
Ordinary di¤erential equations and mathematical modelling MVE162/MMG511, spring
2022.

Lecture 1

Prerequisite knowledge for the course.

This relatively di¢ cult course uses the whole scope of linear algebra and analysis that Chalmers students

from the Technical mathematics group and GU students from the group in mathematics learned during

the �rst year. Students with di¤erent backgrounds might lack some of this material.

Before starting learning this course it is good to check notions and theorems that are supposed to be

known during teaching the present course.

If you miss some of them, check Appendix 1 and Appendix 2 in the course book by Logemann and

Ryan, where all necessary mathematical background is discussed in detail.

Some international students might also need to learn Matlab or use other programming tools to make

computations in obligatory modeling projects.

Notions from linear algebra and analysis:

Vector space, normed vector space, norm of a matrix. Eigenvectors and eigenvalues of a matrix. Matrix

diagonalization.

Cauchy sequence. Complete vector space (Banach space). Open, closed and compact sets in Rn.
Continuous functions and their properties on compact sets. Uniform convergence for continuous functions.

Results from analysis:

Space C(I) of continuous functions on a compact I is a complete vector space (Banach space). Example

A.14, p. 272.

Bolzano-Weierstrass theorem. Theorem A.16, p. 273.

Weierstrass criterion for uniform convergence of functional series. Corollary A.23 , p. 277.
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1 Introduction. Initial value problem, existence and uniqueness

of solutions.

The main subject of the course is systems of di¤erential equations in the form

x0(t) = f (t; x(t)) (1)

classi�cation and qualitative properties of their solutions. Here f : J �G! Rn is a vector valued function
regular enough with respect to the time variable t and the space variable x. J is an interval; G is an open

subset of Rn. Equations where the function f is independent of t are called autonomous:

x0(t) = f(x(t))

Finding a function x(t) : L ! Rn satisfying the equation (1) for t 2 L on the interval L � J together

with the initial condition

x(�) = � (2)

for � 2 L is called the initial value problem (I.V.P.).
The curves x(t) in G have the property that they are tangent to the vector �eld f (t; x(t)) 2 Rn at each

time t and point x(t) 2 G.
One can by integrating the left and rignt hand sides of (1), reformulate the I.V.P. (1),(2) in the form

of the integral equation

x(t) = � +

Z t

�

f (�; x(�)) d� (3)

Continuous solutions to the integral equation (3) can be interpreted as generalized solutions to (1),(2)

in the case when f (t; x) is only piecewise continuous with respect to t and therefore the integral in (3) does

not have derivative in some isolated points. If f is continuous, then these two formulations are equivalent

by the Newton-Leibnitz theorem.

More general notions of solutions can be introduced in the case when f (t; x(t)) is integrable in the

sense of Lebesque, but we do not consider such generalised solutions in this course.

2 Classi�cation of ordinary di¤erential equations and the plan

of the course.

1. Equations where the right hand side is independent of time:

x0(t) = f(x(t))

f = f(x); x 2 G;
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are called autonomous as we mentioned before. General di¤erential equations are with f = f(t; x) are
called non-autonomous.
Autonomous equations have a nice graphical interpretation. One can consider and also draw a picture

of the vector �eld f : G ! Rn. For every point � 2 G this vector �eld gives according to the di¤erential

equation, the velocity of a possible solution curve x(t) going through the point �.

All solutions to an autonomous di¤erential equation have the property that corresponding curves are

tangent curves to the vector �eld f : G! Rn.
One often calls autonomous di¤erential equations continuous dynamical systems.
2. General (non-autonomous) linear systems of di¤erential equations in the form

x0(t) = A(t)x(t); x(t) 2 Rn; t 2 J

with a matrix A(t), A(t) : J ! Rn�n that is a continuous matrix valued function of time t on the interval
J . A particular class of non-autonomous linear systems is the class of periodic linear systems with
periodic matrix A(t+ p) = A(t) with some period p:

3. We will also consider linear non-homogeneous systems of di¤erential equations in the form

x0(t) = A(t)x(t) + g(t); x(t); g(t) 2 Rn; t 2 J

with a given term g(t) in the right hand side, both autonomous and non-autonomous.

4. Linear autonomous systems of di¤erential equations in the form

x0(t) = Ax(t); x(t) 2 Rn; t 2 R

with a constant matrix A:

The plan for the course is: to consider after some introductory examples and then all these types

of equations in the reverse order, from simpler to more complicated: linear autonomous, linear non-

autonomous, linear periodic, nonlinear autonomous. At the very end of the course we will consider the

existence of solutions in the most general non-linear non-autonomous case. Many ideas will be introduced

and exploated �rst on the example of linear autonomous ODEs. Later these ideas will be developed further

and applied in more complicated situations. This way of studying pursues two goals: to have more material

for exercises and to introduce many general mathematical ideas in a more "user friendly" way.

The course is divided into two large qualitatively di¤erent parts:

A) one - devoted to linear equations and using and developing some advanced linear algebra, and

B) another one - devoted to non-linear equations and using reasoning based on relatively advanced

analysis.
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3 Main types of problems posed for systems of ODEs

I) Existence and uniquness of solutions to I.V.P. Finding maximal interval of existence of solutions
to I.V.P.

We give here two simple examples illustrating that solutions to a di¤erential equation might exist not

on any time interval (solutions can blow up - tend to in�nity in �nite time), and that solutions do not need

to be unique (there can be two di¤erent solution curves going through one point (t; x))

II) One can for particular classes of equations pose the problem of �nding a reasonable analytical

description of all solutions to the above equation. Such an expression is called general solution.
III) Find particular types of solutions: equilibrium points � 2 Rn of autonomous systems (points

where f(�) = 0), periodic solutions, such that after some period T > 0 the solution comes back to the
same point: x(t) = x(t+ T ) for any starting time t.

IV) Find how solutions x(t) behave in the vicinity of an equilibrium point � with t ! 1 : it is

interesting if they stay close to � starting arbitrarily close to it, or solutions can go go out of � with time

t ! 1 for some initial points � situated arbitrarily close to � (we will call these properties for stability
or instability of the equilibrium point �).

V) Find a geometric description of the set of all trajectories of solutions to an equation. By trajectory

we mean here the curve x(t), that the solution goes along, during the time t 2 I when it exists. In the
case of autonomous systems of dimension 2 we will call such a picture phase portrait.

VI) Describe geometric properties of so called limit sets, or "attractors" of a solution: such a set
that the solution x(t) "approaches" in�nitely close when t!1.
Example of bounded maximal interval. (Ex. 1.2, p.14, L.R.) I.V.P.

x0(t) = t � x3; x(0) = 1

. By separation of variables we arrive to a solution that exists only on a �nite time interval (�1; 1) called
later maximal interval for this initial condition.

dx

x3
= t dt;

Z
dx

x3
=

Z
t dt; � 1

2x2
=
t2

2
+
C

2
; � 1

x2
= t2 + C; C = �1;

�x2 =
1

t2 � 1; x2 =
1

1� t2 ; x =
1p
1� t2

10.50-0.5-1
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5

2.5

0
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y

x

y

Point out that for another initial conditions the maximal interval can be di¤erent.
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Example of non-uniqueness. (Ex.1.1, p.13, L.R.) I.V.P.

x0(t) = t � x1=3; t 2 R; x(0) = 0:

Point out that the right hand side has in�nite slope in x variable d
dx
(x1=3). We will say later, after

giving corresponding de�nition, that this function is not Lipschitz with respect to x.
Constant solution x(t) = 0 exists. On the other hand for all c > 0 functions

x(t) =
(t2 � c2)3=2

(3)3=2
; t � c

are also solutions to the equation. See the calculation below. By extending these solutions by zero to the

left from t = c we get a family of di¤erent solutions satisfying the same initial conditions x(0) = 0:

54.543.532.521.5
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Calculation of solutions uses separation of variables.

dx

dt
= tx1=3;

dx

x1=3
= tdtZ

dx

x1=3
=

Z
tdt;

3

2
x
2
3 =

1

2

�
t2 � c2

�
x2=3 =

t2 � c2
3

; x =
(t2 � c2)3=2

(3)3=2

Here c is an arbitrary constant c � t. Check the solution:

d

dt
x(t) =

d

dt

 
(t2 � c2)3=2

(3)3=2

!
=
1

3
t
p
3t2 � 3c2 = tx1=3

Example of equilibrium points and periodic solutions
Pendulum is described by the Newton equation: Force = m � Acceleration; Acceleration = l �

�00(t),V elocity = l � �0(t):
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ml�00(t) = �l�0(t)�mg sin(�(t)) = 0

Both for theoretical analysis and for numerical solution one always rewrites the second order equation

as a system of two equations for x1(t) = �(t) and x2(t) = �
0(t) :

x01(t) = x2(t)

x02(t) = � 
m
x2(t)�

g

l
sin(x1(t))

We can rewrite it in general vector form as

x0(t) = f(x(t))

with

f(x) =

"
x2

� 
m
x2 � g

l
sin(x1)

#
This non-linear system of equations cannot be solved analytically. We show below results of numerical

solutions of this system in a form of a phase portrait of the system.

Phase portrait.

The picture of trajectories - curves (x1(t); x2(t)) corresponding di¤erent solutions to the equation for

the pendulum in the phase plane of variables x1 and x2 looks as the following. Such pictures are called
phase portrait of the system. We will draw many of them in this course, in particular in modelling

projects.
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Phase protrait in the case without friction:  = 0

Phase portrait in the case with friction:  > 0.

Points � = 0+2�k, �0 = 0 and � = �+2�k, �0 = 0 on the �rst picture are equilibrium points. One can

see closed orbits around equilibrium points � = 2�k, �0 = 0, corresponding to periodic solutions. Points

� = � + 2�k, �0 = 0 correspond to the upper position of the pendulum that is a non-stable equilibrium

point. Higher up and down when the angular velocity is large enough we observe non-bounded solutions

corresponding to rotation of the pendulum around the pivot. Orbits for the pendulum without friction:

 = 0, can be described by a non-linear equation.

In the case with friction  > 0 on the second picture one observes the same equilibrium points. But the

phase portrait is completely di¤erent. Almost all trajectories tend to one of equilibrium points � = 2�k,

�0 = 0 when time goes to in�nity. No closed orbits and no unbounded solutions are observed in this case.

Examples of attractors.
Van der Pol equation. (Example 1.1.1. p. 2 in Logemann/Ryan)

x0(t) = f(x(t))

f(x) =

"
x2

�x1 + x2(1� (x2)2)

#
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We see that the equilibrium point in the origin is unstable but all trajectories tend to a limit set or

"attractor" that is a closed curve (depicted in red) that seems to be an orbit corresponding to a periodic

solution.

Lorenz�s model for turbulence. Strange attractor.

For two dimensional systems only stationary points and closed orbits and some chains of stationary

points connected with orbits are possible as "attractors". In dimension 3 much more complicated attractors

are possible with a classical example being the Lorenz equation.

x0 = ��(x� y)
y0 = rx� y � xz
z0 = xy � bz

An orbit for � = 10; r = 28, b = 8=7:

We can see that the trajectory tends to a set of very complicated structure.
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4 Linear autonomous systems of ODEs

We will �rst consider general concepts in the course in the particular case for linear system of ODEs with

constant matrix (linear autonomous systems).

x0(t) = Ax(t); x(t) 2 Rn; t 2 R (4)

where A is a constant n� n matrix A 2 Rn�n.
In particular we will �nd solutions to initial value problem (I.V.P. ) with initial condition

x(�) = �; (5)

We point out that all general results about linear systems of ODE are also valid in the case of solutions

found in the complex vector space x 2 Cn , � 2 Cn and for complex matrix A 2 Cn�n: Some of the results
are formulated in a more elegant form in the complex case or might be valid only in complex form.

Several general questions that we formulated above will be addressed for this type of systems.

The �nal goal in this particular case will be to give a detailed analytical description for the set of all

solutions and to connect qualitative properties of solutions with speci�c properties of the matrix A, its

eigenvalues and eigenvectors together with more subtle spectral properties such as subspaces of generalised

eigenvectors that will be de�ned later.
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4.1 The space of solutions for general non-autonomous linear systems

We make �rst two simple observations that are valid even for general non-autonomous linear systems with

a matrix A(t) that is not constant but is a continuous function of time on the interval J .

x0(t) = A(t)x(t); x(t) 2 Rn; t 2 J (6)

Lemma. The set of solutions Shom to (4), and to (6) is a linear vector space.
Proof. Shom includes the zero constant vector and is therefore not empty. By the linearity of the time

derivative x0(t) and of the matrix multiplication A(t)x(t); for a pair of solutions x(t) and y(t) their sum

x(t) + y(t) and the product Cx(t) with a constant C are also solutions to the same equation. Considering

equations for y(t) and x(t)

x0(t) = A(t)x(t)

y0(t) = A(t)y(t)

together with the above arguments we derive the conclusion:

(x(t) + y(t))0 = A(t)(x(t) + y(t))

(Cx(t))0 = A(t)(Cx(t))

�

4.2 Uniqueness of solutions to autonomous linear systems.

One shows the uniqueness of solutions to (4) by using a simple version of the Grönwall inequality that in

general case will be considered later.

Grönwall inequality

Suppose that the I.V.P. (4),(5) for an autonomous linear system has a solution x(t) on an interval I

including � . Consider the case when � � t.
We can write an equivalent integral equation for x(t) for t 2 I; � � t

x(t) = � +

Z t

�

Ax(�)d� (7)

We calculate the Rn norm of the left and right sides in the integral equation (7) and use the triangle

inequality:

kx(t)k � k�k+
Z t

�

Ax(�)d�
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The triangle inequality for integrals: Z t

�

x(�)d�

 � Z t

�

kx(�)k d�

and the de�nition of the matrix norm:

kAk def= sup
kxk6=0

(kAxk = kxk) = sup
kxk=1

(kAxk)

imply that

kx(t)k � k�k+
Z t

�

kAx(�)k d�

and �nally

kx(t)k � k�k+
Z t

�

kAk kx(�)k d�

We will prove now that this integral inequality for kx(t)k implies the famous Grönwall inequality for
such kind of integral inequalities, giving an estimate for kx(t)k in terms of the initial data k�k.
This is a standard argument that will be used within the course again later two more times for more

complicated types of equations.

Introducing the notation G(t) = k�k +
R t
�
kAk kx(�)k d� for te right hand side in the inequality, we

conclude that G(�) = �, kx(t)k � G(t); and

G0(t) = kAk kx(t)k � kAkG(t)

Multiplying the last inequality by the integrating factor exp(�kAk t) and referring to the chain rool for
the derivative of exp(�kAk t), we arrive to

G0(t) exp(�kAk t) � kAk exp(�kAk t)G(t)
G0(t) exp(�kAk t)� kAk exp(�kAk t)G(t) � 0

G0(t) exp(�kAk t) +G(t) (exp(�kAk t))0 � 0

(G(t) exp(�kAk t))0 � 0

Integrating the left and the right hand side from � to t we get the inequality

G(t) exp(�kAk (t))�G(�) exp(�kAk (�)) � 0

G(t) exp(�kAk (t)) � G(�) exp(�kAk (�))
G(t) � k�k exp(kAk (t� �))

The last relation implies the Grönwall inequality in this simple case:

kx(t)k � k�k exp(kAk (t� �)) (8)
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that follows from the integral inequality:

kx(t)k � k�k+
Z t

�

kAk kx(�)k d�

�(Knowlege of this proof is required at the exam)
Lemma. The solution to I.V.P. (4),(5) is unique.

x0 = Ax; x(�) = �

Proof. Suppose that there are two solutions x(t) and y(t) to the I.V.P. (4),(5) on a time interval

including � and both are equal to � at the initial time t = � . Consider the vector valued function

z(t) = x(t) � y(t) and the case when � � t: Then z(t) is also a solution to the same equation (4) and

satis�es the initial condition z(�) = 0.

The estimate (8) applied to z(t) implies that

kz(t)k � 0 exp(kAk (t� �)) = 0

z(t) = 0 and therefore the uniqueness of solution to I.V.P. (4),(5). The proof of the case � � t is similar.�
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4.3 Exponent of a matrix

Two ideas are used to construct analytical solutions to (4) :

1) One is to �nd a possibly simple basis fv1(t); :::; vN(t)g to the solutions space Shom.
2) Another one is based on the observation that the matrix exponent

exp (A (t� �)) = eA(t��) def= I + A (t� �) + 1
2
A2 (t� �)2 + :::+ 1

k!
Ak (t� �)k ::: =

1X
k=0

1

k!
Ak (t� �)k

gives an expression of the the unique solution to the I.V.P. (1), (1a) in the form:

x(t) = eA(t��)�

One can derive this property of the matrix exponent by considering the integral equation (7) for x(t)

x(t) = � +

Z t

�

Ax(�)d�

equivalent to the I.V.P. (4),(5). We can try to solve this integral equation by iterations:

xk+1(t) = � +

Z t

�

Axk(�)d� (9)

x0 = �

xk(t) =

�
I + A (t� �) + 1

2
A2 (t� �)2 + :::+ 1

k!
Ak (t� �)k

�
�

Iterations xk(t) converge uniformly on any �nite time interval as k !1 and the limit gives the series for

exp(At) formulated above times the initial data �:

The series for exp(At) =
P1

k=0
1
k!
Ak (t� �)k converges uniformly on any �nite time interval [�T; T ]

including initial time point � 2 [�T; T ] by the Weierstrass criterion. Most of you studied it before. We
will remind it�s formulation here. It will be used several times in the course.

Weierstrass criterion. Corollary A.23, p. 277 in L.R.
Let X be a normed vector space, Y be a complete normed vector space (Banach space) K � X be

compact,ffn(x)g1n=1 ; x 2 K be a sequence of continuous functions fn : K ! Y and let fmng1n=1 a real
sequence such that kfn(x)k � mn for all x 2 K and all n 2 N, where k:::k is the norm in Y .

If
P1

n=1mn is convergent, then
P1

n=1 fn(x) is unifomly convergent on K.�
You studied this theorem in the case when X = RN , Y = RM : In our situation here K is a closed

interval in R for example [�T; T ] in R and Y is a space of matrices RN�N (or CN�N).

To prove that our series satis�es the Weierstrass criterion, we will apply the estimate for the norm of

the product of two matrices:

kABk � kAk

It implies that kA2k � kAk kAk, kA3k � kAk kAk kAk ; :::and
Ak � kAkk et.c.

Home exercise. Prove the inequality kABk � kAk kBk yourself!
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Therefore the norm of each term in the series
P1

k=0
1
k!
Ak (t� �)k is estimated by a term from a conver-

gent number series:  1k!Ak (t� �)k
 � 1

k!

Ak jt� � jk �
1

k!
kAkk jt� � jk � 1

k!
kAkk (2T )k

for the exponential function exp(kAk (2T )): We use here that jt� � j � 2T for each t 2 [�T; T ]:
Application of the Weierstrass criterion to the series

P1
k=0

1
k!
Ak (t� �)k leads to the solution of the

I.V.P. in the form

x(t) = eA(t��)� = exp(A (t� �))� =
 1X
k=0

1

k!
(t� �)k Ak

!
�

We make this conclusion by tending to the limit k ! 1 in the integral equation (9) de�ning iterations

because the expression under the integral in (9) converges uniformly and therefore the limit of the integral

is equal to the integral of this uniform limit. This solution is unique by the Lemma we proved before.

Corollary 2.9 in L.&R.
The function x(t) = exp(A(t� �))� is the unique solution to the I.V.P. (4),(5).
This theoretical expression for unique solutions to I.V.P. dispite of it�s elegansce has a huge disadvantage

that the series exp(At) =
P1

k=0
1
k!
(t� �)k Ak is not possible to calculate analytically in a simple way.

We will try instead to �nd a basis of the vector space Shom of all solutions to (1).

4.4 The dimension of the space Shom of solutions to an autonomous linear

system of ODEs

Theorem. (Proposition 2.7, p.30, L.R. in the case of non-autonomous systems).
Let b1; :::; bN be a basis in RN(or CN). Then the functions yj : R! RN(or CN) de�ned as solutions to

the I.V.P. (4),(5)

x0(t) = Ax(t); A 2 RN�N(CN�N)

with yj(�) = bj, j = 1; :::N , by yj(t) = exp(A(t� �))bj; form a basis for the space Shom of solutions to (4).
The dimension of the vector space Shom of solutions to (4) is equal to N - the dimension of the system (4).

The idea of the proof. This property is a consequence of the linearity of the system and the

uniqueness of solutions to the system and is independent of detailed properties of the matrices A(t) and

A in (4) and (6).

Proof. Consider a linear combination of yj(t) equal to zero for some time � 2 R: l(�) =
PN

j=1 �jyj(�) =

0. Observe that the trivial constant zero solution 0(t) coinsides with l at this time point.

But by the uniqueness of solutions to (4) it implies that l(t) at arbitrary time must coinside with the

trivial zero solution for all times t and in particular at time t = � . Therefore l(�) =
PN

j=1 �jbj = 0 (point

out that yj(�) = bj). It implies that all coe¢ cients �j = 0 because b1; :::; bN are linearly independent
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vectors in RN(or CN). It implies that y1(t); :::; yN(t) are linearly independent for all t 2 R by de�nition.
Arbitrary initial data x(�) = � in RN(or CN) can be represented as a linear combination of basis vectors
b1; :::; bN : � =

PN
j=1Cjbj. The construction of y1(t); :::; yN(t) shows that an arbitrary solution to (4) can

be represented as linear combination of y1(t); :::; yN(t).

x(t) = exp(A(t� �))� = exp(A(t� �))
NX
j=1

Cjbj =

=
NX
j=1

Cj[exp(A(t� �))bj]
=yj(t)

=
NX
j=1

Cjyj(t)

Therefore fy1(t); :::; yN(t)g is the basis in the space of solutions Shom and therefore Shom has dimension
N:�

(Knowlege of this proof is required at the exam)

By taking � = e1; :::; en we observe that each column in the matrix exp(A (t� �)) is a solution to the
equation (4). We have just shown in the theorem before that these columns are linearly independent and

build a basis in the space of solutions.
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Lecture 2
Summary of the material introduced in Lecture 1

1. Initial value problem (I.V.P.) for an ordinary di¤erential equation (ODE).

x0(t) = f(t; x(t)); x(�) = �

2. Types of di¤erential equations: autonomous, non-autonomous, linear, linear non-homogeneous,

non-linear.

3. Questions of interest about ODEs.

a) Existence and uniqueness of solutions. Examples.

b) General solutions (an analytic expression for all solutions)

c) Finding speci�c solutions: equilibrium: f(x0) = 0 , periodic.

d) Stability of equilibrium points (do all solutions stay close to an equilibrium point?)

e) Attractors of solutions (sets that solutions tend to when t ! 1;can be equilibrium points or

periodic orbits)

4. Autonomous linear ODEs (x0 = Ax with constant matrix A)

5. Exponent of a matrix as a tool for calculating solutions to I.V.P.

6. Uniqueness of solutions and the proof with Grönwalls inequality. (required at the exam)
7. The space of solutions to x0 = Ax, it�s dimension and a construction of a basis.(required at the

exam)

4.5 Properties of the matrix exponent.

We collect in the following Lemma some (may be partially known) properties of the matrix exponent.

For a complex matrix M the notation M� means transpose and complex conjugate matrix (called also

Hermitian transpose)

Lemma (Lemma 2.10 , p. 34 in L.&R.) Let P and Q be matrices in RN�N or CN�N

(1) For a diagonal matrix P = diag(�1; �2; :::; �n)

exp(P ) = diag(exp(�1); :::; exp(�n))

(2) exp(P �) = (exp(P ))�

(3) for all t 2 R,
d

dt
exp(At) = A exp(At) = exp(At)A

(4) If P and Q are two commuting matrices PQ = QP , then exp(P )Q = Q exp(P ) and

exp(P +Q) = exp(P ) exp(Q) = exp(Q) exp(P )

(5) exp(�P ) exp(P ) = exp(P ) exp(�P ) = I or exp(�P ) = (exp(P ))�1

Proof
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Proofs of (1),(2) are left as exercises. We proof �rst (4) by direct calculation.

(P +Q)k =
kX

m=0

�
k

m

�
PmQk�m (for commuting matrices)�

k

m

�
notation
=

�
k!

m! (k �m)!

�
eP+Q =

1X
k=0

1

k!
(P +Q)k =

=

1X
k=0

1

k!

kX
m=0

�
k!

m! (k �m)!

�
PmQk�m

=

1X
k=0

X
m+p=k

Pm

m!

Qp

p!
=

 1X
m=0

1

m!
Pm

! 1X
p=0

1

p!
Qp

!
= eP eQ

(3) Can be proved in three di¤erent ways.

It follows from the de�nition of exp(At) by elementwise di¤erentiation of the corresponding uniformly

converging series.

It follows also from the observation above that each column in exp(At) with index k is a solution to

the system of equations x0 = Ax with initial data x(0) = ek .

A straightforward proof can be given by the de�nition of derivative and using the relation (4). We use

the formula exp(P +Q) = exp(P ) exp(Q) for commuting matrices, the fact that At and As commute for

any t and s and the Taylor formula applied to for exp(Ah)� I for small h:

exp(A (t+ h))� exp(At) = (exp(Ah)� I) exp(At) =�
Ah+O(h2)

�
exp(At)

Therefore

d

dt
(exp(At)) = lim

h!0

(exp(A (t+ h))� exp(At))
h

=

lim
h!0

(Ah+O(h2)) exp(At)

h
= A exp(At)

�

4.6 Analytic solutions. Case when a basis of eigenvectors exists.

We know that the unique solution to the initial value problem (I.V.P.) x0(t) = Ax(t), x(�) = � can be

expressed as

x(t) = exp(A(t� �))�

or x(t) = exp(At)� in the case when the initial time � = 0. But this beautiful expression does not give an

explicit formula for the solution because the matrix exponent exp(At) is de�ned as an in�nite series.
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An idea that leads to an explicit analytical solution is to use the theorem about the basis in te space

of solutions. We can try to �nd a basis fy1(t); :::; yN(t)g to the solution space Shom by �nding a particular
basis fv1; :::; vNg in CN or RN such that the matrix exponent exp(At) acts on the elements of this basis in
a particularly simple way, so that all solutions yk(t) = exp(A (t� �))vk can be calculated explicitely. We
will consider mainly the case � = 0 for autonomous systems.

The simplest example that illustrates this idea is given by eigenvectors to A. These are vectors v 6= 0
such that

Av = �v

for some number �. Numbers � are called eigenvalues of A. Eigenvalues must be roots of the characteristic

polynomial

p(�) = det(A� �I)

because rewriting the de�nition of an eigenvector we arrive to a homogeneous system of linear equations

with matrix (A� �I)
(A� �I) v = 0

with v 6= 0. Using the de�nition Av = �v for the eigenvalue and the eigenvector k times we conclude that
Akv = �kv. Substituting this formula into the expression eAtv =

P1
k=0

1
k!
tkAkv we conclude that (!!!)

eAtv =
1X
k=0

1

k!
tk�kv = e�tv:

Important new idea.

Another more general idea leads to the same formula, but has an advantage that it can be applied in

more complicated situations. We use here that the eigenvector v corresponding to the eigenvalue � makes

all powers (A� �I)k v = 0 except k = 0:

eAtv = exp (�tI + (At� �tI)) v = exp (�tI) exp ((A� �I) t) v = (10)

=
�
e�tI

� 1X
k=0

1

k!
tk (A� �I)k v = e�tv:

This observation leads to a simple conclusion that if the matrix A has N linearly independent eigen-

vectors fvkgNk=1, then any solution to (4) with initial data � =
PN

k=1Ckvk can be expressed as a linear

combination in the form

x(t) =

NX
k=1

Ck
�
e�ktvk

�
with vector functions yk(t) = e�ktvk, k = 1; :::; N , building a basis for the space of solutions to the equation

x0 = Ax (4).

It is the case when a diagonalization of the matrix A exists:

Check the diagonalization property and it�s use for solution of ODEs in the course of linear algebra!

We point out that � and v can be a complex eigenvalue and a complex eigenvector here. In the case
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when all these eigenhvalues are real, this basis will be real. In the case if a real matrix A has some complex

eigenvalues; they appear as pairs of complex conjugate eigenvalues and corresponding eigenvectors, that

still can be used to build a real basis for solutions. We will demonstrate it on a couple of examples later.

Example 1. Consider system x0 = Ax with matrix A =

"
0 1

1 0

#
. The matrix A has characteristic

polynomial p(�) = �2 � 1 and two eigenvalues �1 = 1 and �2 = �1:
Corresponding eigenvectors satisfy homogeneous systems (A� �1) v1 = 0 with matrix (A� �1I) ="
�1 1

1 �1

#
and (A� �1I) v2 = 0 with matrix (A� �2I) =

"
1 1

1 1

#
.

Eigenvectors are v1 =

"
1

1

#
and v2 =

"
�1
1

#
and are linearly independent (in particular it follows from

the fact that eigenvalues are di¤erent). Solutions y1(t) = etv1 and y2(t) = e�tv2 are linearly independent.

Arbitrary real solution to the system of ODEs has the form

x(t) = C1y1(t) + C2y2(t) = C1e
t

"
1

1

#
+ C2e

�t

"
�1
1

#

with arbitrary coe¢ cients C1 and C2:Corresponding phase portrait includes a particular solutions tending

to in�nity along the vector v1 =

"
1

1

#
, a solutions tending to the origin along the vector v2 =

"
�1
1

#
and

other solutions �lling the rest of the plain having orbits in the form of hyperbolas. One can observe it by

integrating the di¤erential equation

x01 = x2

x02 = x1

dx2
dx1

=
x1
x2
; x2dx2 = x1dx1

with separable variables that follows from the system and concluding that

x21 � x22 = Const

543210-1-2-3-4-5

5

4

3

2

1

0

-1

-2

-3

-4

-5

x

y

x

y
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Similar phase portraits will be observed in the arbitrary case when the 2�2 real non-degenerate matrix
A (detA 6= 0) has real eigenvalues with di¤erent signs but the picture will be rotated and might be less
symmetric depending on the directions of the eigenvectors v1 and v2 (here they are orthogonal). One can

still draw trajectories along eigenvectors and then sketch other trajectories according to the directions of

trajectories along eigenvectors.

5 Generalised eigenvectors and eigenspaces.

It is easy to give examples of matrices that cannot be diagonalized. For linear autonomous systems

with such matrices the expression of arbitrary solutions in terms of linearly independent eigenvectors is

impossible because we just do not have N linearly independent ones.

Example 3.(
x01 = �x1
x02 = x1 � x2

or x0(t) = Ax with A =

"
�1 0

1 �1

#
, the characteristic polynomial is p(�) = (�+ 1)2:

p(�) = �2 � �Tr (A) + det(A) in dimension 2
Matrix A has an eigenvalue � = �1 with algebraic multiplicity m(�) = 2. There is only one linearly

independent eigenvector v =

"
0

1

#
satisfying the equation (A� �I)v = 0.

(A� (�1)I) =
"
0 0

1 0

#

The function x(t) = e�tv is a solution to the system. One likes to �nd a basis of solutions to the space

Shom of all solutions. We need another linearly independent solution for that. Observe that

x1(t) = C1e
�t

is the solution to the �rst equation, substitute it into the second equation and solve it explicitely with

respect to x2(t):

x02(t) = �x2(t) + C1e�t

etx02(t) + e
tx2(t) = C1�

etx2(t)
�0

= C1

etx2(t) = C2 + C1t

x2 = C2e
�t + C1t e

�t
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Therefore the general solution to this particular system has the form

x(t) =

"
x1(t)

x2(t)

#
= C1e

�t

"
1

t

#
+ C2e

�t

"
0

1

#
=

C1e
�t

 "
1

0

#
+ t

"
0

1

#!
+ C2e

�t

"
0

1

#
= C1e

�t �v(1) + tv�+ C2e�tv
where v(1) =

"
1

0

#
. The phase portrait looks as:

1050-5-10

4

2

0

-2 x

y

x

y

In this particular example we could �nd an explicit solution using the fact that the matrix A is tri-

anglular. This idea cannot be generalized to the arbitrary case but can be used for linear system with

variable coe¢ cients and triangular matrix.

We point out that the initial value for the derived solution

x(t) = C1e
�t �v(1) + tv�+ C2e�tv is x(0) = � = C1 " 1

0

#
+ C2

"
0

1

#
=C1v(1) + C2v.

Vector v(1) =

"
1

0

#
is linearly independent of the eigenvector v =

"
0

1

#
, and applying the lemma about

the basis of the solution space, we conclude that e�tv and e�t
�
v(1) + tv

�
are linearly independent for all

t 2 RN and build a basis for the space of solutions to the system.

Observe that v(1) has a remarkable property that (A� �I) v(1) = v as
"
0 0

1 0

#"
1

0

#
=

"
0

1

#
and therefore (A� �I)2 v(1) = (A� �I) v def

= 0. Such vectors are called generalised eigenvectors to A
corresponding to the eigenvalue �:

We point out that the initial data in this explicit solution are represented as a linear combination of

an eigenvector and a generalised eigenvector: x(0)=C1v(1) + C2v.
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A more general idea!!!

We observe also that the general solution we have got could be derived by applying the same idea as in

the formula eAt = exp (�tI) exp ((A� �I) t): (10) before, but applied to the generalised eigenvector v(1):

exp(At)v(1) = exp (�tI + (At� �tI)) v(1) = exp (�tI) exp ((A� �I) t) v(1)

e�t
1X
k=0

1

k!
tk (A� �I)k v(1) = e�t

�
v(1) + t (A� �I) v(1)

�
=

= e�t
�
v(1) + tv

�
(A� �I)k v(1) = 0; k � 2

This reasoning again gives the second basis vector in the space of solutions, that we have got before by the

trick with separation of variables, and gives a clue what might be a general way to explicit solution to the

linear system of ODEs x0 = Ax with an arbitrary constant matrix A.�

De�nition of generalised eigenvectors.

A non-zero vector z 2 CN( or RN) is called a generalised eigenvector to the matrix A 2 CN�N

corresponding to the eigenvalue � with the algebraic multiplicity m(�) if (A� �I)m(�) z = 0.�
If (A� �I)r z = 0 and (A� �I)r�1 z 6= 0 for some 0 < r < m(�) we say that z is a generalised

eigenvector of rank (or height) r to the matrix A.�
An eigenvector u is a generalised eigenvector of rank 1 because (A� �I)u = 0:
Notation.
The set ker

�
(A� �I)m(�)

�
- (kernel or nullspace) of all generalized eigenvectors of an eigenvalue � is

denoted by E(�) in the course book. E(�) is a subspace in CN( or RN).
Proposition on A - invariance of E(�).
E(�) is A- invariant, namely if z 2 E(�), then Az 2 E(�).
Proof. We check it by taking z 2 E(�) such that (A� �I)m(�) z = 0 and calculating (A� �I)m(�) (Az) =

A
�
(A� �I)m(�) z

�
= 0, the last equality is valid because A and (A� �I)m(�) commute:�

Proposition on exp(At) - invariance of E(�).
E(�) is invariant under the action of exp(At), namely if z 2 E(�), then exp(At)z 2 E(�).
Proof. Consider the expression for the exp(At)z as a series

exp(At)z =
1X
k=0

1

k!
tkAkz = lim

m!1

mX
k=0

1

k!
tkAkz| {z }
2E(�)

9>>=>>; 2 E(�)

All terms Akz in the sum belong to E(�). One can see it by repeating the argument in the previous

proposition.

The expression for exp(At)z is therefore a limit of linear combinations of elements from the �nite

dimensional generalized eigenspace E(�) that is a closed and complete set. Therefore exp(At)z must

belong to E(�).�

22



A remarkable property of generalised eigenvectors z is that the series for the matrix exponent exp(At)

applied to z namely exp(At)z can be expressed in such a way that it would include only a �nite number

of terms and can be calculated analytically.

Notation.
�(A) is the set of all eigenvalues of the matrix A, or spectrum of the matrix A:

Theorem (2.11, Part 1), p. 35 in the course book) Let A 2 CN�N . For an eigenvalue

� 2 �(A) with algebraic multiplicity m(�) denote the subspace of its associated generalised eigenvectors
by E(�) = ker (A� �I)m(�) and for z 2 CNdenote by xz(t) = exp(At)z - the solution of I.V.P. with initial
data xz(0) = z. Then for any � 2 �(A) and any z 2 E(�) a generalised eigenvector

exp (At) z = e�t
m(�)�1X
k=0

tk

k!
(A� �I)k z

Proof.
We show it by the following direct calculation:

xz(t) = exp (At) z = exp (t�I) exp ((A� �I) t) z = (11)�
e�tI

� 1X
k=0

tk

k!
(A� �I)k z = e�t

m(�)�1X
k=0

tk

k!
(A� �I)k z

because powers (A� �I)k z = 0 - terminate on z 2 E(�) for all k � m(�) by the de�nition of generalised
eigenvectors.

We also use at the �rst step of calculations the property (4) from the Lemma about matrix exponents:

exp(P +Q) = exp(P ) exp(Q) for commuting matrices P and Q. �

5.1 Analytic solutions. General case using a basis of generalized eigenvec-

tors.

The next theorem gives a theoretical background for a method of constructing analytic solutions to (4)

(x0(t) = Ax(t)), by representing arbitrary initial data x(0) = � using a basis of generalised eigenvectors to

A in CN . We are going to consider initial conditions for autonomous systems only at the point � = 0,
because all other solutions are derived from such ones just by a shift in time, because the right hand side

in the equation does not depend on time explicitely and if x(t) is a solution, then x(t+ �) is also a

solution.

De�nition The sum V1 + V2 + :::+ Vs of subspaces V1,V2 ...Vs in a vector space is a set of vectors in the

form v1 + v2 + :::+ vs with vectors vj 2 Vj, j = 1; :::; s: �

De�nition Direct sum V1 � V2 � :::� Vs of subspaces V1,V2 ...Vs is a usual sum V1 + V2 + :::+ Vs

of these subspaces with a special additional property that any vector in v 2 V1 � V2 � :::� Vs is
represented only in a unique way as a sum v = v1 + v2 + :::+ vs of vectors vj 2 Vj, j = 1; :::; s: �

It makes in this case any set of vectors vj 2 Vj, j = 1; :::; s belonging to di¤erent Vj linearly independent.
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Subspaces Vj, j = 1; :::; s have only one common point - zero.

Theorem (generalized eigenspace decomposition theorem A.8, p. 268 in the course book,
without proof)

Let A 2 CN�N and �1; :::; �s be all distinct eigenvalues of A with multiplicities mj,
Ps

j=1mj = N .

Then CN can be represented as a direct sum of generalised eigenspaces E(�j) = ker(A��jI)mj to A having

dimensions mj:

dim (ker(A� �jI)mj) = mj

CN = ker(A� �1I)m1 � :::� ker(A� �sI)ms (12)

�
If the matrix A is real having real eigenvalues, then the result will be valid for RN :
The formula (11) together with the decomposition of CN into direct the sum of generalised eigenspaces

gives a recipe for a �nite analytic representation of solutions to I.V.P. to x0 = Ax (4) and a representation

of te general solution to (4).

Theorem (2.11, part 2, p. 35 in the course book) Let z 2 E(�) be a generalized eigenvector
corresponding to the eigenvalue �. Denote by xz(t) = exp(At)z - the solution of I.V.P. with xz(0) = z.

Let B(�j) be a basis in E(�j) having dimesion mj, and denote B = [sj=1B(�j) - the union of all bases
of generalized eigenspaces E(�j) for all distinct eigenvalues �j 2 �(A).

The set of functions fxz : z 2 Bg is a basis of the solution space Shom of (4).

Proof. By the generalized eigenspace decomposition theorem CN = ker(A��1)m1� :::�ker(A��s)ms

and therefore all subspaces E(�j) = ker(A� �j)mj making them linearly independent. The total number

of these basis vectors is
Ps

j=1mj = N that is equal to the dimension of CN . Therefore B is a basis in CN :
From the theorem on the dimension of the solution space Shom of a linear system it follows that solutions

with initial data taken from the basis B build a basis in the solution space Shom of (4).
�

Lecture 3
Summary of Lecture 2.

1. Generalized eigenvector z to a matrix A corresponding to an eigenvalue � is a vector satifying the

relation

(A� �I)m(�)z = 0

where m(�) is the algebraic multiplicity of �: p(w) = (w � �)m(�)(:::):
2. Generalised eigenspace E(�) is a subspace of all gen. eigenvectors corresponding to �:

3. A remarcable observation that series for exp(At)z include only �nite number of terms up to te order

m(�)� 1 in t:
4. There is a basis of generalized eigenvectors in CN(RN)
5. We will �nd general solution to x0 = Ax with help of such a basis.
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Practical calculation of solutions to autonomous linear systems of ODEs
We continue with a description of how this theorem can be used for practical calculation of solutions

to I.V.P.

Let the matrix A have s distinct eigenvalues �1; :::; �s with corresponding generalised eigenspaces E(�j).

Represent the arbitrary initial data x(0) = � for the solution x(t) in a unique way as a sum of its components

from di¤erent generalised eigenspaces:

� =

sX
j=1

x0;j; x0;j 2 E(�j)

We remind here that CN = E(�1)�E(�2)� :::�E(�s) and it implies that any vector � 2 CN is represented
i such a way in a unique way. Here x0;j 2 E(�j) - are components of � in the generalized eigenspaces E(�j)
= ker(A � �j)mj of the matrix A. These subspaces intersect only in the origin and are invariant with

respect to A and exp(At). It implies that for the solution xz(t) with initial data z 2 E(�j), we have
xz(t) = exp(At)z 2 E(�j) for all t 2 R:
Let mj be the algebraic multiplicity of the eigenvalue �j. We apply the formula (11) to this represen-

tation and derive the following expression for solutions for arbitrary initial data as a �nite sum (instead

of series):

x(t) = eAt� = eAt

 
sX
j=1

x0;j

!
=

sX
j=1

eAtx0;j = (13)

sX
j=1

 
e�jt

"
mj�1X
k=0

(A� �jI)k
tk

k!

#
x0;j

!
(14)

Series expressing exp(At)x0;j terminates on each of the generalised eigenspaces E(�j).

The last formula still needs speci�cation to derive to an explicit solution. General solution can be

written explicitely by �nding a basis of of eigenvectors vj and generalized eigenvectors for each generalised

eigenspace E(�j) and expressing all components x0;j of � in the generalized eigenspaces E(�j) in the form

x0;j = :::Cpvj + Cp+1v
(1)
j + Cp+2v

(2)
j ::: (15)

including all linearly independent eigenvectors vj corresponding to �j (it might exist several eigenvectors

vj corresponding to one �j ) and enough many linearly independent generalized eigenvectors v
(1)
j ,..., v

(l)
j :

We consider �rst the equation for usual eigenvectors

(A� �jI)v = 0

solve it using Gauss elimination and �nd the number of free variables that gives the number of linearly

independent eigenvectors. Then we look for linearly independent generalized eigenvectors to build up the

whole basis for E(�j):

We will start with examples illustrating this idea in some simple cases.
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Example 4. Matrix 3x3 with two linearly independent eigenvectors.

Consider a system of equations x0 = Ax with matrix A =

264 1 1 1

0 1 0

0 0 1

375 It is easy to see that � = 1 is
the only eigenvalue with algebraic multyplicity 3. The characteristic polynomial is p(�) = (1� �)3.

The eigenvectors satisfy the equation (A� I) v = 0: A � I =

264 0 1 1

0 0 0

0 0 0

375. This equation reads as:
v1+v2 = 0. It has two linearly independent solutions that can be chosen as v1 =

264 10
0

375 and v2 =
264 0

1

�1

375.
The eigenspace is a plane through the origin orthogonal to the vector

264 01
1

375
We like to �nd a generalised eigenvector linearly independent of v1 and v2. We take the eigenvector v1

and solve the equation

(A� �I)2v(1)1 = 0

(A� �I)v1 = 0

(A� �I)v(1)1 = v1:

because if it is valid, then

(A� �I)(A� �I)v(1)1 = (A� �I)v1 = 0

We denote it by two indexes to point out that it belongs to a chain with base on v1. Denoting

v
(1)
1 = [y1; y2; y3]

T we consider the system

264 0 1 1

0 0 0

0 0 0

375
264 y1y2
y3

375 =
264 10
0

375

It gives a solution y3 = 1, y2 = 0, y1 = 0. v
(1)
1 =

264 00
1

375 . We point out that if we try to �nd a chain
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of generalised eigenvectors starting from the eigenvector v2; it leads to a system (A� I)v(1)2 = v2264 0 1 1

0 0 0

0 0 0

375
264 y1y2
y3

375 =
264 0

1

�1

375
that has no solutions (the second and the third equation is never sati�ed).

If we try to extend the chain of generalised eigenvectors with one more: v(2)1 by solving the system

(A� I)v(2)1 = v
(1)
1 264 0 1 1

0 0 0

0 0 0

375
264 y1y2
y3

375 =
264 00
1

375
we �nd that it has no solutions (in fact we know that there cannot be more linearly independent generalised

eigenvectors because we have already found 3 of them).

Vectors v1, v2 and v
(1)
1 form a basis in R3:

We can write general solution to the system of ODE with matrix A using the general formula (13) and

expressing the initial data as a linear combination of eigenvectros v1 and v2 and the generalised eigenvector

v
(1)
1 :

x(t) = e�t

"
2X
k=0

(A� �I)k t
k

k!

#�
C1v1 + C2v2 + C3v

(1)
1

�
� = C1v1 + C2v2 + C3v

(1)
1

m(�) = 3. It is why we put upper bound in the sum equal to m(�)� 1 = 2.
The expression above simpli�es (using that by the construction (A � �I)v(1)1 = v1 and therefore (A �

�I)2v
(1)
1 = (A� �I)v1 = 0: to

x(t) = exp(At)� = C1e
tv1 + C2e

tv2 + C3e
t [I + (A� I) t] v(1)1

= C1e
tv1 + C2e

tv2 + C3e
tv
(1)
1 + C3te

tv1

Example 5. Matrix 3x3 with one linearly independent eigenvector.

Consider a system of equations x0 = Ax with matrix A =

264 �1 �1 0

0 �1 �2
0 0 �1

375 It is easy to see that
� = �1 is the only eigenvalue with multiplicity 3: m(�) = 3:
Eigenvectors satisfy the equation

(A� �I) v = 0
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A � �I = A + I =

264 0 �1 0

0 0 �2
0 0 0

375. It has one linearly independent solution that can be chosen as
v =

264 10
0

375.
We will build a chain of generalised eigenvectors starting with this eigenvector. Solve the equation

(A� �I)2v(1) = 0 as before we take instead the equation (A� �I)v(1) = v that would give us a solution to
the �rst equation.

(A+ I)v =

264 0 �1 0

0 0 �2
0 0 0

375
264 y1y2
y3

375 =
264 10
0

375
The �rst equation in the system implies that y2 = �1, and we are free to choose y1 = 0 and y3 = 0.

v(1) =

264 0

�1
0

375.
The next generalised eigenvector v(2) such that (A� �I)m(�)v(2) = (A� �I)3v(2) = 0 in the chain must

satisfy the equation

(A� �I)v(2) = v(1)

(A+ I)v(2) =

264 0 �1 0

0 0 �2
0 0 0

375
264 y1y2
y3

375 =
264 0

�1
0

375

y3 = 1=2, y2 = 0, y1 = 0. v(2) =

264 0

0

1=2

375.Express initial data � as � = C1v + C2v(1) + C3v(2).

x(t) = exp(At)� = e�t

"
2X
k=0

(A� �I)k t
k

k!

# �
C1v + C2v

(1) + C3v
(2)
�
=

C1e
�tv + C2e

�tv(1) + C2te
�t (A� �I) v(1) + C2

�
t2

2

�
e�t (A� �I)2 v(1)| {z }

=0

+C3e
�tv(2) + C3te

�t(A� �I) v(2)| {z }
=v(1)

+ C3

�
t2

2

�
e�t(A� �I)2 v(2)| {z }

=v

x(t) = C1e
�tv + C2e

�tv(1) + C2te
�tv

+C3e
�tv(2) + C3te

�tv(1) + C3

�
t2

2

�
e�tv
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x(t) = C1e
�t

264 10
0

375+ C2e�t
264 0

�1
0

375+ C2te�t
264 10
0

375

+C3e
�t

264 0

0

1=2

375+ C3te�t
264 0

�1
0

375+ C3�t2
2

�
e�t

264 10
0

375

x(t) =

264 C1e
�t + tC2e

�t + 1
2
t2C3e

�t

�C2e�t � tC3e�t
1
2
C3e

�t

375
�

5.2 Chains of generalised eigenvectors

A practical method for calculating a basis of linearly independent generalized eigenvectors in the general

case is an extension of the approach that we used in the last examples.

1) We �nd a basis of the eigenspace to � consisting of r(�) linearly independent eigenvectors satisfying

the equation (A� �I)u0 = 0:Their number r(�) is called geometric multiplicity of � and r(�) � m(�).
2) Then for each eigenvector u0 6= 0 from this basis we �nd a vector u1 6= 0 satisfying the equation

(A� �I)u1 = u0, and continue this calculation, building a chain of generalised eigenvectors u1; :::; ul
satisfying equations.

(A� �I)uk = uk�1 (16)

up to the index k = l when there will be no solutions to the next equation. The largest possible number l

is (m(�)� r(�)� 1), but it can also be smaller if the eigenvalue � has more than one linearly independent
eigenvector.

Claim.
Point out that depending on the range of the operator with matrix (A� �I) (column space of the matrix

(A� �I)) one might need to be careful choosing non-unique (!) eigenvectors u0 and generalised eigenvectors
uk in the equations (16) so that they would belong to the column space of the matrix (A� �I) (if possible!)
to guarantee that the next equations (16) have a solution.

Alternatively one can start this algorithm from above, solving �rst the equation

(A� �I)l ul = 0

(A� �I)l�1 ul 6= 0

for a generalized eigenvector of rank l and then can apply equations (16) to calculate generalized eigenvec-

tors of lower rank that belong to corresponding chain of generalized eigenvectors. The last vector in this

calculation will be an eigenvector. Check the solution to the Exercise 864 in the �le with exercises, where

these observations are important.
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Lemma. The chain of generalised eigenvectors constructed in (16) is linearly independent. It can

be proved by contradiction using the de�nition and analysing the linear combination
Pl

k �kuk = 0.

(Exercise!)
�
Theorem. A set of generalised eigenvectors corresponding to p chains of eigenvectors as in (16)

corresponding to the same eigenvalue � is linearly independent if and only if eigenvectors in the bottom of

corresponding chains of generalised eigenvectors are linearly independent.�
In the case when all eigenvalues �1; :::; �s to a real matrix A 2 RN�N are real, the generalized eigen-

vectors will be also real and therefore

RN = ker(A� �j)m1 � :::� ker(A� �j)ms = E(�1)� :::� E(�s)

In this case chains of eigenvectors and generalized eigenvectors built by the procedure as above gives a

basis in RN .
To �nd a basis in the generalized eigenspace E(�j) one can start with

1) �nding all linearly independent eigenvectors that are linearly independent solutions to the equation

(A� �jI) v = 0 and collecting them in a set denoted by E .
2) Then �nd all linearly independent solutions to (A� �jI)2 v(1) = 0 (that are not eigenvectors) and

adding them E .
3) Next one �nds solutions to (A� �jI)3 v(2) = 0 linearly independent from those in E and collecting

them also in E e.t.c. Continuing in this way one �nishes when the total number of the derived linearly
independent generalised eigenvectors will be equal to mj - the algebraic multiplicity of the eigenvalue �j.

A more systematic approach to this problem is to calculate such a basis as a chain of generalised

eigenvectors corresponding to each of linearly independent eigenvector as it is was suggested in examples

before:

(A� �jI) vj = 0;

(A� �jI) v(1)j = vj

(A� �jI) v(2)j = v
(1)
j

e:t:c:

(A� �jI) vlj = vl�1j

This approach has also an advantage that using chains of generalised eigenvectors as a basis leads to

a particularly simple representation of the system of equations (4) with matrix A in so called Jordan

canonical form, that we will learn later.

Substituting the expression (15) for arbitrary initial data � in to the general formula above and calcu-

lating all matrix (A� �jI) powers and matrix-vector, multiplications we get a general solution with a set
of arbitrary coe¢ cients C1; :::; CN .

Keep in mind that (A� �jI) vj = 0 and (A� �jI)2 v(1)j = 0 e.t.c., so many terms in the general
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expression for the solution can be zeroes.

Initial value problems. To solve an I.V.P. one needs to express a particular initial data � in terms of
the basis of generalized eigenvectors soving a linear system of equations for coe¢ cients C1; :::; CN in (15)

like for example � = C1v + C2v(1) + C3v(2). We solve a linear system of equations for C1; :::; CN :

Look for exercises in a separate �le Exercises_3.pdf with exercises on linear autonomous systems of

ODE. Check modulus with lecture notes in Canvas.

Lecture 4 (mainly exercises considered in a separate �le)
Summary of the theory on autonomous linear ODEs given in the �rst week

of the course.

1. Initial value problem

x0(t) = Ax(t); x(0) = �

A 2 RN�N (A 2 CN�N)
x : R! RN (x : R! CN)

2. Existence of solutions and representation of the solution to an I.V.P. by a matrix exponent:

x(t) = exp(At)� =

 1X
k=0

1

k!
Ak (t� �)k

!
�

Uniqueness of solutions to I.V.P. based on Grönwall�s inequality.

3. The dimension of the solution space (= N): If fbkgNk is a basis in RN (CN); then functions
fexp(At)bkgNk form a basis of the solution space to the equation x0(t) = Ax(t).

4. Generalized eigenvectors v and generalized eigenspaces E(�) for an eigenvalue � to the matrix A;

having algebraic multiplicity m(�)

(A� �I)m(�) v = 0

dim(E(�)) = m(�).

5. Decomposition of CN into a direct sum of generalized eigenspaces of all distinct eigenvalues �1; :::�s
of a matrix A.

CN = E(�1)� :::� E(�s)

RN = E(�1)� :::� E(�s) if all eigenvalues and the matrix A are real.
6. An important idea:

exp (At) = exp (t�I) exp ((A� �I) t) = e�t
1X
k=0

tk

k!
(A� �I)k
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implies that for a generalized eigenvector z to te eigenalue � with algebraic multiplicitym(�) the exp (At) z

can be expressed explicitely.

xz(t) = exp (At) z = exp (t�I) exp ((A� �I) t) z = (17)�
e�tI

� 1X
k=0

tk

k!
(A� �I)k z = e�t

m(�)�1X
k=0

tk

k!
(A� �I)k z

7. Together with the decomposition theorem it gives a way to �nd a basis of the solution space for the

equation x0 = Ax by �nding a basis for each of E(�j), j = 1; :::; s. We do it using chains of generalised

eigenvectors corresponding to each linearly independent eigenvector vj of the eigenalue �j:

(A� �jI) vj = 0;

(A� �jI) v(1)j = vj

(A� �jI) v(2)j = v
(1)
j

e:t:c:

(A� �jI) vlj = vl�1j

We continue with examples collected in the separate �le Exercises-Lecture4.pdf .

5.3 Real solutions for systems with real matrices having complex eigenval-

ues.

We will consider an example of a system in plane with real matrix having two simple, conjugate complex

eigenvalues (no more because of the small dimension). The idea of solution was to build a complex solution

corresponding to one of these eigenvalues and use it�s real and imaginary part at two linearly independent

solutions to construct a general solution.

The same idea works in the general case when a real matrix might have conjugate complex eigenvalues

(might be multiple in higher dimensions).

We build a basis of eigenvectors and generalized eigenvectors for invariant generalized eigenspaces

corresponding to distinct conjugate complex eigenvalues. One can start with one of these eigenvalues and

then can just choose the basis for the second one as a complex conjugate . Then we construct arbitrary

complex solutions in the invariant generalized eigenspace corresponding to the �rst of these conjugate

eigenvalues. Real and imaginary parts of these solutions are linearly independent and build a basis of

solutions in the corresponding real invariant subspace.

Example 2. Real matrix with complex eigenvalues.
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x0 = Ax with A =

"
3 �2
4 �1

#
; �nd a general real solution to the system. In this case we �nd �rst a

general complex solution and then construct a general real solution based on it.

Solution. A =

"
3 �2
4 �1

#
, characteristic polynomial: �2 � 2�+ 5 = 0;

Hint. We point out here that in the case of 2� 2 matrices the characteristic polynomial always has
a simple representation

p(�) = �2 � �tr(A) + det(A)

where tr(A) is the sum of diagonal elements in A called trace, and det(A) is determinant. Here tr(A)

=�1 + �2; detA = �1�2:�
Eigenvalues are: �1 = 1� 2i; and �2 = 1 + 2i - complex conjugate
They are complex conjugate:

�1 = �2

p(�) = (�� �1)(�� �2)

because the characteriscic polynomial has real coe¢ cients.

Eigenvectors satisfy the equations (A� �I)v1 =
"
2 + 2i �2
4 �2 + 2i

#
v1 = 0 and"

2� 2i �2
4 �2� 2i

#
v2 = 0.

These eigenvectors muct be also complex conjugate. We see it by considering the equations for v1 that

is

(A��1I)v1 = 0 and its formal complex conjugate (A��1I)v1 = 0 that is satis�ed because the conjugate
of the real matrix A is the matrix A itself. Therefore v1 is the eigenvector corresponding to the eigenvalue

�2 = �1. We point out that this argument is independent of this particular example and would be valid

for any real matrix with complex eigenvalues.

The �rst and the second equation in each of these systems are equivalent because rows are linearly

dependent (homogeneous system has non-trivial solutions and the determinant of the matrix A � �I is
zero).

We solve the �rst equation in the �rst system by choosing the �rst component in the complex vector v1
equal to 1. It implies that the second component denoted here by z satis�es the equation 2 + 2i� 2z = 0
and therefore z = 1 + i. The second eigenvector is just the complex conjugate of the �rst one.

v1 =

("
1

1 + i

#)
$ �1 = 1� 2i; and v2 = v1 =

("
1

1� i

#)
$ �2 = 1 + 2i.

They are linear independent as eigenvectors corresponding to di¤erent eigenvalues.

One complex solution is x�(t) = e�1tv1 = e(1�2i)t
"

1

1 + i

#
, another one is y�(t) = e�2tv2 = e(1+2i)t

"
1

1� i

#
x�(t) and y�(t) are linearly independent at any time as corresponding to linearly independent initial

vectors v1 and v2 (according to the theorem before) and build a basis of complex solutions to the system.

Therefore the matrix [x�(t); y�(t)] has determinant det ([x�(t); y�(t)]) 6= 0.
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Two linearly independent real solutions can be chosen as real and imaginary parts of x�(t) (or y�(t)):

Re [x�(t)] = 1
2
(x�(t) + y�(t)) and Im [x�(t)] = 1

2i
(x�(t)� y�(t)) that are linearly independent because the

the matrix T = 1
2

"
1 1=i

1 �1=i

#
of the transformation

[x�(t); y�(t)]T =

"
x�1 y�1

x�2 y�2

#"
1=2 1= (2i)

1=2 �1= (2i)

#
"

1
2
x�1 +

1
2
y�1

1
2i
x�1 � 1

2i
y�1

1
2
x�2 +

1
2
y�2

1
2i
x�2 � 1

2i
y�2

#
= [Re [x�(t)] ; Im [x�(t)]]

is invertible: detT = � 1
2i
6= 0 and therefore, by the property of the determinant for the product of matrices,

det [x�(t); y�(t)] det(T ) = det ([Re [x�(t)] ; Im [x�(t)]]) 6= 0

and Re [x�(t)] and Im [x�(t)] are linearly independent.

Therefore real valued vector functions Re [x�(t)] and Im [x�(t)] can be used as a basis for representing

the general real solution to the system:

x(t) = C1Re [x
�(t)] + C2 Im [x

�(t)] :

We express x�(t) with help of Euler formulas and separate real and imaginary parts

x�(t) = e�1tv1 = e(1�2i)t
"

1

1 + i

#
= et (cos 2t� i sin 2t)

"
1

1 + i

#
=

et

"
cos 2t� i sin 2t

(1 + i) cos 2t+ (1� i) sin 2t

#
= et

"
cos 2t� i sin 2t

cos 2t+ sin 2t+ i (cos 2t� sin 2t)

#
=

et

"
cos 2t

cos 2t+ sin 2t

#
� i et

"
sin 2t

(sin 2t� cos 2t)

#

The answer follows as a linear combination of real and imaginary parts: x(t) = C1Re [x
�(t)] +

C2 Im [x
�(t)] :

Answer: x(t) = C1et
"

cos 2t

cos 2t+ sin 2t

#
+ C2e

t

"
sin 2t

sin 2t� cos 2t

#
:

We will transform this expression to clarify its geometric meaning and the shape of orbits in the phase

plane. We observe �rst that if we drop exponents et, in the expression for x(t) and consider the expression

x(t)e�t = C1

"
cos 2t

cos 2t+ sin 2t

#
+C2

"
sin 2t

sin 2t� cos 2t

#
;we will observe that it represents a movement along

ellipses in the plane.

We use an elementary trick that makes that any linear combination of sin() and cos() is C sin(+�)
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or C cos( � �) with some constants C, �:

x1(t)e
�t = C1 cos(2t) + C2 sin(2t) =q

C21 + C
2
2

  
C1p
C21 + C

2
2

!
cos 2t+

 
C2p
C21 + C

2
2

!
sin 2t

!
=

q
C21 + C

2
2 (cos(�) cos 2t+ sin(�) sin 2t)

=
q
C21 + C

2
2 cos(2t� �)

� = arccos

  
C1p
C21 + C

2
2

!!

Similarly

[x2(t)� x1(t)] e�t = C1 sin(2t)� C2 cos(2t) =q
C21 + C

2
2

  
C1p
C21 + C

2
2

!
sin 2t� C2p

C21 + C
2
2

cos 2t

!
=

q
C21 + C

2
2 (cos(�) sin 2t� sin(�) cos 2t)

=
q
C21 + C

2
2 sin(2t� �)

Finally we arrive to a parametric expression for a periodic movement along ellipses with size depending on

C1 and C2.

x(t)e�t = C1

"
cos 2t

cos 2t+ sin 2t

#
+ C2

"
sin 2t

sin 2t� cos 2t

#

=
q
C21 + C

2
2

"
cos(2t� �)

cos(2t� �) + sin(2t� �)

#

=
q
C21 + C

2
2

"
cos(2t� �)p

2 [sin(�=4) cos(2t� �) + cos(�=4) sin(2t� �)]

#

=
q
C21 + C

2
2

"
cos(2t� �)p

2 [sin(2t� � + �=4)]

#

illustrated in the next picture:
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This movement is modulated in our solution x(t) by the exponential term et giving orbits as spirals going

to in�nity out of the origin that is an unstable equilibrium point for this system.
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Example. It is good to consider here the solution to the exercise 858.
Ideas about solutions to systems with complex eigenvalues demonstrated in exercises can in the general

situation be expressed by the following Theorem.

Theorem 2.14. p. 38 on real solutions to autonomous systems with real matrix and
complex eigenvalues (without proof)

Let A 2 RN�N: for � an eigenvalue, let m(�) be the algebraic multiplicity of �, E(�) = ker(A��I)m(�)

denote it�s generalised eigenspace. Let B(�) be a basis in E(�) chosen to be real for real �.

For all z 2 CN ; we denote xz, yz : R! RN real solutions to the equation x0 = Ax as

xz = exp(At) Re z; yz = exp(At) Im z
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Then

1) Let B0 (respectively B+) denote the union of all B(�) for all real eigenvalues � to A (correspondingly

for all � with Im� > 0) The set of real functions given by

fxz; z 2 B0 [B+g [ fyz : z 2 B+g

forms a basis of the solutuion space to x0 = Ax.

2) If � is a real eigenvalue to A, then for every generalized eigenvector z 2 E(�) ; the solution xz is
expressed as

xz(t) = e
�t

m(�)�1X
k=0

tk

k!
(A� �I)k z

3) If � = �+ i� with � 6= 0, is an eigenvalue of A;then for every generalized eigenvector z 2 E(�);
solutions xz = exp(At) Re z and yz = exp(At) Im z with initial data Re z and Im z are expressed as

xz(t) = e�t
m(�)�1X
k=0

tk

k!
(A� �I)k Re z = e�t

m(�)�1X
k=0

tk

k!

h
cos(�t) Re

�
(A� �I)k z

�
� sin(�t) Im

�
(A� �I)k z

�i
yz(t) = e�t

m(�)�1X
k=0

tk

k!
(A� �I)k Im z = e�t

m(�)�1X
k=0

tk

k!

h
cos(�t) Re

�
(A� �I)k z

�
+ sin(�t) Im

�
(A� �I)k z

�i
�
The theorem shows the how m(�) real linearly independent solutions can be obtained for a real matrix

A with complex eigenvalues �. The part 1) of the theorem shows that such solutions build a real basis of

the solution space for x0 = Ax with a real matrix.
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Lecture 5.

5.4 Jordan canonical form of a matrix. Functions of matrices.

5.5 Change of variables. Properties of similar matrices. Block matrices.

We tried in previous lectures to �nd a basis
n
v1; v

(1)
1 ; :::

o
in CN or in RN such that expressing initial data

� in I.V.P.

x0(t) = Ax(t); x(0) = �

in terms of this basis led to a particularly simple expression of the solution as an explicit linear combination

including polynomials of matrices t(A � �iI) acting on basis vectors. We can interpret these results by
introducing a linear change of variables

x = V y; y = V �1x

with matrix V of this transformation having columns consisting of N linearly independent basis vectors.

In terms of the new variable y the system of ODEs has the form:

x0(t) = A (V y) ; x(0) = �

Multiply by V �1 left and right hand sides:

V �1x0(t) = y0(t) =
�
V �1AV

�
y; y(0) = V �1�

y0(t) = V �1 (A (V y))

In the case when the matrix A has N linearly independent eigenvectros the matrix V �1AV = D is

diagonal with eigenvalues f�1:::; �j; :::g of the matrix A standing on the diagonal of D - m(�j) times equal

to the algebraic multiplicity of �j: The number r(�j) of linearly independent eigenvectors belonging to �j
is called geometric multiplicity of �j and is equal to m(�j) in this case.

De�nition. Matrices A and V �1AV are called similar.
They have several characteristics the same: determinant, and characteristic polynomials. It is a simple

consequence of properties of determinants of products of matrices.

Prove it as an exercise using: det (AB) = det (A) det (B); det(B�1) = (detB)�1 if detB 6= 0.
Using the associative property of matrix multiplication we arrive to the property

Theorem. If matrices A and B are similar through B = V �1AV , A = V BV �1 then

Bk = V �1(Ak)V ;

exp(B) = V �1(expA)V

Ak = V (Bk)V �1

exp(A) = V (expB)V �1
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Prove it as an exercise.

Corollary. If the matrix A is diagonalisable, then exp(A) = V exp(D)V �1 where V matrix of linearly
independent eigenvectors and the matrix D is diagonal matrix of eigenvalues �j and exp(D) is a diagonal

matrix with exp(�j) on the diagonal. In this case the system in new variables y(t) = V �1x(t) consists of

independent di¤erential equations y0j(t) = �jyj(t) for he components yj(t) of y(t) that have simple solutions

yj(t) = Cje
�jt

De�nition. Block - diagonal matrices
Block-diagonal matrices are square matrices that have a number of square blocks B1,... along diagonal

and other terms all zero. For example:

B =

266664
B1 O O O
O B2 O O
O O B3 O
O O O B4

377775

B2 =

266664
B1 O O O
O B2 O O
O O B3 O
O O O B4

377775
266664
B1 O O O
O B2 O O
O O B3 O
O O O B4

377775 =
266664
B21 O O O
O B22 O O
O O B23 O
O O O B24

377775
These matrices have a property that their powers lead to block diagonal matrices of the same structure

with powers of original blocks on the diagonal:

Bk =

266664
(B1)k O O O
O (B2)k O O
O O (B3)k O
O O O (B4)k

377775
This simple observation leads immediately to the formula for the exponent of a block diagonal matrix.

exp (B) =
1X
k=0

1

k!
Bk =

266664
exp (B1) O O O
O exp (B2) O O
O O exp (B3) O
O O O exp (B4)

377775
In fact the same relation would be valid even for an arbitrary analytical function f with power series

f(z) =
P1

k=0 akz
k, converging in the whole C:

f (B) =

266664
f (B1) O O O
O f (B2) O O
O O f (B3) O
O O O f (B4)

377775
Claim. Let the space CN or RN be represented as a direct sum of subspaces V1; :::; Vs, invariant
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under the action of operator Ax:

CN = V1 � V2 � :::� Vs

It means that for all vectors z 2 Vk it is valid that Az 2 Vk for k = 1; :::s.
Then there is a basis fu1; :::; uNg in CN , correspondingly RN such that the operator Ax in this basis

has matrix B similar to A : B = U�1AU , or

UB = AU

that is block diagonal, with blocks of size equal to dimensions of subspaces V1; :::; Vs and matrix U that

has columns u1,...,uN .

The basis fu1; :::; uNg is easy to choose as a union of bases for each invariant subspace Vj. It is easy
to observe that this construction leads to a block diagonal matrix for the operator Ax because columns

with index j in the matrix B are equal to U�1Auj that are coordinates of vectors Auj in terms of the basis

fu1; :::; uNg and belong to the same invariant subspace as uj.
We illustrate this fact on a simple example with two invariant subspaces.
Consider a decomposition of the space CN into the direct sum of two subspaces V and W ; dimV =

m, dimW = p; m + p = N invariant with respect to the operator de�ned by the multiplication Ax.

Choose base vectors in each of these subspaces: fu1; :::; umg and fw1; :::; wpg. They constitute a basis
fu1; :::; um; w1; :::; wpg for the whole space CN .
Introduce a matrix T = [u1; :::; um; w1; :::; wp] with basis vectors of the whole CN collected according to

the invariant subspace they belong to.

Represent a vector x in terms of this basis: x = Ty where

y = [y1; :::; ym; ym+1; :::; yp+m]

is a vector of coordinates of x in the basis consisting of columns in T . The operator Ax acting on the

vector x is expressed in terms of these coordinates y as

Ax = ATy

We express now the image of this operation also in terms of

the basis fu1; :::; um; w1; :::; wpg:

T
�
T�1Ax

�
= ATy

Here (T�1Ax) gives coordinates of the vector Ax in terms of the basis fu1; :::; um; w1; :::; wpg that are
columns in the matrix T . It implies that

T�1Ax =
�
T�1AT

�
y

So the matrix (T�1AT ) is a standard matrix of the original mappingAx in terms of the basis fu1; :::; um; w1; :::; wpg
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associated with invariant subspaces V and W . Now observe that taking vector of y - coordinates with

only components y1; :::; ym non-zero we get vectors that belong to the invariant subspace V , namely vec-

tors having only y - coordinates 1; :::;m non-zero. It means that �rst m columns in (T�1AT ) must have

elements m+ 1; :::m+ p equal to zero because A maps V into itself.

T�1AT =

"
B1 O
O B2

#
If we choose y coordinates with only components ym+1; :::ym+p non-zero, we get a vector that belongs to

the subspace W; namely vectors that have only coordinates m+ 1, ...;m+ p non-zero. It means that last

p columnst in (T�1AT ) must have elements 1; :::m equal to zero because A maps W into itself. It means

�naly that (T�1AT ) has a block diagonal structure with blocks of size m�m and p� p corresponding to
the invariant subspaces V and W .
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5.6 Jordan canonical form of a matrix and it�s functions.

We will observe now that a basis of generalised eigenvectors

CN = E(�1)� E(�2)� :::� E(�s)

build with help of chains of generalised eigenvectors as we discussed before, leads to a particular "canonical"

matrix J similar to the matrix A by the transformation

V �1AV = J

or A = V JV �1 with the matrix

V =
�
:::v; v(1); :::; v(r�1):::

�
where columns are generalised eigenvectors from di¤erent chains of generalised eigenvectors corresponding

to linearly independent eigenvectors put in the same order as in (18).

Consider �rst anm�m matrix A in Cm�m that has one eigenvalue � from the characteristic polynomial
p(z) = (z��)m, of multiplicity m and only one linearly independent eigenvector v:Corresponding chain of

generalised eigenvectors
�
v; v(1); :::; v(m�1)

	
has rank m equal to the dimension of the space and satis�es

equations:

(A� �I) v = 0; (18)

(A� �I) v(1) = v

(A� �I) v(2) = v(1)

e:t:c:

(A� �I) v(m�1) = v(m�2)

(A� �I)m v(m�1) = 0:
We rewrite this chain of equations as

Av = �v

Av(1) = �v(1) + v

Av(2) = �v(2) + v(1)

e:t:c:

Avm�1 = �v(m�1) + v(m�2)

Using the de�nition of the matrix product and the matrix V de�ned as

V =
�
v; v(1); :::; v(m�1)

�
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we observe that vector equations for the chain of generalised eigenvectors are equivalent to the matrix

equation

AV = V D + VN = V (D +N )

where D is the diagonal matrix with the eigenvalue � on the diagonal and the matrix N has all elements

zero except elements over the diagonal that are equal to one:

N =

26666666664

0 1 0 ::: 0 0

0 0 1 ::: 0 0
...
...
...
. . .

...
...

0 0 0 ::: 1 0

0 0 0 ::: 0 1

0 0 0 ::: 0 0

37777777775
;

Shifting property of the right multiplication by the matrix N .
The speci�c structure of N makes that the product BN of an arbitrary square matrix B by the matrix

N from the right is a matrix where each column k is a column k� 1 from the matrix B shifted one step to
the right, except the �rst one that consists of zeroes. It follows from the de�nition of the matrix product

and the observation that elements from the column k in the matrix B in the product BN meet exactly

one non zero element 1 in the column k + 1 in the matrix N :

B =

266666666664

B11 B12 B13 ::: B1(m�1) B1m

B21 B22 B23 ::: B2(m�1) B2m
...

...
. . . . . .

...
...

...
...

... :::
...

...

B(m�1)1 B(m�1)2 B(m�1)3 ::: B(m�1)(m�1) B(m�1)m

Bm1 Bm2 Bm3 ::: Bm(m�1) Bmm

377777777775
; N =

26666666664

0 1 0 ::: 0 0

0 0 1 ::: 0 0
...
...
...
. . .

...
...

0 0 0 ::: 1 0

0 0 0 ::: 0 1

0 0 0 ::: 0 0

37777777775
;

We observe this transformation in equations for the chain of generalized eigenvectors with the matrix

V instead of an arbitrary matrix B .

Observe also that Nm = 0, were m is the size of N .
Therefore

AV = V (D +N )
V �1AV = (D +N ) = J

De�nition of the Jordan block. The matrix J = D +N

43



J =

26666666664

� 1 0 ::: 0 0

0 � 1 ::: 0 0
...
...
...
. . .

...
...

0 0 0 ::: 1 0

0 0 0 ::: � 1

0 0 0 ::: 0 �

37777777775
is called Jordans block. Here D is a diagonal matrix with the eigenvalue � on the diagonal and the

matrix N de�ned above, consists of zeroes except for the diagonal above the main one consisting of ones.

We have proven the following theorem.

Theorem (special case of Theorem A.9 , p. 268) Let m �m matrix A have one eigenvalue of

multiplicity m (characteristic polynomial p(z) = (z � �)m) and only one linearly independent eigenvector
v. Then the matrix A is similar to the Jordans block J with the similarity relations:

A = V JV �1

J = V �1AV

where the matrix V has columns V =
�
v; v(1); :::; v(m�1)

�
that are elements from the chain of generalized

eigenvectors built as solutions to the equations (18).

The "shifting" property of the matrix N implies that N 2 consists of zeroes except the second diagonal

over the main one �lled by 1, N 3 consists of zeroes except the third diagonal over the main one �lled by

1, and �nally Nm = 0.

De�nition A matrix with such property that for some integer r we have N r = 0 is called nilpotent.

Corollary

exp(J) = exp(D +N ) = exp(D) exp(N ) = e�
m�1X
k=0

1

k!
(N )k (19)

exp(J) = e�

26666666664

1 1 1=2 ::: 1
(m�2)!

1
(m�1)!

0 1 1 ::: 1
(m�3)!

1
(m�2)!

...
...

...
. . .

...
...

0 0 0 ::: 1 1=2

0 0 0 ::: 1 1

0 0 0 ::: 0 1

37777777775
because exp(J) = exp(�I +N ) = exp(�I) exp(N ) = e�

Pm�1
k=0

1
k!
(N )k and each term with index k in the

sum is a matrix with k -th diagonal over the main one, �lled by 1
k!
�

Similarly
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exp(Jt) = e�t
m�1X
k=0

tk

k!
(N )k (20)

exp(Jt) = e�t

26666666664

1 t t2=2 ::: tm�2

(m�2)!
tm�1

(m�1)!

0 1 t ::: tm�3

(m�3)!
tm�2

(m�2)!
...
...

...
. . .

...
...

0 0 0 ::: t t2=2

0 0 0 ::: 1 t

0 0 0 ::: 0 1

37777777775

By properties of similar matrices we arrive to the

Corollary. See proof of the spectral theorem 2.19 on page 60-61 in Logemann Ryan.
For an m�m matrix A having just one eigenvalue of multiplicity m and only one linearly independent

eigenvector v it follows the following expression for exp(At) :

exp(At) = V exp(Jt)V �1 = V

 
e�t

m�1X
k=0

tk

k!
(N )k

!
V �1

Remark.
If instead of the exponential function we like to calculate an arbitrary analytical function that has

converging in C Maclorain series

f(z) =
1X
k=0

f (k)(0)

k!
zk

then the same reasoning and the Maclorain series for the function f lead to an expression for the matrix

function f(J)

f(J) =
m�1X
k=0

f (k)(�)

k!
(N )k (21)

Theorem A.9 , on Jordan canonical form of matrix p. 268 in Logemann Ryan.
Let A 2 CN�N ,. There is an invertible matrix T 2 CN�N and an integer k 2 N such that

J = T�1AT

has the block diagonal structure

J =

266664
J1 O O O
O J2 O O
...

...
. . .

...

O O O Jk

377775
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where Jj has dimension rj � rj and is a Jordan block.

Jj =

26666666664

�j 1 0 ::: 0 0

0 �j 1 ::: 0 0
...

...
...
. . .

...
...

0 0 0 ::: 1 0

0 0 0 ::: �j 1

0 0 0 ::: 0 �j

37777777775
Furthermore,

Pk
j=0 rj = N and if rj = 1 them Jj = � for some eigenvalue � 2 �(A). Every eigenvalue

� occurs at least at one block; the same � can occur in more than one block. The number of blocks

with the same eigenvalue � on the diagonal is equal to the number of linearly independent eigenvectors

corresponding to this eigenvalue � (it�s geometric multiplicity g(�)).

Lecture 6
Summary of the main new material in Lecture 5.

1) The block diagonal structure of standard matrix for linear operators Ax having invariant subspaces

V1;...,Vs that decompose the whole space RN into a direct sum: RN(CN) = V1�...�Vs:

8x 2 Vi =) Ax 2 Vi

2) The standard matrix of the operator Ax having just one eigenvalue and just one linearly independent

eigenvector v has a particularly simple structure in terms of the basis consistig of the chain of generalised

eigenvectors associated with this eigenvector: Jordan block:

Jj =

26666666664

�j 1 0 ::: 0 0

0 �j 1 ::: 0 0
...

...
...
. . .

...
...

0 0 0 ::: 1 0

0 0 0 ::: �j 1

0 0 0 ::: 0 �j

37777777775
3) 1) and 2) together with the theorem about generalized eigenspaces for a matix A 2 CN�N imply the

theorem;

J = T�1AT

has the block diagonal structure

J =

266664
J1 O O O
O J2 O O
...

...
. . .

...

O O O Jk

377775
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where columns in the matrix T are chains of generalized eigenvectors corresponding to linearly indepenent

eigenvectors.

4) Explicit formula for the exponent of a Jordan block and Jordan matrix: exp(Jt) = e�t

26666666664

1 t t2=2 ::: tm�2

(m�2)!
tm�1

(m�1)!

0 1 t ::: tm�3

(m�3)!
tm�2

(m�2)!
...
...

...
. . .

...
...

0 0 0 ::: t t2=2

0 0 0 ::: 1 t

0 0 0 ::: 0 1

37777777775
Speci�cation of detailes for Theorem A.9 with a sketch of the proof.

1) Our considerations about chains of generalised eigenvectors and the special case of Theorem A.9
considered above imply that the matrix T in the general theorem A.9 on Jordan canonical form can be

chosen in such a way that it�s columns are elements from chains of generalised eigenvectors built on the

maximal number of linearly independent eigenvectors to the matrix A.

2) The matrix J = T�1AT describing how operator Ax acts in terms of the basis of columns in the

matrix T; has a block diagonal structure with one block corresponding to each linearly independent eigen-

vector. It follows from the fact that generalised eigenspaces are invariant with respect to the transformation

A and from the fact that linear envelopes of the chains of generalised eigenvectors are linearly independent

of each other and are also invariant with respect to A.

3) Each block corresponding to a particular eigenvector is a Jordan block with corresponding eigenvalue

on diagonal, because of the special case of Theorem A.9 considered above. The size of a particular

Jordan block in the Jordan canonical form depends on the length of the corresponding chain of generalised

eigenvectors, that is the smallest integer r such that the equations (A��I)rv(r) = 0 and (A��I)r�1v(r) 6= 0
are satis�ed.

4) It follows from the structure of the canonical Jordan form that the algebraic multiplicity m(�) of

an eigenvalue � is equal to the sum of sizes rj of Jordan blocks corresponding to � and coinsides with the

dimension of it�s generalised eigenspace E(�) = ker
�
(A� �)m(�)

�
.

De�nition. An eigenvalue is called semisimple if it�s generalised eigenspace consists only of eigenvectors
and its algebraic multiplicity is equal to its geometric multiplicity: m(�) = r(�). In this case corresponding

the Jordan blocks will all have size 1� 1.
Jordan blocks in the Jordan canonical form are unique but can be combined in various orders. The

position of Jordan blocks within a canonical Jordan form depends on positions of the chains of generalised

eigenvectors in the transformation matrix T and is not unique in this sense.

Example of calculating the Jordan canonical form of a matrix.
(Try to solve yourself exercises from the �le with exercises on linear autonomous systems, where all

answers and some solutions are given)

Consider matrix C =

266664
1 �1 �2 3

0 0 �2 3

0 1 1 �1
0 0 �1 2

377775, Find its canonical Jordan�s form and corresponding basis.
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Find �rst the characteristic polynomial.

det(C � �I) = det

266664
1� � �1 �2 3

0 �� �2 3

0 1 1� � �1
0 0 �1 2� �

377775 = (1� �) det
264 �� �2 3

1 1� � �1
0 �1 2� �

375 =
(1� �) (��) det

"
1� � �1
�1 2� �

#
� (1� �) det

"
�2 3

�1 2� �

#
=

(1� �) (��)
�
�2 � 3�+ 1

�
� (1� �) (2�� 1) = (1� �)

�
3�2 � �� �3

�
+ (1� �) (1� 2�) =

(1� �)
�
3�2 � 3�� �3 + 1

�
= (1� �) (1� �)3 = (1� �)4.

MatrixC has one eigenvalue � = 1 with multiplicity 4. Consider the equation for eigenvectors (C�I)x =
0 with matrix

(C��I) =

266664
0 �1 �2 3

0 �1 �2 3

0 1 0 �1
0 0 �1 1

377775Gauss elimination gives=)
266664
0 �1 �2 3

0 0 0 0

0 0 �2 2

0 0 �1 1

377775=)
266664
0 �1 �2 3

0 0 �2 2

0 0 0 0

0 0 0 0

377775
with two free variables: x1 and x4. Therefore the dimension of the eigenspace is 2. There are two

linearly independent eigenvectors that can be chosen as

v1 =

266664
1

0

0

0

377775 and v2 =
266664
1

1

1

1

377775 : Each of these eigenvectors might generate a chain of generalised eigen-
vectors.

We check the equation (C � �I )v(1)1 = v1 with extended matrix

266664
0 �1 �2 3 1

0 �1 �2 3 0

0 1 0 �1 0

0 0 �1 1 0

377775 and carry

out the same Gauss elimination as before: =)

266664
0 �1 �2 3 1

0 0 0 0 �1
0 0 0 �2 2

0 0 0 �1 1

377775 : The second equation is not
compatible and the system has no solution.

For the second eigenvector v2 we solve similar system (C � �I )v(1)2 = v2 with the extended matrix266664
0 �1 �2 3 1

0 �1 �2 3 1

0 1 0 �1 1

0 0 �1 1 1

377775

Gauss elimination implies the echelon matrix

266664
0 �1 �2 3 1

0 0 0 0 0

0 0 �2 2 2

0 0 �1 1 1

377775 =)
266664
0 �1 �2 3 1

0 0 �1 1 1

0 0 0 0 0

0 0 0 0 0

377775 that

48



has a two-dimensional set of solutions. We choose one as v(1)2 =

266664
1

1

�1
0

377775 and build up the chain of

generalized eigenvectors by solving one more equation (C � �I )v(2)2 = v
(1)
2 with the extended matrix266664

0 �1 �2 3 1

0 �1 �2 3 1

0 1 0 �1 �1
0 0 �1 1 0

377775 =)
266664
0 �1 �2 3 1

0 0 0 0 0

0 0 �2 2 0

0 0 �1 1 0

377775 =)
266664
0 �1 �2 3 1

0 0 1 �1 0

0 0 0 0 0

0 0 0 0 0

377775 leading to a generalized
eigenvector (not unique)

v
(2)
2 =

266664
1

�1
0

0

377775. Finally we conclude that the Jordan canonic form of the matrix C in the basis v1, v2,

v
(1)
2 , v

(2)
2 is J = T�1CT =

266664
1 0 0 0

0 1 1 0

0 0 1 1

0 0 0 1

377775 , with transformation matrix T =

266664
1 1 1 1

0 1 1 �1
0 1 �1 0

0 1 0 0

377775, inverse:

T�1 =

266664
1 1 2 �4
0 0 0 1

0 0 �1 1

0 �1 �1 2

377775 ;

If we like to solve x0 = Cx, with initial condition x(0) = �, we apply general formulas to

� = C1v1 + C2v2 + C3v
(1)
2 + C4v

(2)
2

and �nd C1, C2; C3, C4 such that

We could use the general formula for solutions to the ODE as

x(t) = T exp(J)T�1�
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exp(Jt) = e�t

26666666664

1 t t2=2 ::: tm�2

(m�2)!
tm�1

(m�1)!

0 1 t ::: tm�3

(m�3)!
tm�2

(m�2)!
...
...

...
. . .

...
...

0 0 0 ::: t t2=2

0 0 0 ::: 1 t

0 0 0 ::: 0 1

37777777775

exp (Ct) =

1X
k=0

tk

k!
Ck =

266664
exp (tJ1) O O O
O exp (tJ2) O O
::: ::: ::: O
O O O exp (tJr)

377775
6
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7 Theorem about conditions for the exponential decay and for

the boundedness of the norm kexp(At)k (Corollary 2.13)
Theorem.
LetA 2 CN�N be a complex matrix (the real caseA 2 RN�N is included!). Let �A = max fRe� : � 2 �(A)g

where �(A) is the set of all eigenvalues to A. �A is the maximal real part of all egenvalues to A.

Then three following statements are valid.

1. kexp(At)k decays exponentially if and only if �A < 0. ( It means that there are M� > 0 and � > 0

such that kexp(At)k �M�e
��t )

2. limt!1 kexp(At)�k = 0 for every � 2 CN (it means that all solutions to the ODE x0 = Ax tend to
zero) if and only if �A < 0:

3. if �A = 0 then supt�0 kexp(At)k < 1 if and only if all purely imaginary eigenvalues and zero

eigenvalues are semisimple meaning that m(�) = g(�).

Remark. One can prove this theorem in two slightly di¤erent but essentially equivalent ways.

1) Using the similarity of the matrix A and it�s Jordan matrix J

J = T�1AT ; A = TJT�1

corresponding expression of exp(At) in terms of exp(Jt) that is known explicitely:

exp (At) = T exp(Jt)T�1

2) Using the expression for general solution to a linear autonomous system in terms of eigenvectors and

generalized eigenvectors to A :

x(t) = exp(At)x0 =

sX
j=1

 "
mj�1X
k=0

(A� �jI)k
tk

k!

#
x0;je�jt

!

for solutions with initial data x0 =
Ps

j=1 x
0;j with x0;j 2 E(�j) - components of x0 in the generalized

eigenspaces E(�j) = ker(A� �j)mj of the matrix A, where �j; j = 1:::; s are all distinct eigenvalues to A

with algebraic multiplicities mj.

The �rst method is shorter and more explicit.

In the course book the second method is used for proving Theorem 2.12 that is formulated in a slightly

unfriendly style.

The Corollary 2.13 is almost equivalent and can be proven in exactly the same way as Theorem 2.12

but a bit simpler.

We give here a proof based on the expression exp (At) = T exp(Jt)T�1 using Jordans canonical matrix

J .

Proof.

51



We point out that any matrix A 2 CN�N can be represented with help of its Jordan matrix J as

A = TJT�1 where T is an invertible matrix with columns that are linearly independent eigenvectors and

generalized eigenvectors to A ordered as in chains of generalised eigenvectors. The Jordan matrix J is a

block diagonal matrix

J =

26666664
J1 O ::: O O
O J2 ::: O O
::: ::: ::: ::: :::

O O ::: Jp�1 O
O O ::: O Jp

37777775
where the number of blocks p is equal to the number of linearly independent eigenvectors to A. The symbol

O denotes zero block.
Each Jordan block Jk has the structure as the following:

Jk =

26666664
�i 1 0 0 0

0 �i 1 0 0

0 0 �i 1 0

0 0 0 �i 1

0 0 0 0 �i

37777775
with possibly some blocks of size 1� 1 being just one number �i : The sum of sizes of blocks is equal to N .
We use the expression

exp (At) = T exp(Jt)T�1

that reduces analysis of the boundedness and limits of the norm kexp (At)k to the similar analysis for the
matrix exp(Jt) because for two matrices A and B the estimate kABk � kAk kBk and therefore

kexp (At)k � kTk
T�1 kexp(Jt)k

Similarly

T�1 exp (At)T = exp(Jt)

and

kexp (Jt)k � kTk
T�1 kexp(At)k

kTk�1
T�1�1 kexp (Jt)k � kexp(At)k

For exp(Jt) we have the following explicit expression in terms of eigenvalues and their algebraic and

geometric multiplicities:

52



exp(Jt) =

26666664
exp(J1t) O O O O
O exp(J2t) O O O
O O ::: O O
O O O exp(Jp�1t) O
O O O O exp(Jpt)

37777775 (22)

where for example the block of size 5� 5 looks as

exp(Jkt) = exp(�it)

26666664
1 t t2

2!
t3

3!
t4

4!

0 1 t t2

2!
t3

3!

0 0 1 t t2

2!

0 0 0 1 t

0 0 0 0 1

37777775 (23)

For a block of the size 1� 1 we will get exp(Jkt) = exp(�it). If an eigenvalue �i is semisimple, that means
it has the number of linearly independent eigenvectors (geometric multiplicity) r(�i) equal to the algebraic

multiplicity m(�i) of �i. In this case all blocks corresponding to this eigenvalue and corresponding blocks

in the exponent exp(Jt) all have size 1� 1 and have this form exp(Jkt) = exp(�it).

Matrices N � N build a �nite dimentional linear space with dimension N � N . All norms in a �nite
dimensional space are equivalent. It means that for any two norms k�k1 and k�k2 in the space of matrices,
there are constants C1, C2 > 0 such that for any matrix A

C1 kAk1 � kAk2 � C2 kAk1

It is easy to observe that the expression maxi;j=1:::N jAijj =kAkmax is a norm in the space of matrices

and therefore can be used instead of the standart eucledian norm. There are constants B1 and B2 > 0

such that

B1 kAkmax � kAk � B2 kAkmax

I makes that to show the boundedness of the matrix norm kexp(Jt)k for exp(Jt); it is enough to show
boundedness of all elements in exp(Jt). Similarly, to show that kexp(Jt)k ! 0 when t ! 1 it is enough

to show that all elements in exp(Jt) go to zero when t!1
To prove the statements in the theorem we need just to check how elements in the explicit expressions

(23) for blocks in exp(Jt) see (22), behave depending on the maximum of the real part of eigenvalues:

max fRe� : � 2 �(A)g and check situations when blocks of size 1� 1 not including powers tp can appear.
� We observe in (23) that all elements in exp(Jt) have the form: exp(�it) or C exp(�it)tp with some

constants C > 0 and some p > 0 with possibly similar �i in di¤erent blocks.

� Absolute values of the elements in exp(Jt) have the form: exp((Re�i) t) or C exp((Re�i) t)tp where
all Re�i � �A. because jexp(i Im�j)j = 1 according to the Euler formula.
We prove �rst su¢ ciency of the conditions in the statement 1. for the formulated conclusions.
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1. If �A < 0 then maximum of absolute values of all elements [exp(Jt)]ij in exp(Jt) satisfy the inequality

max
i;j

���[exp(Jt)]ij��� �M exp [(�A + �)t] �!
t!1

0

and tends to zero exponentially for some constant M > 0 and � so small that �� = �A + � < 0. It
follows because

exp(Re�it)t
p � exp(�At)t

p = exp [(�A + � � �) t] tp

= exp [(�A + �) t] (t
p exp [��t])| {z }

�M

�M exp [��t]

Therefore kexp(Jt)k � M� exp [��t] �!
t!1

0 with another constant M� and therefore kexp(At)k �
(kTk kT�1kM�) exp [��t] decays exponentially.

Now we prove the su¢ ciency of the conditions in the statement 2. for the formulated conclusion.

2. The de�nition of the matrix norm implies immediately that if �A < 0 then by the result for the

matrix norm kexp(At)k that limt!1 kexp(At)�k � k�k limt!1 kexp(At)k = 0 for every � 2 CN :

Now we prove the su¢ ciency and necessity of the conditions in the statement 3. for the uniform
boundedness of the transition matrix exp(At): supt�0 kexp(At)k <1:

3. If �A = 0 and then there are purely imaginary or zero eigenvalues �. Then elements in the blocks

of exp(Jt) corresponding to purely imaginary or zero eigenvalues will have the form exp(i Im�it) or

C exp(i Im�it)t
p. The absolute values of these elements will be 1 or Ctp because jexp(i Im�it)j = 1.

Therefore absolute values of these elements will be bounded if and only if corresponding blocks are

of size 1� 1 and therefore elements Ctp with powers of t are not present. This situation takes place
if and only if purely imaginary and zero eigenvalues are semisimple (have geometric and algebraic
multiplicities equal: m(�) = g(�)). Elements in exp(Jt) in the blocks corresponding to eigenvalues

with negative real parts will be exponentially decreasing by the arguments in the proof of statement

1.

Finally we prove necessity of the condition in the Statement 1. We observe that if �A = 0 then

referring to the analysis in 3. absolute values of the elements corresponding to purely imaginary or
zero �i in exp(Jt) are be bounded in the case if the conditions in 3. are sati�ed, or otherwise they
have the form Ctp and go to in�nity when t ! 1: Therefore the norm kexp(At)k does not decay
exponentially in this case. If �A > 0 the matrix exp(Jt) will include terms that are exponentially

rising and the norm kexp(At)k can not decay exponentially in this case.

The nessecity of the conditions in the statement 2 follows from the behaviour of the elements in

exp(Jt) considered before or from the formula for general solution to the linear autonomous system.

The condition �A � 0 means that there are eigenvalues � with real part Re� positive or zero. In

the �rst case choosing vector � equal to a generalized eigenvector or an eigenvector corresponding to

�i with Re�i > 0 we get a solution exp(At)� represented as a sum with terms including exponents
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exp(�it) such that jexp(�it)j = jexp(Re�it)j ! 1. In the second case there are eigenvalues �i =
i Im�i. Choosing � equal to one of corresponding generalized eigenvectors we obtain a solution

exp(At)� represented as a sum including terms with constant absolute value or an absolute value

that rises as some power tp with t ! 1. It implies the necessity of conditions in 2. for having
limt!1 exp(At)� = 0 for every � 2 CN .�

The proof of the Corollary 2.13 in the book uses the explicit expression of solutions that we discussed at

the beginning of this chapter of lecture notes and is a bit more complicated.

x0(t) = Ax(t) =) x(t) = exp(At)�

8

Lecture 7
Examples of phase portraits for linear autonomous ODEs in plane

and calculations of matrix exponents.

9 De�nition of stable equilibrium points.

De�nition: A point x� 2 G is called an equilibrium point to the equation x0 = f(x) if f(x�) = 0:

The corresponding solution x(t) � x� is called an equilibrium solution.

De�nition. (5.1, p. 169, L.R.)
The equilibrium point x� is said to be stable if, for any " > 0; there is � > 0 such that, for anymaximal

solution x : I ! G to the I.V.P.

x0 = f(x)

x(0) = �

such that 0 2 I and kx(0)� x�k � � we have kx(t)� x�k � " for any t 2 I \ R+ for all "future times".
Below a picture is given in the case x� = 0.
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De�nition. (5.14, p. 182, L.R.)
The equilibrium point x� of (??) is said to be attractive if there is � > 0 such that for every � 2 G with

k� � x�k � � the following properties hold: the solution x(t) = '(t; �) to I.V.P. with x(0) = � exists on

R+and '(t; �)! x� as t!1.
De�nition. We say that the equilibrium x� is asymptotically stable if it is both stable and attractive.
In the analysis of stability we will always choose a system of coordinates so that the origin coinsides

with the equilibrium point. In the course book this agreement is applied even in the de�nition of stability.

De�nition. The equilibrium point x� is said to be unstable if it is not stable. It means that there is

a "0 > 0; such that for any � > 0 there is point x(0) : kx(0)� x�k � � such that for some t0 2 I we have
kx(t0)� x�k > "0:(a formal negation to the de�nition of stability).

10 Classi�cation of phase portraits of autonomous linear sys-

tems in the plane.

Characteristic polynomial for a 2� 2 matrix A is

p(�) = �2 � �TrA+ detA

Eigenvalues are:

�1;2 =
TrA

2
�

s
(TrA)2

4
� detA

The line detA = (TrA)2

4
separates points in the plane (TrA; detA) corresponding to real and complex

eigenvalues of the matrix A.

For TrA; detA in the �rst and second quadrants in the plane (TrA; detA) both Re�1;2 are correspond-

ingly positive and negative.

In the half plane where detA < 0 eigenvalues �1;2 are real but have di¤erent signs.

These observations imply the following classi�cation of phase portraits for linear autonomous systems

in plane.
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A classi�cation of phase portraits for non-degenerate linear autonomous systems in plane
in terms of the determinant and the trace of the matrix A.
Stable (unstable) nodes when eigenvalues �1; �2 are real, di¤erent, negative (positive). det(A) <

1
4
(tr(A))2; det(A) > 0; tr(A) < 0, ( tr(A) > 0):

Saddle (always unstable) when eigenvalues �1; �2 are real, with di¤erent signs. det(A) < 0:
Stable (unstable) focus - spiral when �1; �2 are complex, with negative (positive) real parts.

det(A) > 1
4
(tr(A))2 6= 0; tr(A) < 0 ( tr(A) > 0):

Stable (unstable) improper - degenerate node when eigenvalue �1 is real negative (positive)
with multiplicity 2 having only one linearly independent eigenvector. det(A) = 1

4
(tr(A))2; tr(A) < 0 (

tr(A) > 0):

Center (stable but not asymptotically stable) when �1; �2 are complex purely imaginary. tr(A) = 0 ;
det(A) > 0

Stable (unstable) star, when eigenvalue �1 is real negative (positive) with multiplicity 2 as for
improper node, but having two linearly independent eigenvectors (diagonal matrix A)

�
Example.
An example on instability: saddle point. There are trajectories (not all) that leave a neighbourhood

kxk < d of the origin for initial conditions � arbitrary close to the origin: for any " > 0 and 0 < k�k � "
after some time T".

r0 = Ar with A =

"
1 1

2 0

#
, characteristic polynomial: �2 � �� 2 = 0;

eigenvectors and eigenvalues are :

("
1

�2

#)
$ �1 = �1;

("
1

1

#)
$ �2 = 2: Eigenvectors satisfy

homogeneous systems of equations with matrices A� �1I =
"
2 1

2 1

#
and A� �2I =

"
�1 1

2 �2

#
.
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r = C1e
2t

"
1

1

#
+C2e

�t

"
1

�2

#
- is the general solution. The equilibrium point in the origin is unstable.

Choosing a ball kxk � 1; and for arbitrary " > 0; � = "
"
1=
p
2

1=
p
2

#
, k�k we see that the corresponding

solution x(t) = e2t"

"
1=
p
2

1=
p
2

#
will leave this ball kxk � 1;after time 2T" = � ln ".

7.552.50-2.5-5-7.5
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Exercise.
Consider the following system of equations:(
x0 = 2y � x
y0 = 3x� 2y

1. a) can the system have a trajectory going from the point (�a2 � 1;�1)
above_the_line

to the point (1; a2 + 1)?

b) which type of �xed point is the origin?

c) draw a sketch of the phase portrait. (4p)

Solution

Matrix of the system isA =

"
�1 2

3 �2

#
. Characteristic polynomila is det(A��I) = det

"
�1� � 2

3 �2� �

#
=

�2 + 3�� 4. Eigenvalues and eigenvectors are: �1 = �4; �2 = 1.

Eigenvectors v1 =

"
�2
3

#
$ �1 = �4; satis�es the equation (A� �1I) v1 = 0 with (A� �1I) ="

3 2

3 2

#

v2 =

"
1

1

#
$ �2 = 1;satis�es the equation (A� �2I) v2 = 0 with (A� �2I) =

"
�2 2

3 �3

#
x(t) = C1 exp(�4t)v1 + C2 exp(1t)v2
Origin is a saddle point and is unstable. Trajectories are hyperbolas asymptotically approaching with

t!1 or t! �1 trajectories L1, L2, L3, L4, that are straight lines through the origin and are parallell

to the eigenvectors.
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Checking points (�a2�1;�1) and (1; a2+1) we observe that they are separated by the above mentioned
straight trajectories L1, L2, L3, L4. Therefore no one trajectory can go between these two points because

such a trajectory should cross one of L1, L2, L3, L4 that is impossible because of the uniquness of solutions

to linear systems.�

Exercise 868. Exponent of a matrix with complex eigenvalues and phase portrait of the
ODE with such matrix.

Calculate exp(A) for the matrix A =

"
0 �1
1 0

#
; with eigenvalues �i.

We will consider �rst the general case.

Complex numbers in matrix form

The set of matrices of the structure Z =

"
a �b
b a

#
have the same properties with respect to matrix

multiplication and addition as complex numbers of the form a+ ib.

In particular matrices of the form

"
a 0

0 a

#
behave as real numbers and matrix

"
0 �1
1 0

#
behave as

imaginary unit i.

We check that

"
0 �1
1 0

#"
0 �1
1 0

#
=

"
�1 0

0 �1

#
= �

"
1 0

0 1

#
= �I and

"
a 0

0 a

#"
b 0

0 b

#
="

ab 0

0 ab

#
and observe that the diagonal matrix

"
a 0

0 a

#
and the matrix

"
0 �1
1 0

#
commute.

It makes that we can apply the Euler formula!!!!!!

exp(a+ ib) = exp(a)(cos(b) + i sin(b))

for computing the exponent of a matrix of such structure:

exp(Z) = exp

 "
a �b
b a

#!
= exp

 "
a 0

0 a

#
+

"
0 �b
b 0

#!
= exp

 "
a 0

0 a

#!
exp

 "
0 �b
b 0

#!
=

exp(a)I

"
cos(b)

"
1 0

0 1

#
+ sin(b)

"
0 �1
1 0

##
= exp(a)

"
cos(b) � sin(b)
sin(b) cos(b)

#

exp(tZ) = exp(at)

"
cos(bt) � sin(bt)
sin(bt) cos(bt)

#
�
Corollary

Trajectories of the system of di¤erential equations x0(t) = Zx(t) with matrix Z =

"
a �b
b a

#
are spirals

x(t) = exp(at)

"
cos(bt) � sin(bt)
sin(bt) cos(bt)

#
x(0)
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build by a circular movement

"
cos(bt) � sin(bt)
sin(bt) cos(bt)

#
around the origin together with movement towards

the origin if a < 0 and out from the origin if a > 0.

In the case when a = 0, trajectories go along circles around the origin.

�
General calculations imply immediately that exp(A) = exp

 
0 �1
1 0

!
=

"
cos(1) � sin(1)
sin(1) cos(1)

#
Lemma ( important reduction result for the case of complex eigenvalues in plane)

For any real 2 � 2 matrix A =

"
a11 a12

a21 a22

#
with complex eigenalues � = � � i� there is a

non-degenerate matrix M =

"
a11 � � ��
a21 0

#
such that M�1AM =

"
� ��
� �

#
.

�
It implies that trajectories of the system with matrix A in this case will be also spirals, but squeezed.

It the case if � = 0 they will be ellipses instead of circles that were observed in the preious example.

Example of a stable but NOT asymptotically stable equilibrium point.

Consider the system x0(t) = Ax(t) with A =

"
0 �2
2 0

#
: Eigenvalues of the matrix A are � = �2i are

purely imaginary (and non-zero). Therefore there are no other equilibrium points except the origin. The

exp(At) =

"
cos(2t) � sin(2t)
sin(2t) cos(2t)

#
. The solution to the initial value problem with initial data [�1; �2]

T is

x(t) = exp(At)� =

"
�1 cos(2t)� �2 sin(2t)
�1 sin(2t) + �2 cos(2t)

#
= j�j

"
�1
j�j cos(2t)�

�2
j�j sin(2t)

�1
j�j sin(2t) +

�2
j�j cos(2t)

#
=

= j�j
"
cos(�) cos(2t)� sin(�) sin(2t)
cos(�) sin(2t) + sin(�) cos(2t)

#
= j�j

"
cos(� + 2t)

sin(� + 2t)

#

with cos(�) = �1
j�j : Therefore orbits of solutions are circles around the origin with the radius equal to j�j. It

implies that the equlibrium point in the origin is stable. �" > 0 in the de�nition of stability can be chosen

equal to " > 0 .�

Example. Two positie real eigenvalues. Tr(A) > 0, det(A) < 1
4
(Tr(A))2

Calculate exp(At) for the constant matrix A =

"
3 �1
2 0

#
and sketch phase portrait for the system

x0 = Ax.

Solution.

The characteristic polynom for A is

"
3 �1
2 0

#
, X2 � 3X + 2 = (X � 1) (X � 2) = 0, so eigenvalues

are �1 = 1, �2 = 2. Eigenvectors are v1 =

("
1

2

#)
$ �1; v2 =

("
1

1

#)
$ �2
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A direct formula following from diagonal Jordan form is the following: exp(At) as exp(At) = P

"
et 0

0 e2t

#
P�1,

where the matrix P has columns of eigenvectors: P = (v1; v2)=

"
1 1

2 1

#
and the inversion of P can be

calculated by Cramer�s formulas: P�1 =

"
1 1

2 1

#�1
=

"
�1 1

2 �1

#
: We derive the �nal expression by

multiplication of the three matrices:

exp(At) = P

"
et 0

0 e2t

#
P�1 =

"
1 1

2 1

#"
et 0

0 e2t

#"
�1 1

2 �1

#
=

"
et e2t

2et e2t

#"
�1 1

2 �1

#
="

�et + 2e2t et � e2t

�2et + 2e2t 2et � e2t

#
An alternative solution is based on using general solution to the di¤erential equation x0 = Ax :

x(t) = C1v1e
t + C2v2e

2t:

There are two positive eigenvalues to the matrix A: It corresponds to the phase portrait with unstable

node (source), where red lines parallel to v1 and v2 correspond to solutions with one of coe¢ cients C1 or

C2 equal to zero.

Columns in exp(At) are solutions to the system above with initial data e1 =

"
1

0

#
and e2 =

"
0

1

#
.

The plan is to �nd �rst the general solution, and then these two particular solutions.

To satisfy the initial data x(0) = C1v1et + C2v2e2t = e1
we solve a system of two equations for C1 and C2:

C1

"
1

2

#
+ C2

"
1

1

#
=

"
1

0

#
or in matrix form

"
1 1

2 1

#"
C1

C2

#
=

"
1

0

#
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"
�1 0

2 1

#"
C1

C2

#
=

"
1

0

#
=) C1 = �1 and C2 = 2. Therefore the �rst columnt in exp(At)

is: �v1et + 2v2e2t =
"
�1
�2

#
et +

"
2

2

#
e2t =

"
�et + 2e2t

�2et + 2e2t

#
Similarly we �nd the second column:

C1

"
1

2

#
+ C2

"
1

1

#
=

"
0

1

#
;

"
1 1

2 1

#"
C1

C2

#
=

"
0

1

#
;

"
�1 0

2 1

#"
C1

C2

#
=

"
�1
1

#
=) C1 = 1 and C2 = �1.

The second column in exp(At) is: v1et � v2e2t =
"
1

2

#
et +

"
�1
�1

#
e2t =

"
et � e2t

2et � e2t

#

and �nally exp(At) =

"
�et + 2e2t et � e2t

�2et + 2e2t 2et � e2t

#

10.1 A general way to calculate exponents of matrices. (particularly useful

for matrices having complex eigenvalues)

We use here general solution to the equation x0 = Ax:

We clarify �rst in which way it can be used.

� For any matrix B the product Bek gives the column k in the matrix B.

� Therefore the column k in exp(A) is the product exp(A)ek, where vector ek is a standard basis

vector, or colum with index k from the unit matrix I.

� On the other hand exp(At)� is a solution to the equation x0 = Ax with initial condition x(0) = �

� The expressions xk(t) = exp(At)ek is a solution to the equation x0 = Ax with initial condition

x(0) = ek

� Therefore the value of the solution in time t = 1: xk(1) = exp(A)ek gives the column k in the matrix
exp(A)

� Having the general solution for example in the case of dimension 3:

x(t) = C1	1(t) + C2	2(t) + C3	3(t)

in terms of linearly independent solutions 	1(t), 	2(t), 	3(t); we can for every k �nd a set of

constants C1;k,C2;k,C3;k, corresponding to each of the initial data ek: Namely we solve equations

C1;k	1(0) + C2;k	2(0) + C3;k	3(0) = ek ; k = 1; 2; 3
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� that are equivalent to the matrix equation

[	1(0);	2(0);	3(0)]

264 C1;1 C1;2 C1;3

C2;1 C2;2 C2;3

C3;1 C3;2 C3;3

375 = [e1; e2; e3] = I
� Values at t = 1 of corresponding solutions:

xk(1) = C1;k	1(1) + C2;k	2(1) + C3;k	3(1) = exp(1 � A)ek

will give us columns exp(1 � A)ek in exp(A).

� In the matrix form this result can be expressed as264 C1;1 C1;2 C1;3

C2;1 C2;2 C2;3

C3;1 C3;2 C3;3

375 = [	1(0);	2(0);	3(0)]�1

exp(A) = [	1(1);	2(1);	3(1)]

264 C1;1 C1;2 C1;3

C2;1 C2;2 C2;3

C3;1 C3;2 C3;3

375
= [	1(1);	2(1);	3(1)] [	1(0);	2(0);	3(0)]

�1

We demonstrate this idea using the result on the general solution from the problem 859.

We can calculate exp

0B@
264 3 �3 1

3 �2 2

�1 2 0

375
1CA, eigenvalues: �1 = �1; �2 = 1� i; �3 = 1 + i

General solution to the system x0 = Ax is:

x(t) = C1	1(t) + C2	2(t) + C3	3(t)

= C1e
�t

264 1

1

�1

375+ C2et
264 cos t� sin tcos t

sin t

375+ C3et
264 cos t+ sin tsin t

� cos t

375
introducing shorter notations for each term: x(t) = C1	1(t) + C2	3(t) + C3	3(t):

We calculate initial data for arbitrary solution by

x(0) = C1	1(0) + C2	3(0) + C3	3(0)=C1

264 1

1

�1

375+ C2
264 11
0

375+ C3
264 1

0

�1

375
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x(0) = [	1(0);	3(0);	3(0)]

264 C1C2
C3

375 =
264 1 1 1

1 1 0

�1 0 �1

375
264 C1C2
C3

375
exp(A) has columns that are values of x(1) for solutions that satisfy initial conditions x(0) = e1,

e2; e3 and therefore

264 1 1 1

1 1 0

�1 0 �1

375
264 C1;1C2;1

C3;1

375 =

264 10
0

375 = e1;

264 1 1 1

1 1 0

�1 0 �1

375
264 C1;2C2;2

C3;2

375 =

264 01
0

375 = e2;

264 1 1 1

1 1 0

�1 0 �1

375
264 C1;3C2;3

C3;3

375 =
264 00
1

375 = e3;
We solve all three of these systems for

264 C1;kC2;k

C3;k

375 in one step as a matrix equation
264 1 1 1

1 1 0

�1 0 �1

375
264 C1;1 C1;2 C1;3

C2;1 C2;2 C2;3

C3;1 C3;2 C3;3

375 = I

It is equivalent to the Gauss elimination of the following extended matrix:

264 1 1 1 1 0 0

1 1 0 0 1 0

�1 0 �1 0 0 1

375 : The
result at the rigth half will be the inverted matrix:

264 C1;1 C1;2 C1;3

C2;1 C2;2 C2;3

C3;1 C3;2 C3;3

375 =
264 1 1 1

1 1 0

�1 0 �1

375
�1

=

264 �1 1 �1
1 0 1

1 �1 0

375
It can also found by applying Cramer�s rule.

We arrive to the expression of the matrix exponent by collecting these results through the matrix

multiplication:

exp(At) = [	1(t);	2(t);	3(t)]

264 C1;1 C1;2 C1;3

C2;1 C2;2 C2;3

C3;1 C3;2 C3;3

375

exp(At) =

264 e�t et (cos t� sin t) et (cos t+ sin t)

e�t et cos t et sin t

�e�t et sin t �et cos t

375
264 �1 1 �1
1 0 1

1 �1 0

375 =
=

264 e
t (cos t+ sin t)� e�t + et (cos t� sin t) �et (cos t+ sin t) + e�t �e�t + et (cos t� sin t)

(cos t) et + (sin t) et � e�t � (sin t) et + e�t (cos t) et � e�t

� (cos t) et + (sin t) et + e�t (cos t) et � e�t (sin t) et + e�t

375
and �nally for t = 1 we get exp(A)
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exp(A) = e

264 (cos 1 + sin 1)� e
�2 + (cos 1� sin 1) � (cos 1 + sin 1) + e�2 �e�2 + (cos 1� sin 1)

(cos 1) + (sin 1)� e�2 � (sin 1) + e�2 (cos 1)� e�2

� (cos 1) + (sin 1) + e�2 (cos 1)� e�2 (sin 1) + e�2

375
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