
Main ideas and tools in the course on ODE

1. Integral form of I.V.P. to ODEs

2. Grönwall�s inequality for showing uniqueness and continuity with respect
to data.

3. Transition mapping. Orbits of solutions, phase portrait.

4. Generalised eigenspaces of matrices. Basis of generalized eigenvectors.

5. Jordan form of matrices. Functions of matrices, in particular exponent
and logarithm.

6. Transition matrix. Chapmen-Kolmogorov relations.

7. Monodromy matrix. Floquet theory for periodic linear systems.

8. Stability and instability of equilibrium points.

9. Linearization and Grobman - Hartman theorem. (i¤ Re(�) 6= 0)

10. Lyapunov functions (for stability, instability, and for �nding positively
invariant sets).

11. ! - limit sets. LaSalle�s invariance principle for hunting ! - limit sets
"living" in V �1f (0).

12. Idea of solving integral equations by iterations (Banach�s contraction prini-
ple).

Examples of typical problems

Example on an application of Jordan matrix

For one particular solution of the system dx(t)
dt = Ax(t) with a real matrix A;

the �rst component has the form x1 = t
2 + t sin (t) :

1. Which smallest size can the real matrix A have? (4p)

Solution.

The term t sin(t) in the solution is a sign that the Jordan form of the
matrix A has a Jordan block corresponding to the eigenvalue �1 = i

that has multiplicity at least 2, for example
�
i 1
0 i

�
or multiplicity 3 :24 i 1 0

0 i 1
0 0 i

35 etc. On the other hand te matrix A is real and therefore it�s
characteristic plolynomial has real coe¢ cients and therefore all complex
eigenvalues must appear as conjugate pairs: the matrix A must have the
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eigenvalue �2 = �i havingthe same multiplicity as �1, at least 2 and with
corresponding Jordan block

�
�i 1
0 �i

�
.

The presence of the term t2 in one component of a solution shows that
the matrix A must have the eigenvalue � = 0 with multiplicity at least 3

with correspoding Jordan block

24 0 1 0
0 0 1
0 0 0

35.
All these observations imply that the real matrix A must have dimensions
at least 7� 7, because the sum of dimensions of sizes of Jordan blocks is
at least 2 + 2 + 3 = 7.�

Example of transition mapping.

Example 4.33 of a transition map.
G = R; f : G! R; f(x) = x2; for � = 0; x(t) � 0:
Initial data x(0) = �

dx

dt
= x2;

Z
dx

x2
=

Z
dt;

� 1
x

= t+ C

� 1
x

= t� 1
�
; � 1

x
=
t� � 1
�

x(t) =
�

(1� t�)

The maximal interval for � = 0; x(t) � 0: is I� = R
The maximal interval for � > 0, I� = (�1; 1=�):
The maximal interval for � < 0, I� = (1=�;1)

'(t; �) =
�

(1� t�) ; D(') = f(t; �) 2 R� R; t� < 1g

The domain D of ' is an open set. The function '(t; �) is continuous and even
locally Lipschitz:
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Example of a transition mapping and maximal solutions ( a bit
more complicated).
1) Solve the initial value problem

_x = t x3; x (1) = �

and �nd maximal intervals for solutions. Give a sketch of the domain for the
transfer mapping '(t; 1; �)=x(t) in the (t; x) plane.
2) Can one conclude which maximal interval have solutions to the similar

equation
_x = t3x

without solving it?
Solution.
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1) It is the equation with separable variables.

dx

dt
= tx3; x (1) = �Z

dx

x3
=

Z
tdt

�1
2x2

=
t2

2
� C

C =
t2

2
+

1

2x2
; C =

1

2
+

1

2�2
=
1 + �2

2�2

�1
2x2

=
t2

2
� 1 + �

2

2�2

�1
2x2

=
�2t2

2�2
� 1 + �

2

2�2
=
�2t2 �

�
1 + �2

�
2�2

x2 =
�2�

1 + �2
�
� �2t2

=
1�

1 + �2
�
=
�
�2
�
� t2

x =

s
1�

1 + �2
�
=
�
�2
�
� t2

;
�
1 + �2

�
=
�
�2
�
� t2 > 0; � > 0

x = �
s

1�
1 + �2

�
=
�
�2
�
� t2

;
�
1 + �2

�
=
�
�2
�
� t2 > 0; � < 0

x � 0; � = 0; �equilibrium; t 2 R�
1 + �2

�
=
�
�2
�
> t2; t 2

�
�
q�
1 + �2

�
=
�
�2
�
;
q�
1 + �2

�
=
�
�2
��
OPEN !!!

1. The maximal intervals for these solutions are open in accordance with the
general theory. One solution x � 0 is de�ned on the whole R. We draw
boundaries of the domain for '(t; 1; �).
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Example of an equation with "eternal" solutions.
The equation _x = t3x is de�ned on R�R and the right hand side satis�es

on any compact time interval [�R;R] , R > 0 the estimate
��t3x�� � R3(1 + jxj)

where the right hand side rises linearly with respect to jxj : It implies that the
maximal existence interval for all solutions to this equation is R.

Estimating Lyapunov functions V and
their derivatives Vf = rV � f along trajectories.

Investigation of the sign of functions V and Vf = rV � f.

Choosing a Lyapunov�s function for stability analysis: it must be positive
de�nite: V (0) = 0; V (x) > 0, x 6= 0.
This property lets to use some of the level sets also as boundaries for 1) posi-

tively invariant sets and 2) regions (or domains) of attraction for asymptotycally
stable equilibrium points.
(For instability analysis it is enough to �nd a test function V such tat it is

positive arbitrarily close to the equilibrium point in the origin, for example on
a line through the origin or in a cone with the vertex in the origin).
The second step in �nding Lyapunovs functions is consideration of the sign

of the function Vf (x) = rV � f(x). This �nction gives the rate of change for
V (x) trajectories x(t) of the di¤erential equation x0 = f(x) without solving the
equation, because d

dtV (x(t)) = rV � f(x(t)).

The choice of test functions
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1. The simplest choice of a test function V for using in Lyapunovs
theorems is V (x; y) = x2+y2 having level sets being circles around the origin. It
is often our �rst choice. Sometimes test functions like V (x; y) = ax2+ bxy+ cy2

with inde�nite terms xy can be convenient if they are positive de�nite.

2. Test functions as a sum of kinetic and potential energy.One
dimensional Newton equation. First integrals
For systems in the form

x0 = y;

y0 = �ay � g(x)

de�ned for all (x; y) 2 R2 equivalent to the Newton equation

x00 = �ax0 � g(x);

with potential force �g(x) it is natural and optimal to choose a test function as
a sum of the kinetic energy 1

2y
2 and G(x) =

R x
0
g(s)ds:

V (x; y) =
1

2
y2 +

Z x

0

g(s)ds

If the force is an odd function such that xg(x) > 0; x 6= 0; and g(0) = 0 this
test function V (x; y) will be positive de�nite in some region around the origin.
The derivative Vf of V along trajectories for the friction force equal to �ay,

a > 0

(rV � f) (x; y) =

�
@

@x
V

�
f1 +

�
@

@y
V

�
f2

= g(x)y + x (�g(x))� ay2 = �ay2 � 0

The Lyapunov stability theorem would imply that the origin is a stable equilib-
rium point. Depending on how the potential G(x) =

R x
0
g(s)ds behaves and on

the position of other equilibrium points (zeroes of the function g(x)), one can
�nd a region of attraction bounded by a level set of V that includes only one
equilibrium point.
One can use the same idea in the case when the friction force in the equation

above has the form: �a�(y) with �(y)y > 0;
2. Test functions as a higher order polynomial arbitrary even

powers and with arbitrary coe¢ cients.
A �exible choice of a test function V (x; y) can be

V (x; y) = axm + byn

with arbitrarty exponents m;n and arbitrary coe¢ cients a; b > 0 that are
chosen after the calculation of Vf (x; y) so that Vf (x; y) � 0 or Vf (x; y) � 0 for
(x; y) 6= (0; 0).
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Example: V (x; y) = x2 + xy + 2y2 . Level sets of such a test function will
be ellipses with the axis rotated with respect to the coordinate system. The
Cauchy inequality

jxyj � 1

2

�
x2 + y2

�
helps to show that this test function is positie de�nite.
A more general Young inequality

jabj � ap

p
+
bq

q
;

1

p
+
1

q
= 1; p; q > 1

can be useful for investigating polynomials of higher degree in f :

This property V (x) > 0, x 6= 0, V (0) = 0 is a condition in the theorem by
Lyapunov on stability. It implies i particular that level sets of V close to the
origin are closed curves.

Analysis of Vf

We like to have Vf = rV � f(x) negative de�nite Vf (x) < 0 or at least
rV � f(x) � 0 for x 6= 0.
Here f is the right hand side ("velocity" ) in the di¤erential equation of

interest: x0 = f(x): It makes d
dt (x(t)) = rV � f(x(t))� showing how the test

function V changes along trajectories x(t).

Analysis of V �1f (0)

After calculating Vf (x) we check the set V
�1
f (0) where V (x) = 0: Why it is

interesting?
The La Salle�s invariance principle states that all ! - limit sets of trajectories

x(t) inside the domain where rV � f(x) � 0 is valid belong to the set V �1f (0)
and they belong even to a smaller part of it that is the maximal invariant subset
in V �1f (0):
How to apply La Salle�s invariance principle ?
i) The set V �1f (0) is easy to identify, as a set of zeroes to Vf (in plane in

most of our examples). It is usually one or both coordinate axes.
ii) The maximal invariant set inside V �1f (0) (in the plane it will be a set of

curves) is easy to check invariant sets just by looking on velocities (values of
f(x; y)) on the set V �1f (0) and checking if they go along curves forming V �1f (0)
or they go across.
It implies in particular that if in addition to the inequality rV �f(x)

� 0 the set V �1f (0) includes only an invariant set consisting of the
origin, then, the origin is asymptotically stable equilibrium.
Example.

Consider the following system of ODE:
�
x0 = �x� 2y + xy2
y0 = 3x� 3y + y3 .

Show asymptotic stability of the equilibrium point in the origin and �nd the
region of attraction for that.
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Hint: applying Lyapunovs theorem, use the elementary inequality

jxyj � 1

2

�
x2 + y2

�
to estimate possible inde�nite terms with xy in the expression for Vf (x; y):

Solution. Choose a test function V (x; y) = 1
2

�
x2 + y2

�
Vf = rV �f = x(�x�2y+xy2)+y

�
3x� 3y + y3

�
= xy�x2�3y2+y4+x2y2

= �x2
�
1� y2

�
�y2

�
3� y2

�
+ xy
indefinite_term!

� �x2
�
1� y2

�
�y2

�
3� y2

�
+

0:5x2 + 0:5y2

We apply the inequality 2xy �
�
x2 + y2

�
to the last term and collecting

terms with x2 and y2 arrive to the estimate
Vf � �x2

�
0:5� y2

�
� y2

�
2:5� y2

�
It implies that Vf < 0 for (x; y) 6= (0; 0) and jyj < 1=

p
2.Therefore the Lya-

punof function V is "strong" and therefore the origin is asymptotically stable.
The region of attraction is bounded by the largest levle set of V - a circle

having the center in the origin that �ts to the domain jyj < 1=
p
2, namely the

circle:
�
x2 + y2

�
< 1=2.

The second idea for choosing Lyapunov functions is choice of V of
polynomilas with arbitrary even powers and arbitrary coe¢ cients.
Another more clever choice of a test function as

V (x; y) = axm + byn

in particular V (x; y) = 3x2 + 2y2 works in this particular case:
Vf = 6x(�x�2y+xy2)+4y(3x�3y+y3) = 4y4�12y2�6x2+6x2y2 = �4y2�

3� y2
�
� 6x2

�
1� y2

�
< 0

for jyj < 1, therefore the ellipse 3x2+2y2 < 2 that �ts into the stripe jyj < 1
in the plane is a region of attraction for the asymptotically stable equilibrium
in the origin.
One can also observe the asymptotic stability of the origin here by lineariza-

tion with variational matrix

A =

�
�1 �2
3 �3

�
, with characteristic polynomial: �2 + 4� + 9 = 0, and

calculating eigenvalues: �i
p
5 � 2; i

p
5 � 2 with Re� < 0. But linearization

gives no information about the domain of attraction.

Application of Poincare - Bendixson theorem

The generalized Poincare-Bendixson�s theorem gives a complete
description of possible types of ! - limit sets in the plane R2:
Theorem (generalized Poincare-Bendixson)
Let M be an open subset of R2 and f : M ! R2 and f 2 C1. Fix � 2 M

and suppose that the closure of 
(�) 6= ;, is compact, connected and contains
only �nitely many equilibrium points.
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In practice it is enough and is much easier to �nd a compact positively
invariant set K �M such that � 2 K.
Then one of the following cases holds:
(i) 
(�) is an equilibrium point
(ii) 
(�) is a periodic orbit
(iii) 
(�) consists of �nitely many �xed points fxjgand non-closed orbits 


such that ! and � - limit points of 
 belong to fxjg.

Poincare - Bendixson theorem and
testing the absence of equilibrium points in a positive

invariant set.

We try to �nd an ring shaped compact set that is positively invariant and
need to check three conditions:
i) The outer boundary of the ring (using a level set of a test function, or a

polygon shaped domain testing velosities on each segment of it�s boundary)
ii) The inner boundary of the ring (using a level set of a test function, or

linearization for identifying a repeller inside a large postively invariant set by
applying the Grobman - Hartman theorem)
iii) Show that the found compact positively invariant ring shaped set includes

no equilibrium points. (this condition is often missed by students)

1. Consider the following system of ODEs.
�
x0 = y
y0 = �x� y

�
ln
�
x2 + 4y2

�� :

Show that this system has a non-trivial periodic solution. (4p)

Point out that the origin is outside the domain of the equation.

Solution.

Consider the test function E(x; y) = 1
2

�
x2 + y2

�
d
dtE(x(t); y(t)) = Ef (x; y) = rE�f(x; y) =

�
x
y

� �
y
�x� y

�
ln
�
x2 + 4y2

�� � =
�y2

�
ln
�
x2 + 4y2

��� � 0 0 < x2 + 4y2 < 1
� 0 x2 + 4y2 > 1

The boundary curve separating domains with di¤erent signs of x2+4y2 = 1
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is the ellipse with halv axes 1 and 1=2 i the x - direction with center in
the origin.

Therefore any circle with the center in the origin inside this ellipse is never
entered by a trajectory.

Similarly any circle with the center in the origin outside this ellipse is
never left by a trajectory.

Such two circles build an annulus that is a compact positively invariant
set for this system of ODEs.

For example an annulus 1=4 � x2 + y2 � 1 satis�es this conditions.
This annulus contains no equilibrium points, because the origin is the
only equilibrium point. Therefore by the Poincare - Bendixson theorem
this annulus must contain at least one periodic orbit.�

Example. Show that the following system of ODEs has a periodic solution.�
x0 = x� 2y � x

�
2x2 + y2

�
y0 = 4x+ y � y

�
2x2 + y2

� (4p)

Solution. Consider the following test function: V (x; y) = 2x2 + y2. Denot-
ing the right hand side in the equation by vectorfunction F (x; y) we conclude
that
Vf = rV � f = 4x2 � 8xy � 4x2

�
2x2 + y2

�
+ 8xy + 2y2 � 2y2(2x2 + y) =

2
�
1� (2x2 + y2)

�
(2x2 + y2):

It implies that the elliptic shaped ring: R =
�
(x; y) : 0:5 � (2x2 + y) � 2

	
is a positive invariant compact set for the ODE, because velocity vectors are
directed inside of this ring both on it�s outer and inner boundaries ( rV �F < 0
for (2x2 + y) = 2 and rV � F > 0 for (2x2 + y) = 0:5.

The origin is the only equilibrium point of the system. It is not so easy
to see from the system of equations itself. But one can see it easier by
cheching �rst zeroes of Vf (x; y) that is a scalar function and evidently must be
zero in all equilibrium points..

10



We observe that V (x; y) = 2x2 + y2 is positive de�nite and rV � f(x; y) = 0
only if (x; y) = (0; 0) or if (2x2+y2) = 1:But it is easy to see from the expression
for the right hand side for the ODE that in the last case (x; y) cannot be
equilibrium point because the right hand side becomes linear with nondegenerate
matrix and is zero only in the origin (x; y) = (0; 0). The equation for equilibrium
points on the level set (2x2 + y2) = 1 is the following:�

0 = x� 2y � x = �2y
0 = 4x+ y � y = 4x

By the Poincare-Bendixson theorem the positively invariant set R not in-
cluding any equilibrium point must include at least one orbit of a periodic
solution.�

Problem on ! - limit sets(January 2020)

Consider the following system of ODEs.
�
x0 = y
y0 = x� x3 � ay

�
y2 � x2 + 1

2x
4
�
; a > 0

:

1. Find all systems equilibrium points. Show using the test function H =
1
2

�
y2 � x2 + 1

2x
4
�
and La Salle�s invariance principle, that the level set

H(x; y) = 0 includes ! - limit sets of this system for all points in the
plane except a �nite number. Sketch these ! - limit sets. (4p)

Solution.

The system has three equilibrium points, all on the x�axis: (�1; 0), (0; 0),
(1; 0). The level set H(x; y) = 1

2

�
y2 � x2 + 1

2x
4
�
= 0 has the shape of 1

with the center in the origin. One can see it by expressing y in terms of
x:

y = � jxj
r
1� 1

2
x2

The 1 �gure is symmetric with respect to x - axis and cuts it in points
�
p
2. The formula above implies that H(x; y) > 0 outside of the1 �gure,

and H(x; y) < 0 inside of the 1 �gure.
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We calculate how the H function changes along trajectories.

Hf (x; y) =
d

dt
H(x(t); y(t)) =

�
�x+ x3

y

�
�
�
y
x� x3 � ay

�
y2 � x2 + 1

2x
4
� � =

�xy + x3y + xy � x3y| {z }
=0

� ay2
�
y2 � x2 + 1

2
x4
�

| {z }
H(x;y)

We point out that d
dtH(x(t); y(t)) = 0 on the level set H(x; y) = 0 (the1

�gure) and on the x - axis. It means that trajectories are tangential to the
level setH(x; y) = 0. Therefore1 - �gure is an invariant set for the system
and consists of three orbits: the equilibrium in the origin (that is a saddle
point, easily seen by linerization) and two closed branches of the 1 �gure

correspoding to x > 0 and x < 0 in the expression y = � jxj
q
1� 1

2x
2.

Hf (x; y) =
d
dtH(x(t); y(t)) < 0 outside of the 1 �gure and not on the x -

axis where d
dtH(x(t); y(t)) = 0:

Hf (x; y) =
d
dtH(x(t); y(t)) > 0 inside of the 1 �gure and not on the x -

axis where d
dtH(x(t); y(t)) = 0:

By La Salle�s invariance principle all trajectories are attracted to the
largest invariat set inside the set H�1

f (0);were Hf (x; y) = 0: This set
consists of the union of the 1 �gure and the x - axis. There are no in-
variant sets on the x - axis except three equilibrium points (�1; 0), (0; 0),
(1; 0).

It implies that for all points in the plain except equilibrium points, and
points on the1 �gure, H(x(t); y(t)) tends to zero along trajectories. The
! - limit sets for these points consist of one of the branches of the1 �gure
(for points inside it) or of the whole 1 �gure - for points outside it. The
origin is the ! - limit set for all points on the1 �gure. Equilibrium points
are ! - limit sets of themselfs

Problem on stability of equilibrium points
and on domains of attraction.

Consider the following system of ODEs.
�
x0 = 1� xy
y0 = x� y3

Find all equilibrium points and investigate their stability. Find domains of
attraction for possible asymptotically stable equilibrium points. (4p)
Solution.
Equilibrium points are (1; 1) and (�1;�1) can be found by substitution.

x = y3, 1 = xy = y4.

Jacoby matrix of the right hand side is J(x; y) =
�
�y �x
1 �3y2

�
; J(1; 1) =�

�1 �1
1 �3

�
; J(�1;�1) =

�
1 1
1 �3

�
. det (J(1; 1)) = 4, tr(J(1; 1)) = �4.

Therefore the equilibrium point (1; 1) is asymptotically stable.
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det (J(�1;�1)) = �4. Therefore the linearized around (�1;�1) system has
a saddle point and the equilibrium point (�1;�1) is unstable.
We shift the origin of the coordinate system into the point (1; 1) by intro-

ducing new variables u = x� 1; v = y � 1 and x = u+ 1, y = v + 1.�
u0 = �u� v � uv
v0 = u� 3v � 3v2 � v3

Consider a test function E(u; v) = 1
2

�
u2 + v2

�
d

dt
E(u(t); v(t)) =

�
u
v

�
�
�
�u� v � uv
u� 3v � 3v2 � v3

�
=

= �u2 � uv � u2v + uv � 3v2 � 3v3 � v4 =
= �u2 (1� v)� 3v2(1 + v + v2)| {z }

>0

< 0

if v < 1; (u; v) 6= (0; 0)

The largest circle in (u; v) plane satisfying the condition v � 1 has radius
1. Therefore the circle of radius 1 around the equilibrium point (1; 1) is the do-
main of attraction for the asymptotically stable equilibrium (1; 1) of the original
system of ODEs.�
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