Stochastic Processes MVE330/MSF200 J. Bjornberg

SOLUTIONS TO HOMEWORK 1

(1) (a) As soon as € < 1 we have P(X,, > ¢) = P(X,, = 1) = p, so convergence to 0 in
probability holds if and only if p, — 0.
(b) By the first Borel-Cantelli Lemma, if ), - pn < oo then

P(X,, = 1 infinitely often) =0

so then X;, — 0 almost surely. By the second Borel-Cantelli Lemma, if ) - pp, = 00
then =
P(X,, = 1 infinitely often) = 1

so then X, does not converge to 0 almost surely.

(2) For e € (0,1) we can write
d(X,, X) =P(|X,—X| > D)+E[(X,,—X)I{| X, — X]| € (¢, 1]}+E[(X,— X)) I{| X,,— X| < €}].
Assume now that X,, — X in probability. Then we get
d( X, X) <P(|X, - X|>1)+P(|X, - X|>e)+e—¢

so then d(X,,X) — 0. Conversely, assume d(X,,X) — 0. Note that for ¢ € (0,1) we
have

d(Xn, X) > P(|X, — X| > 1) +P(|X,, — X]| € (g,1])]
> eP(| X, — X| > €)
so then P(|.X,, — X| > ¢) — 0 as required.

(3) Fix any constant c. We have
E[(X -Y)I{Y <¢}|] =E[XI{Y < ¢}] - E[YI{Y < ¢}]
=EE[X | Y|I{Y <c¢}] - E[YI{Y < ¢}] =0,
since E[X | Y] =Y. Then
0=E[(X -Y)I{Y <, X <c}|+E[(X -Y)I{Y < ¢, X > c}]
>E(X -Y)I{Y <¢, X <c}],
since the second term is > 0. Similarly, by swapping the roles of X and Y in the indicators,
0=E[(X -Y)I{Y <, X <c}|+E[(X -Y)I{Y > ¢, X < c}]
<E[(X -Y)I{Y < ¢, X < ¢}
Taken together, these mean that
E[(X -Y)I{Y <¢,X <c}] =0,
which in hindsight from the previous equalities means that
E[(X-Y)I{Y <, X >c¢}|=E[(X -Y)I{Y > ¢, X <c}] =0.
This is only possible if

PY<c,X>c¢c)=PY >¢, X <¢)=0.
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This is true for any fized c. But if X # Y then there is some rational g such that either
Y < q and X > g, or vice versa. Thus

4) (a)

P(X#Y)<) (PY <q.X>q) +PY >q,X <q))=0.
qeqQ

The event {Y,, > r,,} can be written

{Ym > rm} = Am N Am—l—l n---N Am+rm—1

where A, = {X,, = 0}. Thus for any ny,

Vazriol= UWnzrml=] U @AnnAmn-nAn,, 1)

(b)

k>1

n>1m>n n>ng m>n

belongs to the tail o-algebra Ho, of the independent events Ay, As,... The claim
follows from Kolmogorov’s 0-1 law.
This is essentially the same as we did in the lectures. We have that

S P zra) =) PV =[ra]) <D 27 < o0

n>1 n>1 n>1

so the claim follows from the first Borel-Cantelli Lemma BCI.

We may assume that the r, are all integers, since ) -, 27" /r, = oo is equivalent
to the same condition with r, replaced by either [r,] or by |7, ]. We want to apply
BCII but need to work with independent events. For any subsequence nj we have
that

{Y, i0.(n)} 2 {Yy, io.(k)}
where i.0.(k) means ‘for infinitely many k’s’. We pick our subsequence by n; = 1
and ng41 = ng +7y,. Then, since {Y,,, > r} = A, N A1 NN Apgr_1, the events
{Y,, > rp, } are independent. Then

TLk+1—1

ZP(Ynk > Tnk) = ZQ*T% - Z MQﬂ"”k > Z Z 92=Tn _ Z 9—7Tn e
T, T'n Tn

k>1 k>1 k>1 n=ng n>1

where we used that r, is non-decreasing. The claim follows from BCII.

(d) We have
{limsup IOY”n > 1} D) {Yn > logyn i.o.}
n—oo 082
and
IRy
= logy n = n(logy n)
(5) We get

E[X(t)] =0, E[X(t)X(t+ h)] = 2cos(h), Vt,
E[X (t)%] = —2(cos(t)® + sin(t)?).

The first two show weak stationarity, the last shows that it is not strictly stationary since
the third moment depends on t.
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(6) One convenient choice of probability triple would be Q = R* F = the Borel product
o-algebra, and

P((al, bl] X e X (ak, bk]) = (F(bl) — F(al)) (F(bg) — F((Q)) s (F(bk) — F(ak)),
where F(t) = P(Z; <t). If we use the shift

T(wi,w2, ..., wg) = (w2,w3, . . ., Wk, w1)
and X (w) = w; and X;(w) = X (77 Y(w)) then the X; are distributed as specified.
(a) For any choice of indices i1 < iz < --- < ip, the vector (X;,, Xi,,..., Xj,) consists of

copies of Z which are either independent or identical, and which it is depends only
on the differences iy — ij. So it is strictly stationary. (This also follows from the fact
that the 7 above is measure-preserving.)

We have that, if n = rk + 7 with j € {0,1,...,k — 1} then

X1+X2+'”+Xn7T(Z1+'”+Zk)+Z1+“'+Zj+1 _>Zl+"'+Zk
n N n n k

Since the limit is not constant, the process cannot be ergodic.
(b) From the ergodic theorem and the above, it must be the case that

Zl+"‘+Zk B X1+...+Xk
k N k

To check that the right-hand-side agrees with the definition of the left-hand-side, we

need to verify (i) Z-measurability of W, and (ii) E[W 4] = E[X 1 4] for all A € 7.

For (i), W(r(w))) = Koo # Xt Xetr — P gince Xi+1 = X1, so W is invariant under

k
shift, meaning it is Z-measurable. For (ii),

E[Xy |Z] = = W.

1
E[WT4] =, ;E (X,14] = z:: (XG0 o1y 4] = $RE[X; 14],
by invariance of A and stationarity.

(7) For (a), note first that also Y, 07 < oo since the o — 0. We have E[X(¢)] = 0 for all
t, and using independence a

c¢(h) = Cov(X(t),X(t+ h)) [Z |C |2 —idp(t—(t+h)) } _ Zei’\’“hai
k>0 k>0
SO Wlth Pr = O-z/ Z]ZO 0']2 we have
— 2(76)) — Z ei)\ktpk — E[eitl\]
k>0

where A assigns probability pg to Ag.
For (b), we want

B[] = exp(u(e’ — 1)) = > e7* ‘;ﬁu et
k>0

If we take Y (t) = X(t) as in (a) with A\, = k and o7 = u*/k! then >_j>00; =€t and we
get what we were after.

(8) (a) The order in which we assign numbers to boxes does not affect the distribution of
the outcome. Hence it is exchangeable.
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(b) We can imagine that boxes receive labels before numbers are assigned to boxes. Then
£ is the probability of putting a number into a box labelled 1:

1, with probability p?,
)« with probability p(1 — p),
§= 1—a, with probability p(1 — p),
0, with probability (1 — p)2.

(c) Expanding on the previous idea, £ will be the sum of the «y over those k for which
the box receives label 1:
=) erau,

k>1
where ¢, = I{box k labelled 1} are independent random variables with distribution
Ber(p).

(9) We assume the following independence: the number of days Y; between inspections, the
events of finding a violation at an inspection, and the fines F; are all independent. Let S;
be the days when violations are detected; the differences S;4+1 — S; are then independent
copies of

N1
S1 = Z Y;
=1

where Nj is the number of inspections until the first violation is discovered. So Nj is

geometrically distributed with mean E[N;] = 1 and using Wald’s equation, E[S;] =

P
E[NJE[Y1] = 45/p.
Let N(t) be the number of violations up to day ¢, so N(t) = max{n : S5, < t}
is a renewal-process. Let g be the new budget per day, to be determined. Then the
accumulated cost up to day t is

for which by the renewal-reward theorem the long-term average cost converges to
q+ 4% - 505.

We want this to be < 100. (Presumably p will also depend on ¢.)
(10) (a) We have
pi(t) = ¢;(t) + E[P(X(t — S1) = j)I{S1 < t}] = q;(t) + /Otpj(t — s)dF(s)
where F(t) = P(S; <t), which by Theorem 10.1.11 gives
p0 =00+ [ 05 an(s),

where m(t) = E[#{n >1:5, <t}].
(b) For j € {0,1,2,3}, we have

{X(t):j, Sl>t}:{X1+"'+XjSt,X1+"'+Xj+1>t}
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since both events describe that there are exactly j arrivals by time t. Since the
arrivals form a Poisson process we then have

=M (\p)I
() =

Integrating gives (using the superior physics-notation for integrals)

/OO dte %q;(t) = /oo dt e*“ie_w)‘t)j _
i) = - =

0 0 J!

) ]E {0’]"2’3}'

()"

A6

>l

and

/00O e /ot dm(s) ¢;(t = s) = /OOO dm(s) e /000 dr qj(r)e "

Now using the density of the Gamma-distribution,

, A s 4n—1€—)\s
m(s) = ((431—1)!

n>1
we get
A . * / —0s 1/ XA \J+1 A \4n
i) = 5O (1+ [ dsm'()e) = 1) (143 (29)")
n>1

i)

- 4

1= (x29)



