EXCHANGEABLE SEQUENCES AND DE FINETTI'S THEOREM

In these notes we summarize the lecture about de Finetti's Theorem, concerning exchangeable sequences. Here $\mathbf{X}=\left(X_{1}, X_{2}, \ldots\right)$ will denote a sequence of random variables X_{i} with values in $\{0,1\}$. (The things discussed here extend also to X_{i} with values in \mathbb{R}, or even more general spaces).

Definition. The sequence \mathbf{X} is called exchangeable if for all n and all permutations π of $1,2, \ldots, n$ we have that

$$
\left(X_{1}, X_{2}, X_{3}, \ldots\right) \stackrel{\mathrm{d}}{=}\left(X_{\pi(1)}, X_{\pi(2)}, X_{\pi(3)}, \ldots\right)
$$

Note that we only consider permutations π which are 'finite' in the sense that they permute finitely many (n) numbers.

Exercise 1. Prove that \mathbf{X} is exchangeable if and only if for each $n>1$,

$$
\mathbf{X} \stackrel{\mathrm{d}}{=}\left(X_{n}, X_{2}, X_{3}, \ldots, X_{n-1}, X_{1}, X_{n+1}, X_{n+2}, \ldots\right)
$$

Prove that \mathbf{X} is exchangeable if and only if for each bijection φ from $\{1,2,3, \ldots\}$ to itself,

$$
\mathbf{X} \stackrel{\mathrm{d}}{=}\left(X_{\varphi(1)}, X_{\varphi(2)}, X_{\varphi(3)}, \ldots\right)
$$

One example of an exchangeable sequence is an i.i.d. sequence. Another example is a 'constant' sequence, $X_{i}=X$ for all i and some random variable X. An exchangeable sequence is always strongly stationary.

Exercise 2. Prove that the set of exchangeable sequences is convex in the following sense: if \mathbf{X} and \mathbf{X}^{\prime} are exchangeable, then the sequence given by

$$
\begin{cases}\mathbf{X}, & \text { with probability } p, \\ \mathbf{X}^{\prime}, & \text { with probability } 1-p,\end{cases}
$$

is also exchangeable, for any $p \in[0,1]$.
Recall that the law of any sequence \mathbf{X} of random variables in $\{0,1\}$ (exchangeable or not) can be described in terms of a probability measure ν on the sequences $\{0,1\}^{\mathbb{N}}$. It is a fact of measure theory, which we don't prove, that such a probability measure is determined by its values on cylinder sets, by which we mean the following. Given S_{0} and S_{1}, disjoint subsets of $\{1,2,3, \ldots\}$, let

$$
C\left(S_{0}, S_{1}\right)=\left\{\mathbf{x} \in\{0,1\}^{\mathbb{N}}: x_{i}=0 \text { for all } i \in S_{0}, x_{i}=1 \text { for all } i \in S_{1}\right\},
$$

and let $C_{k, \ell}=C(\{1, \ldots, k\},\{k+1, \ldots, k+\ell\})$.
Theorem (de Finetti's theorem). If \mathbf{X} is exchangeable, and ν is the corresponding probability measure on sequences, then there is some random variable $\xi \in[0,1]$ such that

$$
\nu\left(C_{k, \ell}\right)=\mathbb{E}\left[(1-\xi)^{k} \xi^{\ell}\right]
$$

The interpretation is as follows. Inside the $\mathbb{E}[\cdots]$, the expression $(1-\xi)^{k} \xi^{\ell}$ is what we would get from an i.i.d. $\operatorname{Ber}(\xi)$ sequence. So what we have is that \mathbf{X} is like an i.i.d. Bernoulli sequence with a random probability (ξ) for 1 . This means that an echangeable sequence is a 'generalized convex combination' of i.i.d. sequences.

A key part of the proof is the following consequence of the Stone-Weierstrass theorem:
Lemma. If ξ_{n} are random variables on $[0,1]$ then there is a subsequence which converges in distribution to a limit ξ.

Proof of de Finetti's Theorem. Writing $P(k, \ell)=\nu\left(C_{k, \ell}\right)$ we have that $P(k, \ell)=P(k, \ell+$ 1) $+P(k+1, \ell)$. Iterating this, for any fixed k_{0}, ℓ_{0} and any $n \geq n_{0}=k_{0}+\ell_{0}$

$$
P(k, \ell)=\sum_{k+\ell=n} \frac{\binom{n-n_{0}}{k-k_{0}}}{\binom{n}{k}} M^{(n)}(k, \ell), \quad \text { where } M^{(n)}(k, \ell)=\binom{n}{k} P(k, \ell) .
$$

Now the $M^{(n)}(\ell, n-\ell)$ sum to 1 as ℓ ranges from 0 to n, so we can define random variables ξ_{n} with values between 0 and 1 , by

$$
\mathbb{P}\left(\xi_{n}=\ell / n\right)=M^{(n)}(n-\ell, \ell) .
$$

Note that

$$
\mathbb{E}\left[\left(1-\xi_{n}\right)^{k_{0}} \xi_{n}^{\ell_{0}}\right]=\sum_{k+\ell=n}\left(\frac{k}{n}\right)^{k_{0}}\left(\frac{\ell}{n}\right)^{\ell_{0}} M^{(n)}(k, \ell) .
$$

By extracting a subsequence if necessary (using the Lemma) we can assume that ξ_{n} converge in distribution to some ξ. Then, since the function $f(x)=(1-x)^{k_{0}} x^{\ell_{0}}$ is continuous, the result follows from the estimate given in the exercise below.

Exercise 3. For $k_{0}, \ell_{0}, n_{0}, k, \ell, n$ as above, there is a constant $C\left(k_{0}, \ell_{0}\right)$ such that

$$
\left|\frac{\binom{n-n_{0}}{k-k_{0}}}{\binom{n}{k}}-\left(\frac{k}{n}\right)^{k_{0}}\left(\frac{\ell}{n}\right)^{\ell}{ }^{\ell}\right| \leq \frac{C\left(k_{0}, \ell_{0}\right)}{n} .
$$

Exercise 4. Let \mathbf{X} be an exchangeable sequence. Prove that $\operatorname{Cov}\left(X_{i}, X_{j}\right) \geq 0$ for all i and j.

Exercise 5. What is the appropriate generalization of de Finetti's Theorem if the X_{i} take values in the set $\{1,2, \ldots, N\}$ for some $N \geq 2$? Can you adapt the proof above?

Exercise 6. Recall that an exchangeable sequence is strongly stationary. In this exercise we apply the ergodic theorem to identify the limit of $\frac{1}{n} \sum_{i=1}^{n} X_{i}$ for an exchangeable sequence $\mathbf{X} \in\{0,1\}^{\mathbb{N}}$, using the result of Exercise 9.7.13 in Grimmett-Stirzaker.

The set-up is as follows. Let $F(t)$ be the cumulative distribution function for the ξ in de Finetti's theorem, and

- $\Omega=[0,1] \times[0,1]^{\mathbb{N}}$ where $\omega \in \Omega$ is written as $\omega=\left(\omega_{0} ; \omega_{1}, \omega_{2}, \ldots\right)$,
- $\tau: \Omega \rightarrow \Omega$ is given by $\tau\left(\omega_{0} ; \omega_{1}, \omega_{2}, \ldots\right)=\left(\omega_{0} ; \omega_{2}, \omega_{3}, \ldots\right)$,
- \mathbb{P} is given by
$\mathbb{P}\left(\left(a_{0}, b_{0}\right] \times\left(a_{1}, b_{1}\right] \times \cdots \times\left(a_{n}, b_{n}\right] \times[0,1]^{\mathbb{N}}\right)=\left(F\left(b_{0}\right)-F\left(a_{0}\right)\right)\left(b_{1}-a_{1}\right)\left(b_{2}-a_{2}\right) \cdots\left(b_{n}-a_{n}\right)$,
- $\xi(\omega)=\omega_{0}, U(\omega)=\omega_{1}, X(\omega)=\mathbb{I}\left\{\omega_{1} \leq \omega_{0}\right\}, U_{i}(\omega)=U\left(\tau^{i-1}(\omega)\right), X_{i}(\omega)=$ $X\left(\tau^{i-1}(\omega)\right)$
(a) Show that, with this definition, we indeed have $\mathbb{P}(\xi \leq t)=F(t)$, and also that the U_{i} are independent $U[0,1]$ random variables.
(b) Show that $\mathbf{X}=\left(X_{1}, X_{2}, \ldots\right)$ is an exchangeable sequence satisfying

$$
\mathbb{P}\left(\mathbf{X} \in C_{k, \ell}\right)=\mathbb{E}\left[(1-\xi)^{k} \xi^{\ell}\right] .
$$

(c) Show (using the definition of conditional expectation) that $\mathbb{E}[X \mid \mathcal{I}]=\xi$, and thus

$$
\frac{1}{n} \sum_{i=1}^{n} X_{i} \rightarrow \xi \quad \text { a.s. and in } L^{1} .
$$

