HOMEWORK 2 - DUE MAY 25 AT 15:15

This homework sheet consists of 10 questions, each worth 5 points. Hand in solutions in person, or via email to jakobbj at chalmers in pdf format; you can use the free apps CamScanner or Genius Scan to make pdf scans using your phone.
(1) Let $\left(Y_{n}\right)_{n \geq 0}$ be a martingale with $\mathbb{E}\left(Y_{n}^{2}\right)<\infty$ for all n. Show that

$$
\sup _{n \geq 0} \mathbb{E}\left(Y_{n}^{2}\right)<\infty \quad \Leftrightarrow \quad \sum_{n \geq 0} \mathbb{E}\left[\left(Y_{n+1}-Y_{n}\right)^{2}\right]<\infty
$$

(2) Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of independet random variables satisfying

$$
\mathbb{P}\left(X_{n}=-n^{2}\right)=1-\mathbb{P}\left(X_{n}=\frac{n^{2}}{n^{2}-1}\right)=\frac{1}{n^{2}}
$$

Show that $S_{n}=X_{1}+\cdots+X_{n}$ is a martingale such that $S_{n} / n \rightarrow 1$ a.s. and $S_{n} \rightarrow \infty$ a.s. [Hint: Borel-Cantelli]
(3) Let X_{1}, \ldots, X_{n} be independent uniformly chosen elements of a finite set S, let $\left(a_{1}, \ldots, a_{k}\right)$ be some fixed sequence of elements of S of length $k \geq 2$, and let N_{n} be the number of occurrences of the sequence $\left(a_{1}, \ldots, a_{k}\right)$ as consecutive elements of $\left(X_{1}, \ldots, X_{n}\right)$.
(a) Compute $\mathbb{E}\left(N_{n}\right)$ (for example by considering the events A_{i} that the chosen sequence starts at position $i)$.
(b) Assuming that $|S| \geq \sqrt{n}$ and that k is fixed, show that $N_{n} / n^{1 / 2+\delta}$ converges to 0 in probability for any $\delta>0$. [Hint: Hoeffding].
(4) Consider a game with $N \geq 1$ rounds, where your winnings per unit stake on round n are i.i.d. random variables X_{n} satisfying

$$
\mathbb{P}\left(X_{n}=1\right)=1-\mathbb{P}\left(X_{n}=-1\right)=p, \quad p \in\left(\frac{1}{2}, 1\right)
$$

Your stake S_{n} on round n should be measureable with respect to $\mathcal{F}_{n-1}=\sigma\left(X_{1}, \ldots, X_{n-1}\right)$ (i.e. predictable) and be smaller than Z_{n-1}, where Z_{n-1} denotes your fortune at time $n-1$. Assume that Z_{0} is some positive constant and write $h=-p \log (p)-(1-p) \log (1-p)-$ $\log (2)$.
(a) Show that $Y_{n}=\log \left(Z_{n}\right)+n h$ is a supermartingale.
(b) What strategy maximizes the expected 'interest rate' $\mathbb{E}\left[\log \left(Z_{N} / Z_{0}\right)\right]$?
(5) Let $\left(Y_{n}\right)_{n \geq 0}$ be a non-negative martingale and T a finite stopping time. Show, without appealing to the Optional Stopping Theorem (12.5.1), that
(a) if there is some M such that $\left|Y_{n}\right| \leq M$ a.s. for all $n \geq 0$, then $\mathbb{E}\left(Y_{T}\right)=\mathbb{E}\left(Y_{0}\right)$,
(b) if $\mathbb{P}(T<\infty)=1$ then $\mathbb{E}\left(Y_{T}\right) \leq \mathbb{E}\left(Y_{0}\right)$.
(6) Consider successive tosses of a coin having probability p of landing heads. Use a martingale argument to compute the expected number of tosses until the following sequences occur:
(a) HHTTHHT,
(b) HTHTHTH.
(7) Let $\left(Y_{n}\right)_{n \geq 0}$ be a sequence of random variables in $[0,1]$ defined as follows. First $Y_{0}=\alpha$ for some fixed $\alpha \in(0,1)$. Then, given Y_{n}, we have

$$
Y_{n+1}= \begin{cases}\frac{Y_{n}}{2}, & \text { with probability } 1-Y_{n} \\ \frac{Y_{n}+1}{2}, & \text { with probability } Y_{n}\end{cases}
$$

(a) Prove that $\left(Y_{n}\right)_{n \geq 0}$ is a martingale with respect to the filtration given by $\mathcal{F}_{n}=$ $\sigma\left(Y_{0}, \ldots, Y_{n}\right)$, and that it converges in L^{p} for every $p \geq 1$ to some Y_{∞}.
(b) Verify that $\mathbb{E}\left[\left(Y_{n+1}-Y_{n}\right)^{2}\right]=\frac{1}{4} \mathbb{E}\left[Y_{n}\left(1-Y_{n}\right)\right]$ and use this to determine $\mathbb{E}\left[Y_{\infty}\left(1-Y_{\infty}\right)\right]$ and hence the law of Y_{∞}.
(8) In this problem we will prove de Finetti's theorem using a martingale-approach. Let $\left(X_{1}, X_{2}, \ldots\right)$ be an exchangeable sequence with $X_{i} \in\{0,1\}$. Write

$$
P_{n, r}=X_{1}^{r}+\cdots+X_{n}^{r}
$$

and define

$$
\mathcal{G}_{n}=\sigma\left(P_{n, 1}, P_{n, 2}, \ldots, P_{n, n}, X_{n+1}, X_{n+2}, \ldots\right)
$$

and $\mathcal{G}_{\infty}=\bigcap_{n \geq 1} \mathcal{G}_{n}$.
(a) Show that $\mathbb{E}\left(X_{1} \mid \mathcal{G}_{n}\right)$ defines a backward martingale and deduce that $\frac{1}{n} \sum_{i=1}^{n} X_{i} \rightarrow$ $Y_{\infty}:=\mathbb{E}\left[X_{1} \mid \mathcal{G}_{\infty}\right]$ almost surely and in L^{p} for any $p \geq 1$.
(b) Show that $\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)^{2} \rightarrow \mathbb{E}\left[X_{1} X_{2} \mid \mathcal{G}_{\infty}\right]$ almost surely and in L^{p} for any $p \geq 1$, and deduce that $\mathbb{E}\left[X_{1} X_{2}\right]=\mathbb{E}\left[Y_{\infty}^{2}\right]$.
(c) Show that

$$
\mathbb{E}\left[X_{1} \cdots X_{k}\left(1-X_{k+1}\right) \cdots\left(1-X_{k+\ell}\right)\right]=\mathbb{E}\left[Y_{\infty}^{k}\left(1-Y_{\infty}\right)^{\ell}\right]
$$

for any $k, \ell \geq 1$.
(9) Let $(B(t))_{t \geq 0}$ denote a standard Brownian motion and $0 \leq s<t$. What is the conditional distribution of
(a) $B(t)$ given $B(s)$?
(b) $B(s)$ given $B(t)$?
(10) Let $(B(t))_{t \in[0,1]}$ be a standard Brownian motion, and consider the two processes

$$
X(t)=B(t)-t B(1), \quad \text { and } \quad Y(t)= \begin{cases}(1-t) B\left(\frac{t}{1-t}\right), & \text { for } t \in[0,1) \\ 0, & \text { for } t=1\end{cases}
$$

(a) Show that both are Gaussian processes.
(b) Determine their covariance functions.
(c) Show that both are almost surely continuous on $[0,1]$.

