
Chaos 27, 121102 (2017); https://doi.org/10.1063/1.5010300 27, 121102

© 2017 Author(s).

Using machine learning to replicate chaotic
attractors and calculate Lyapunov exponents
from data
Cite as: Chaos 27, 121102 (2017); https://doi.org/10.1063/1.5010300
Submitted: 24 October 2017 . Accepted: 19 November 2017 . Published Online: 06 December 2017

 Jaideep Pathak,  Zhixin Lu, Brian R. Hunt, Michelle Girvan, and Edward Ott

ARTICLES YOU MAY BE INTERESTED IN

Good and bad predictions: Assessing and improving the replication of chaotic attractors by
means of reservoir computing
Chaos: An Interdisciplinary Journal of Nonlinear Science 29, 103143 (2019); https://
doi.org/10.1063/1.5118725

Introduction to Focus Issue: When machine learning meets complex systems: Networks,
chaos, and nonlinear dynamics
Chaos: An Interdisciplinary Journal of Nonlinear Science 30, 063151 (2020); https://
doi.org/10.1063/5.0016505

Synchronization of chaotic systems
Chaos: An Interdisciplinary Journal of Nonlinear Science 25, 097611 (2015); https://
doi.org/10.1063/1.4917383

https://images.scitation.org/redirect.spark?MID=176720&plid=1398160&setID=379030&channelID=0&CID=495576&banID=520306874&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=c2b4158cdc518133878f7349ab9b6b7de9c25ed7&location=
https://doi.org/10.1063/1.5010300
https://doi.org/10.1063/1.5010300
http://orcid.org/0000-0002-3095-0256
https://aip.scitation.org/author/Pathak%2C+Jaideep
http://orcid.org/0000-0001-9067-7821
https://aip.scitation.org/author/Lu%2C+Zhixin
https://aip.scitation.org/author/Hunt%2C+Brian+R
https://aip.scitation.org/author/Girvan%2C+Michelle
https://aip.scitation.org/author/Ott%2C+Edward
https://doi.org/10.1063/1.5010300
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5010300
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.5010300&domain=aip.scitation.org&date_stamp=2017-12-06
https://aip.scitation.org/doi/10.1063/1.5118725
https://aip.scitation.org/doi/10.1063/1.5118725
https://doi.org/10.1063/1.5118725
https://doi.org/10.1063/1.5118725
https://aip.scitation.org/doi/10.1063/5.0016505
https://aip.scitation.org/doi/10.1063/5.0016505
https://doi.org/10.1063/5.0016505
https://doi.org/10.1063/5.0016505
https://aip.scitation.org/doi/10.1063/1.4917383
https://doi.org/10.1063/1.4917383
https://doi.org/10.1063/1.4917383


Using machine learning to replicate chaotic attractors and calculate
Lyapunov exponents from data

Jaideep Pathak,1,2 Zhixin Lu,1,3 Brian R. Hunt,3,4 Michelle Girvan,1,2,3,5 and Edward Ott1,2,6

1Institute for Research in Electronics and Applied Physics, University of Maryland, College Park,
Maryland 20742, USA
2Department of Physics, University of Maryland, College Park, Maryland 20742, USA
3Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
4Department of Mathematics, University of Maryland, College Park, Maryland 20742, USA
5London Mathematical Laboratory, 14 Buckingham Street, London WC2N 6DF, United Kingdom
6Department of Electrical and Computer Engineering, University of Maryland, Maryland 20742, USA

(Received 24 October 2017; accepted 19 November 2017; published online 6 December 2017)

We use recent advances in the machine learning area known as “reservoir computing” to formulate

a method for model-free estimation from data of the Lyapunov exponents of a chaotic process. The

technique uses a limited time series of measurements as input to a high-dimensional dynamical sys-

tem called a “reservoir.” After the reservoir’s response to the data is recorded, linear regression is

used to learn a large set of parameters, called the “output weights.” The learned output weights are

then used to form a modified autonomous reservoir designed to be capable of producing an arbi-
trarily long time series whose ergodic properties approximate those of the input signal. When suc-

cessful, we say that the autonomous reservoir reproduces the attractor’s “climate.” Since the

reservoir equations and output weights are known, we can compute the derivatives needed to deter-

mine the Lyapunov exponents of the autonomous reservoir, which we then use as estimates of the

Lyapunov exponents for the original input generating system. We illustrate the effectiveness of our

technique with two examples, the Lorenz system and the Kuramoto-Sivashinsky (KS) equation. In

the case of the KS equation, we note that the high dimensional nature of the system and the large

number of Lyapunov exponents yield a challenging test of our method, which we find the method

successfully passes. Published by AIP Publishing. https://doi.org/10.1063/1.5010300

There have been notable recent advances in machine

learning that have proven useful for tasks ranging from

speech recognition1,2 to playing of the game Go at a level

surpassing the best humans.3 In this paper, we build a

machine learning model of a chaotic dynamical system

using the neural computing framework known as reser-

voir computing.
4

We show that such a model can be used

to deduce the most important quantifiers of the system’s

chaotic behavior, namely, its Lyapunov exponents, using

only limited time series measurements of the system. We

envision that such artificial intelligence based models

could be used to accurately capture the complex dynam-

ics of many geophysical, ecological, biological, or eco-

nomic systems that are often difficult to model from first

principles.

I. INTRODUCTION

We consider the frequently occurring situation in which

limited duration time series data from some dynamical pro-

cess is available, but a first-principles-based model of how

that data is produced is either unavailable or too inaccurate to

be useful. Thus, if one is interested in diagnosing the ergodic

properties of the underlying processes producing the data, one

is restricted to do so based only on the data itself. We call

such a method “model-free.” Model-free analysis of dynami-

cal time series is a long-standing subject of study in nonlinear

dynamics.5–7 Perhaps, the most wide-spread approach uses

delay-coordinate embedding.5–13 In this article, we discuss a

very promising, entirely different approach to model-free

analysis of dynamical time series. Our approach is based upon

recent significant advances in the area known as machine
learning. In particular, we will apply a type of machine learn-

ing known as reservoir computing,4 and, for definiteness, we

focus on the problem of determining the Lyapunov exponents

of the data-generating system. For this application, the key

ability we require from machine learning is to replicate the

ergodic properties of the system generating the input, and we

call this replicating the “climate.”

The rest of this article is organized as follows: Section II

reviews reservoir computing and its use for short-term pre-

diction of chaotic time series; Sec. III illustrates our method

using the well-known Lorenz 1963 model,14 and discusses

the ability of reservoir computers to replicate the (long-term)

climate; Sec. IV uses our approach to evaluate the Lyapunov

exponents of the Kuramoto-Sivashinsky (KS) equation15–17

with periodic boundary conditions. This system provides an

example of extensive spatiotemporal chaos,18–21 for which

the attractor dimension and number of positive Lyapunov

exponents increases linearly with the periodicity length L. In

particular, Sec. IV considers cases with many positive

Lyapunov exponents. The paper concludes with further dis-

cussion in Sec. V.

The main conclusion of this paper is that our machine

learning approach offers a very attractive model-free method
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for obtaining Lyapunov exponents from data. Particularly

notable are our results from Sec. IV where we obtain excel-

lent agreement for all of the positive Lyapunov exponents

and many of the negative exponents for a moderately high-

dimensional system. In comparison with delay coordinate

embedding, we remark that our method appears to be simpler

to implement, and does not appear to suffer from the prob-

lem of yielding spurious positive Lyapunov exponents22,23

(these papers and references therein discuss a mechanism

responsible for spurious positive Lyapunov exponents in

delay coordinate embedding; this mechanism is inherently

absent in our method). More broadly, our paper suggests that

machine learning is useful for analysis of data from chaotic

systems (e.g., previous work has treated model-free machine

learning for prediction of future evolution of the states of a

dynamical system24 and for inference of unmeasured dynam-

ical variables25).

II. RESERVOIR COMPUTERS, SHORT TERM
PREDICTION, AND ATTRACTOR CLIMATE

Reservoir computers4 originate from an idea indepen-

dently put forth about 16 years ago in two papers.26,27 The

general approach is illustrated in Fig. 1(a), which shows an

input vector uðtÞ fed into a “reservoir” [labeled R in Fig.

1(a)] through an input-to-reservoir coupler (labeled I/R),

with an output vector v coupled from the reservoir through

an output coupler (labeled R/O). We regard the couplers as

acting instantaneously and without memory (i.e., their output

depends solely on their current input). Importantly, the reser-

voir has memory (i.e., it has internal dynamics so its state

depends on its history). We assume that it receives input at

discrete times t, and that its input WinuðtÞ is combined with

the reservoir state rðtÞ to produce its output rðtþ DtÞ. In

general, the reservoir is an appropriate complex dynamical

system; here, we follow Refs. 26 and 27, and consider the

reservoir to be a large random network with Dr nodes and an

Dr � Dr adjacency matrix A. Specifically, we will hence-

forth consider the particular implementation (similar to Ref.

24) of Fig. 1(a) given by

rðtþ DtÞ ¼ tanh ArðtÞ þWinuðtÞ½ �; (1)

vðtþ DtÞ ¼Woutðrðtþ DtÞ;PÞ; (2)

where rðtÞ represents the scalar states riðtÞ of the Dr network

reservoir nodes, r ¼ ½r1; r2;…; rDr
�T; in Eq. (1), Win is a

Dr � D matrix, where D is the dimension of u; also, in Eq.

(1), for a vector q ¼ ðq1; q2;…ÞT the quantity tanhðqÞ is the

vector ðtanhðq1Þ; tanhðq2Þ;…ÞT . In Eq. (2), Wout maps the

Dr dimensional vector r to the output v, which, for the situa-

tions considered in this article, has the same dimension D as

u. In addition, we assume that Wout depends on a large num-

ber of adjustable parameters given by the elements of the

matrix P, and that Woutðr;PÞ depends linearly on P (e.g., in

the past work the choice Woutðr;PÞ ¼ Pr has often been

used).

In general, the goal of the system in Fig. 1(a) is for the

outputs vðtÞ to approximate the desired outputs, vdðtÞ, appro-

priate to the inputs uðtÞ (e.g., in a pattern recognition task

uðtÞ might represent a sequence of patterns, and vdðtÞ would

represent classifications the patterns). To this end, during a

training period, �T � t � 0, an input uðtÞ is fed into the res-

ervoir and the resulting reservoir state evolution rðtÞ, along

with uðtÞ, are recorded and stored as “training data.” Then,

the parameters P are chosen (“trained”) so as to approxi-

mately minimize the mean squared difference between vðtÞ
and its desired value vdðtÞ. As is common in reservoir com-

puting, we use the Tikhonov regularized regression proce-

dure28 to find an output matrix P, that minimizes the

following function:

X
�T�t�0

jjWoutðrðtÞ;PÞ � vdðtÞjj2 þ bjjPjj2; (3)

where jjPjj2 denotes the sum of the squares of elements of P.

The regularization constant b > 0 discourages overfitting by

penalizing large values of the fitting parameters (in Sec. IV,

we used a value b > 0, but for Sec. III we found that using b
¼ 0 was sufficient). For a given task, one hopes that for large

enough Dr and T, the system in Fig. 1(a) will yield subse-

quent (t> 0) outputs vðtÞ that closely approximate the

desired vdðtÞ. Because Woutðr;PÞ is taken to be linear in P,

the problem of determining the parameters P that minimize

Eq. (3) is one of linear regression for which there are well-

established techniques.29 This approach has been shown to

work extremely well for a wide variety of tasks.4

We now consider the task of prediction for the case,

where uðtÞ depends on the state of some deterministic

dynamical system. This problem was originally considered

in the reservoir computer framework by Jaeger and Haas.24

The idea is to take the desired output to be the same as the

input, vdðtþ DtÞ ¼ uðtþ DtÞ. When one wishes to com-

mence prediction at t¼ 0, the configuration is switched from

that in Fig. 1(a) to that in Fig. 1(b), and the reservoir system

is run autonomously according to the following equation:

rðtþ DtÞ ¼ tanh ArðtÞ þWinWoutðrðtÞ;PÞ½ �: (4)

The output of the autonomous reservoir, vðtÞ ¼Wout ðrðtÞ;PÞ,
gives the predicted value uðtÞ for t> 0. Jaeger and Haas,24 using

the example of the Lorenz system,14 indeed verified that this

prediction scheme works and gives good short term predictions.

As expected, the chaotic amplification of small errors leads to

FIG. 1. (a) Configuration of the reservoir in the training phase corresponding

to Eqs. (1) and (2). (b) Reservoir configuration in the prediction phase corre-

sponding to Eq. (4). I/R and R/O denote the input-to-reservoir and reservoir-

to-output couplers, respectively. R denotes the reservoir.
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eventual breakdown of the prediction, limiting the prediction

time. However, as shown in Secs. III and IV, following this

breakdown of short-term prediction, the evolution of vðtÞ often

provides an accurate approximation for the climate correspond-

ing to uðtÞ, and can be used in particular, to compute Lyapunov

exponents of the process that generated uðtÞ.

III. CLIMATE REPLICATION IN THE LORENZ SYSTEM

In this section, we illustrate the capability of our tech-

nique to replicate the “climate” of the Lorenz 1963 system14

_x ¼ 10ðy� xÞ;
_y ¼ xð28� zÞ � y;

_z ¼ xy� 8z=3:

(5)

We construct and train reservoir computers with input

u ¼ ðx; y; zÞT 2 R3 and output v 2 R3, following Sec. II.

The reservoir network is built from a sparse random Erd}os-

R�enyi network whose average degree is d¼ 6. Each non-

zero element in the adjacency matrix is drawn independently

and uniformly from ½�a; a�, and a> 0 is adjusted so that the

spectral radius of A (the largest magnitude of its eigenval-

ues) has a desired value q. During the training phase, �T
� t � 0 (where T¼ 100), the reservoir computer evolves fol-

lowing equation (1) with Dt ¼ 0:02. In this Lorenz example,

the reservoir output vðtÞ ¼WoutðrðtÞ;PÞ is defined as

vðtÞ ¼
v1ðtÞ
v2ðtÞ
v3ðtÞ

2
664

3
775 ¼

p1rðtÞ
p2rðtÞ
p3~rðtÞ

2
664

3
775; (6)

where p1; p2, and p3 are the rows of the 3� Dr matrix P.

The quantity ~r in the third line of Eq. (6) is defined in a way

such that the first half of its elements are the same as that of

r, i.e., ~ri ¼ ri for half (Dr=2) of the reservoir nodes, while

~ri ¼ r2
i for the remaining half of the reservoir node (our use

here of ~rðtÞ, rather than rðtÞ, to predict z(t) is related to the

x! �x; y! �y symmetry of the Lorenz equations as dis-

cussed in Ref. 25).

After we compute rðtÞ for the training period,

�T � t � 0, we calculate the output weight parameters P

that minimize the function in Eq. (3) with the desired output

being the state variables from the Lorenz system, vdðtÞ
¼ ½xðtÞ; yðtÞ; zðtÞ�T (in an actual physical experiment, we

assume uðtÞ ¼ vdðtÞ to have been measured for �T � t � 0).

After we find the output weights, we evolve the reservoir

with the reconfigured reservoir system [Fig. 1(b)].

Following the above described procedure, we now

report and compare results for two simulations using reser-

voir configurations (Table I) with q ¼ 1:2 (denoted R1) and

q ¼ 1:45 (denoted R2). The prediction for 0 < t � 25 for

both trained reservoirs is shown in Fig. 2(a) (R1 with

q ¼ 1:2) and Fig. 2(b) (R2 with q ¼ 1:45). Both reservoirs

R1 and R2 generate correct short-term predictions and then

deviate from the actual Lorenz trajectories, which are

expected since any small error grows exponentially due to

the chaotic dynamics of the Lorenz system. However, after

the failure of the short-term prediction, the two reservoirs

show qualitatively different dynamical patterns. In Fig. 2(a),

it seems that, after t � 7, although the R1 prediction deviates

from the actual trajectory, the long-term dynamics appears to

resemble that of the original Lorenz system. In contrast, as

shown in Fig. 2(b), this is clearly not the case for R2.

In Fig. 3, we present a more accurate test than visual

inspection of Figs. 2(a) and 2(b) for correctness of the climate.

To do this, we follow Lorenz’s procedure of plotting the

return map of successive maxima of z(t). We first obtain z(t)
for a long period of time, 0 < t < 1000, for both the actual

and the predicted time series. We then locate all local maxima

of the actual and predicted z(t) in time order and denote them

FIG. 2. (a) The state prediction (red) of the R1 reservoir and the actual tra-

jectories (blue) of the Lorenz system for 0 < t � 25. The spectral radius of

the reservoir is 1.2. (b) The state prediction (red) of the R2 reservoir and the

actual trajectories (blue) of the Lorenz system for 0 < t � 25. The spectral

radius of the reservoir is 1.45.

FIG. 3. The return map of the actual and the predicted z-coordinate of the

Lorenz system. This plot is made with a time series of length 1000, where

the blue dots are from the actual Lorenz system, and the red dots overlaying

the blue dots are from the prediction. The left panel shows the return map of

the long term prediction of the R1 reservoir with q ¼ 1:2, while the right

panel is from the R2 reservoir with q ¼ 1:45.
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½z1; z2;…; zm�. Then, we plot consecutive pairs of those max-

ima ½zi; ziþ1� for i ¼ 1;…;m� 1 as dots in Fig. 3. The blue

dots in both panels of Fig. 3 are from the actual Lorenz sys-

tem, while the red dots printed over the blue dots are from the

reservoir output prediction (v3) of z(t). As confirmed by Fig.

3(a), the red dots produced by the R1 reservoir continue to fall

on top of the blue dots (from the actual Lorenz system)

throughout the entire run time (0 < t < 1000). In contrast,

Fig. 3(b) shows that the blue dots remain largely uncovered,

because, as indicated in the third panel of Fig. 2(b), the maxi-

mum value of z(t) for t> 5 is at a fixed point zmax � 30. Thus,

the R1 reservoir very accurately succeeds in reproducing the

long-time climate of the attractor, while the R2 reservoir does

not, and this is so even though both setups are apparently

capable of producing useful short term predictions. (We have

also obtained similar results for many other simulations.)

Thus some parameter adjustment may be necessary to avoid

unsuccessful reproduction of the climate. Fortunately, we usu-

ally find that when the climate is not reproduced it is fairly

evident [as in Fig. 2(b), as well as Fig. 5 of Sec. IV]. More

quantitatively, a promising general means of assessing

whether the reservoir system has succeeded in mimicking the

climate is to first use the training data to obtain finite-time

estimates of the system’s ergodic properties (e.g., frequency-

power spectra, time correlations, moments, etc.). Once this is

done, one can test whether those estimates are consistent with

determinations of the same quantities obtained from the long-

term reservoir dynamics. Section IV provides such an assess-

ment for the Kuramoto-Sivashinsky system.

The reservoir in the autonomous configuration of Fig.

1(b) represents a known discrete-time, Dr-dimensional

dynamical system (since we know Win; A, and the output

parameters P determined by the training). We compute the

equations for the evolution of the tangent map corresponding

to Eq. (4) and evolve a set of m mutually orthogonal tangent

vectors RðtÞ ¼ fdrjgm
j¼1 along with Eq. (4). We then com-

pute the largest m Lyapunov exponents of the reservoir

dynamical system in the configuration shown in Fig. 1(b)

using a standard algorithm based on QR decomposition (e.g.,

see Ref. 7) of the matrix RðtÞ. The two right-most columns

of Table II show the three largest Lyapunov exponents,

K1 � K2 � K3, of the reservoir system in the autonomous

configuration [Fig. 1(b)] for the R1 reservoir (for which cli-

mate reproduction succeeds), and for the R2 reservoir (for

which climate reproduction fails).

Comparing the Lyapunov exponents of the Lorenz system

(first column of Table II) with those of the R1 reservoir, we

see that the largest Lyapunov exponent of the R1 reservoir is

a good approximation to the largest Lyapunov exponent of the

Lorenz system. Also, consistent with the small value of Dt,
the reservoir dynamics approximates that of a flow for which

K2 should be (and is) approximately zero. On the other hand,

we see that the third Lyapunov exponent of the R1 system is

less negative than the negative Lyapunov exponent of the true

Lorenz system. In contrast with the good agreement of the K1

values for the Lorenz system and the R1 reservoir, the positive

Lyapunov exponent of the Lorenz system fails to be repro-

duced by the R2 system whose largest Lyapunov exponent is

approximately zero; this is consistent with the observation

from Fig. 2(b) that the long term reservoir attractor for R2

appears to be a periodic orbit.

The significant conclusion from the above is that the R1

system, as a result of successfully reproducing the climate,

can be utilized to obtain an approximation to the positive

and zero Lyapunov exponents of the process generating its

input. We note, however, that the R1 system does not accu-

rately reproduce the true negative Lyapunov exponent of the

Lorenz attractor.

The inaccurate R1 reservoir estimation of K3, noted

above, can be understood by noting that, although the return

map in Fig. 3 appears to be a curve, this apparent “curve”

must, as noted by Lorenz,14 actually have some small width.

The R1 reservoir succeeds in approximating the attractor of

the Lorenz system as reflected by its apparent good repro-

duction of the return map shown in Fig. 3(a). In order to do

this, however, the reservoir need not reproduce the very thin

transverse structure within the apparent curve. Since, this

very thin structure, as we next discuss, is the primary orbital

evidence of the value of K3, one might not expect the reser-

voir to accurately reproduce this very negative Lyapunov

exponent. Specifically, using the Kaplan-Yorke formula for

the information dimension30 of the fractal Lorenz attractor,

we obtain a dimension of ½2þ ðK1=jK3jÞ� ¼ 2:06, corre-

sponding to 1.06 for the dimension of the structure in the

return map [Fig. 3(a)]. This dimension is very close to one,

in agreement with the approximate curve-like character of

the return map. However, close examination of the return

map “curve” of the Lorenz attractor has previously shown

that, within its thickness, there is a fractal set of small trans-

verse dimension (presumably K1=jK3j ¼ 0:06). On the other

hand, the Kaplan-Yorke dimension for the return map for the

climate of the R1 reservoir attractor is about 1.09. Since the

primary orbital difference reflected by differing values of K3

is the difference in very thin structure features of the return

TABLE I. Standard reservoir parameters used for a successful climate repli-

cation of the Lorenz system (referred to in the text as the R1 reservoir). The

R2 reservoir uses the same parameters with a different spectral radius,

q ¼ 1:45.

Parameter Value Parameter Value

D r 300 d 6

T 100 Dt 0.02

T=Dt 5000 b 0

q 1.2 r 0.1

TABLE II. Three largest Lyapunov exponents K1 � K2 � K3 for the

Lorenz system [Eq. (5)], and for the reservoir set up in the configuration of

Fig. 1(b) for R1 and R2. Since the reservoir system that we employ is a dis-

crete time system, while the Lorenz system is a continuous system, for the

purpose of comparison, K1; K2, and K3 are taken to be per unit time; that is,

their reservoir values (columns 2 and 3) are equal to the reservoir Lyapunov

exponents calculated on a per iterate basis divided by Dt.

Actual Lorenz system R1 system R2 system

K1 0.91 0.90 0.01

K2 0.00 0.00 –0.1

K3 �14.6 –10.5 –9.9
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map that have only a small effect on the climate dynamics, it

is not surprising that the R1 reservoir, while giving a good

approximation to the true climate of the Lorenz system,

gives only a rough approximation of K3.

IV. DETERMINING A LARGE NUMBER OF LYAPUNOV
EXPONENTS OF A HIGH DIMENSIONAL
SPATIOTEMPORAL CHAOTIC SYSTEM FROM DATA

We now consider a modified version of the Kuramoto-

Sivashinsky (KS) system defined by the partial differential

equation for the function y(x, t)

yt ¼ �yyx � 1þ l cos
2px

k

� �� �
yxx � yxxxx (7)

in the region 0 � x < L with periodic boundary conditions,

yðx; tÞ ¼ yðxþ L; tÞ, and k chosen so that L is an integer mul-

tiple of k. This equation reduces to the standard KS equation

when l¼ 0. The cosine term makes the equation spatially

inhomogeneous. We will subsequently consider the cases

l¼ 0 and l 6¼ 0 in order to discuss the effect of the symme-

tries of the KS equation on the learning dynamics of the res-

ervoir computer.

By numerically integrating Eq. (7) on an evenly spaced

one-dimensional grid of size Q, we obtain a discretized mul-

tivariate data set of Q time series

uðtÞ ¼ yðDx; tÞ; yð2Dx; tÞ;…; yðQDx; tÞ½ �T ;
Dx ¼ L=Q:

(8)

As in the case of the Lorenz equations discussed in Sec. III,

we consider the situation where we have access to the time

series data but do not have information about the dynamical

equation that generated the time series. In the absence of a

model, we will use the data to train a reservoir computer to

emulate the behavior of the true dynamical system, in this

case Eq. (7).

The reservoir network is as described in Sec. II with

the parameters listed in Table III. In the training phase,

Fig. 1(a), we evolve the reservoir according to Eq. (1)

from t ¼ �T to t¼ 0. Next, we use Tikhonov regularized

regression [see Eq. (3)] to compute the output parameters,

P such that Woutðr;PÞ ¼ P~rðtÞ ’ uðtÞ for �T � t < 0.

Here, ~r is a Dr-dimensional vector such that the ith compo-

nent of ~r is ~ri ¼ ri for half the reservoir nodes and ~ri ¼ r2
i

for the remaining half. With the output parameters deter-

mined, we let the reservoir evolve autonomously for t> 0

as shown in Fig. 1(b) according to Eq. (4).

The predictions made by the reservoir system for t> 0

are given by, WoutðrðtÞ;PÞ. Figure 4 shows the time

evolution of one such reservoir prediction for t> 0 (middle

panel), along with the true state (top panel) of the KS equa-

tion and the deviation (bottom panel) of the reservoir predic-

tion from the true state (i.e., the difference between the top

panel and the middle panel) Note that in Fig. 4 time (the hor-

izontal axis) is in units of the Lyapunov time (K�1
1 , where K1

is the largest Lyapunov exponent of the KS attractor). We

see that the reservoir gives good short term prediction for

about 5 multiples of the Lyapunov time. A visual inspection

of Fig. 4 suggests that the reservoir prediction may have also

learned the correct “climate” of the KS system even after the

state of the reservoir dynamical system has diverged from

the true state of the KS system.

Figure 5 shows an example of an alternate scenario for

another set of the reservoir parameters (q ¼ 3:1, Dr¼ 5000

TABLE III. Reservoir parameters used for the successful replication of the

climate of the Kuramoto-Sivashinsky system shown in Fig. 4.

Parameter Value Parameter Value

Dr 9000 d 3

T 20 000 Dt 0.25

T=Dt 80 000 b 0.0001

q 0.4 r 0.5

FIG. 4. Top panel: true state, y(x, t), of the standard KS system after t¼ 0.

Middle panel: reservoir prediction. Bottom panel: difference between the

true state and the reservoir prediction. The parameters of the KS equation

are L¼ 60 and l ¼ 0. K1 denotes the largest Lyapunov exponent.

FIG. 5. Top panel: true state, y(x, t), of the standard KS system after t¼ 0.

Middle panel: reservoir prediction with a reservoir of size Dr¼ 5000 and

q ¼ 3:1. The rest of the parameters are as given in Table III. Bottom panel:

difference between the reservoir prediction and the true KS state. We see

that in this case, the reservoir gives us an accurate short term prediction (i.e.,

the “weather”) but the long term “climate” of the autonomous reservoir

dynamical system does not resemble the climate of the true KS system for

this poorly chosen set of parameters. K1 denotes the largest Lyapunov

exponent.
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with the rest of the parameters as shown in Table III). In this

case, the reservoir still predicts accurately for a short period

of time. However, the long term climate of the signal gener-

ated by the reservoir is no longer similar to that of the true

KS climate.

A more quantitative assessment of the climate reproduc-

tion can be obtained by calculating the power spectrum of

the reservoir prediction and comparing it with the power

spectrum of the training data. Figure 6 shows the power

spectrum of the training data, along with the power spectrum

of the dynamics of the autonomous reservoir system in Figs.

4 and 5. We see that the reservoir system corresponding to

Fig. 4 succeeds in reproducing the training data power spec-

trum, thus indicating that the long term system orbit reprodu-

ces the climate of the training data. On the other hand, the

power spectrum of the reservoir system corresponding to

Fig. 5 confirms our visual assessment that this reservoir sys-

tem fails to reproduce the climate of the training data.

Similar to what was done in Sec. III, we use our com-

plete knowledge of the dynamics of the reservoir computer

to evaluate its Lyapunov exponents. By independently

evaluating the Lyapunov exponents directly from the KS

equation, Eq. (7), we obtain the true Lyapunov exponents

and compare them with the corresponding Lyapunov expo-

nents of the reservoir dynamical system.

A. Homogeneous KS system (l 5 0)

Figure 7(a) shows the Lyapunov spectrum of the stan-

dard (l¼ 0) KS system with L¼ 60 (red “�” markers),

where, by definition, the subscript k is such that Kk � Kkþ1.

The Lyapunov exponents of the reservoir trained to emulate

this system are shown on the same axes (blue “þ” markers).

We observe that the positive Lyapunov exponents of the res-

ervoir system match the corresponding exponents of the KS

system very well. However, the negative exponents of the

two systems do not seem to agree with each other at the first

glance. We argue below that the standard KS system has

three zero Lyapunov exponents, and we posit that the reser-

voir is unable to reproduce two of them. Indeed, Fig. 7(b)

shows that if we remove the two of the computed exponents

closest to zero (K7 and K8) for the KS system, the negative

Lyapunov exponents of the reservoir system match those of

the KS system very well.

We show now that when l¼ 0 (as for Fig. 7), the standard

KS equation (7) has three zero Lyapunov exponents associated

with three continuous symmetries, namely time-translation

invariance, space-translation invariance, and the so-called

Gallilean invariance. Time and space translation invariance

imply that if y(x, t) is a solution, then so are yðx; tþ t0Þ and

yðxþ x0; tÞ. By Gallilean invariance, we mean that for every

solution y(x, t) of the KS equation and an arbitrary constant v,

yðx� vt; tÞ þ v is also a solution. This can be verified by direct

substitution in Eq. (7) with l ¼ 0. Replacing t0, x0, and v by

differentials (t0 ! dt0; x0 ! dx0; v! dv), we have that,

dyðx; tÞ ¼ @yðx;tÞ
@t dt0; dyðx; tÞ ¼ @yðx;tÞ

@x dx0, and dyðx; tÞ ¼ ½1� t
@yðx;tÞ
@x �dv all represent perturbations, yðx; tÞ þ dyðx; tÞ, of Eq. (7)

that are, to linear order in the differentials, solutions of Eq. (7).

That is, all three of these dyðx; tÞ are solutions of the variational

equation, dyt þ dyyx þ ydyx þ dyxx þ dyxxxx ¼ 0. Furthermore,

since the original solution y(x, t) does not decay exponentially

to zero, nor increases exponentially to infinity, we conclude

FIG. 6. Power spectrum of the KS training data (blue), of the reservoir pre-

diction with the same parameters as in Fig. 4 (red), and of the reservoir pre-

diction with parameters as in Fig. 5 (green). All power spectra have been

computed at a single spatial gridpoint from a time series of length 15 000 Dt
time steps. The power spectra are smoothed by dividing a time series into 30

intervals, computing the power spectrum of each interval and then averaging

over all the intervals.

FIG. 7. (a) Estimating the Lyapunov exponents of the homogeneous (l¼ 0) KS equation. First 26 Lyapunov exponents of the trained reservoir dynamical sys-

tem running in the autonomous prediction mode (blue “þ” markers) and the standard (i.e., l ¼ 0) KS system (red “�” markers). The parameters of Eq. (7) are

L¼ 60 and l¼ 0. (b) The same plot as (a), except, the two near-zero exponents of the KS system (K7 and K8) are removed from the spectrum. Inset: a close up

of the spectra around the zero crossing. All Lyapunov exponents in this figure and Fig. 8 were computed from a trajectory of length 10 000 Dt time steps, which

we found to be sufficiently long for convergence.
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that these three expressions for dy represent Lyapunov vectors

with zero Lyapunov exponents.

To see why the reservoir does not reproduce the

Gallilean symmetry-associated zero Lyapunov exponent in

the l¼ 0 case, notice that there is a corresponding conserved

quantity c ¼
Ð

yðx; tÞdx. A particular KS system trajectory in

phase space is thus restricted to a hypersurface with a con-

stant value of c (say, c¼ c0). Since the reservoir is trained

with data from a single trajectory, it does not learn the

dynamics of perturbations that take the trajectory off the c0

hypersurface. We are not certain why the reservoir does not

reproduce both of the other two zero exponents.

B. Inhomogeneous KS system (l50:1)

As a further example that does not have additional sym-

metries beyond time-translation, we consider (Fig. 8) a KS

equation with a nonzero value of l (L ¼ 60; k ¼ 15; l ¼ 0:1).

As before, we train the reservoir using the time series data

from the symmetry broken KS equation. After training, we run

the reservoir in the autonomous prediction mode [Fig. 1(b)]

and calculate its Lyapunov spectrum. Figure 8 shows that the

reservoir reproduces the Lyapunov spectrum of the true KS

system accurately in this case. Notably, in contrast with the

case l¼ 0, this good agreement is obtained without the need

for discarding two zero Lyapunov exponents. We continue to

use this modified KS system in the experiments described

below.

For the cases shown in Figs. 7(b) and 8, the information

dimension of the attractor, as computed from the Kaplan-

Yorke conjecture,30 is about DKY � 15 (roughly, the value of

k at which
Pk

j¼1 Kj first becomes negative). We see from

Figs. 7(b) and 8 that the reservoir continues to give reason-

able estimates of Kk even for k > DKY . This was somewhat

surprising to us, especially in view of the inaccurate reser-

voir estimate of K3 in Sec. III.

C. Effect of measurement noise

We now consider the effect of additive measurement

noise on our Lyapunov exponent calculation scheme. We

simulate measurement noise by adding a random vector nðtÞ

to the training data set uðtÞ for all values of t. That is, at

every time step Dt, we replace u in Eq. (1) by uþ n, and we

replace vd ¼ u used in Eq. (3) by vd ¼ uþ n. The scalar ele-

ments njðtÞ of the vector nðtÞ, for each value of j and t, are

independent, identically distributed uniform random varia-

bles in the interval ½�a; a�. The constant a is chosen so that

the RMS value of the noise is f times the RMS value of the

noise-free signal uðtÞ. Figure 9(a) shows the noise-free time

series at a single grid point, while Figs. 9(b) and 9(c) show

the same time series with added noise of strength f¼ 0.05

and f¼ 0.2, respectively. We calculate the Lyapunov expo-

nents of the reservoir as described above. Figure 10 shows

the Lyapunov spectrum when the noise level f is varied from

0.05 to 0.20 along with the true Lyapunov spectrum of the

KS equation. We see that the reservoir results for the positive

Lyapunov exponents are quite robust to noise for f � 0:2,

but that the negative exponents are increasingly depressed to

more negative values as f increases.

D. Effect of training data length

We find that the amount of data used to train the reser-

voir computer can significantly affect the accuracy of the

Lyapunov spectrum. The negative Lyapunov exponents are

more sensitive to errors than the positive exponents due to

insufficient training data. Figure 11 demonstrates this result

through a plot of the Lyapunov spectrum of the reservoir

trained on varying lengths of data from Eq. (7) with parame-

ters L¼ 60, k¼ 15, and l ¼ 0:1. In this example, we find

that we need a training time series of greater than 20 000

FIG. 8. Estimating the Lyapunov exponents of the inhomogeneous (l > 0)

KS equation. First 26 Lyapunov exponents of the trained reservoir dynami-

cal system running in the autonomous prediction mode (blue “þ” markers)

and the modified (i.e., l > 0) KS system (red “�” markers). The parameters

of Eq. (7) are L¼ 60, l ¼ 0:1, and k¼ 15.

FIG. 9. (a) Single scalar component u(t) of the time series uðtÞ generated

from the KS system (Eq. (7)) with L¼ 60, k¼ 15, and l ¼ 0:1. The time

series in (a) with added noise, uðtÞ þ nðtÞ, of noise strengths f¼ 0.05 and

f¼ 0.2 are shown in (b) and (c), respectively.
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time steps in order to obtain a reasonably accurate estimate

of the negative Lyapunov exponents (20 000 time steps

equals about 400 multiples of the Lyapunov time (K�1
1 )

which can be considered to be a natural time scale of the KS

system).

V. DISCUSSION AND CONCLUSION

We conclude that a suitably trained reservoir computing

system is capable of approximating the ergodic properties of

the true system that it was trained on. In the case of the

Lorenz equations (Sec. III), our method is successful in cal-

culating the positive and zero Lyapunov exponents with

good accuracy. The negative Lyapunov exponent of the true

Lorenz system has a high magnitude, and our method is not

as successful in accurately calculating the numerical value of

this exponent, although it does successfully capture that its

magnitude is substantially larger than that of the positive

exponent. Remarkably, as shown in Sec. IV for the

Kuramoto-Sivashinsky system, it is possible to use the

trained reservoir to calculate a large number of positive and

negative Lyapunov exponents of a high dimensional spatio-

temporal chaotic system with good accuracy.

In Fig. 11, we demonstrated that we can reproduce the

Lyapunov exponents of an approximately 15-dimensional

attractor from a “training” time series of 40 000 points

(T=Dt ¼ 40 000). By contrast, delay coordinate embedding

methods that approximate the system Jacobian from the

nearest neighbors have been argued to require a time series

of length 10D or longer31,32 (where D is the attractor

dimension).

From a more general point of view, our paper suggests

that the development of machine learning techniques for

model-free analysis of measured data from chaotic systems

may be a fruitful subject for further research.
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