup

t2[1;T ]
jw(t)� u(t)j ; � < 1

We carry out elementary estimates using the triangle inequality and intermediate

value theorem for sin.����Z t

1

sin(w(s))s2ds�
Z t

1

sin(u(s))s2ds

���� �
Z t

1

j(sin(w(s))� sin(u(s))j s2ds =Z t

1

j(w(s)� u(s)) cos(�(s))j s2ds � (T � 1)T 2 � 1 � sup
t2[1;T ]

jw(s)� u(s)j

Taking supremum of the left hand side in the inequality

kK(w)�K(u)kC([1;T ] � (T � 1)T 2 kw � ukC([1;T ]
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The argument �(s) above is a number between w(s) and u(s) that exists according

the intermediate value theorem:

g(x)� g(y) = g0(�)(x� y)

where � is in between x and y:

It was also used above that jcos(�)j � 1. Therefore to have the contraction

property we need to have (T � 1)T 2 < 1.

We carry out these reasonings for continuous functions u and w such that

sup
t2[1;T ]

jw(t)� y(1)j � R

kw � y(1)kC([1;T ] = sup
t2[1;T ]

jw(t)� y(1)j � R:

Point out that supt2[1;T ] jw(t)j � y(1) +R:

For a function w with kw(s)� y(1)kC([1;T ] = supt2[1;T ] jw(t)� y(1)j � R we like
to have that jK(w; t)� y(1)j � R meaning that K maps this ball in C([1; T ]) into
itself. For this particualr case it is not necessary because the equation is de�ned

on the whole /R and the contraction property is valid in the whole C([1; T ]) : But

this checking might be necessary if the contraction property is valid only locally,

not in thew whole C([1; T ]):

The following estimate leads to another bound for T :

sup
t2[1;T ]

jK(w)(t)� y(1)j � sup
t2[1;T ]

����Z t

1

sin(w(s))s2ds

���� � (T � 1)T 2 � R:
Therefore the time interval must satisfy estimates (T � 1)T 2 < 1 and (T � 1)T 2 <
R to have convergence of Picard iterations in the ball supt2[1;T ] jw(t)� y(0)j � R.
Taking R = 1 we get an optimal estimate (T � 1)T 2 < 1 that is satis�ed for ex-
ample for T = 1:4:

� = 0:4(1:4)(1:4) = 0:784

�
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