SOLUTIONS TO HOMEWORK 2

(1) We saw in the lectures that $\mathbb{E}\left[\left(Y_{n+1}-Y_{n}\right) Y_{j} \mid \mathcal{F}_{n}\right]=0$, for all $j \leq n$. Writing $Y_{n}=$ $Y_{0}+\sum_{j=1}^{n}\left(Y_{j}-Y_{j-1}\right)$ we get

$$
Y_{n}^{2}=Y_{0}^{2}+\left(\sum_{j=1}^{n}\left(Y_{j}-Y_{j-1}\right)\right)^{2}+2 Y_{0} \sum_{j=1}^{n}\left(Y_{j}-Y_{j-1}\right)
$$

Thus

$$
\mathbb{E}\left(Y_{n}^{2}\right)=\mathbb{E}\left(Y_{0}^{2}\right)+\mathbb{E}\left[\left(\sum_{j=1}^{n}\left(Y_{j}-Y_{j-1}\right)\right)^{2}\right]=\mathbb{E}\left(Y_{0}^{2}\right)+\sum_{j=1}^{n} \mathbb{E}\left[\left(Y_{j}-Y_{j-1}\right)^{2}\right],
$$

since the cross-terms give 0 . The right-hand-side is increasing in n, thus

$$
\sup _{n \geq 0} \mathbb{E}\left(Y_{n}^{2}\right)=\mathbb{E}\left(Y_{0}^{2}\right)+\sum_{j=1}^{\infty} \mathbb{E}\left[\left(Y_{j}-Y_{j-1}\right)^{2}\right] .
$$

(2) Since $\sum_{n \geq 1} \mathbb{P}\left(X_{n}=-n^{2}\right)<\infty$, we have $\mathbb{P}\left(X_{n}=-n^{2}\right.$ i.o. $)=0$ meaning that, with probability 1 , eventually all X_{n} take value $n^{2} /\left(n^{2}-1\right) \rightarrow 1$. So $X_{n} \rightarrow 1$ a.s. which implies $S_{n} / n \rightarrow 1$ a.s. and therefore $S_{n} \rightarrow \infty$. To see that S_{n} is a martingale use independence and that $\mathbb{E}\left[X_{n}\right]=0$ for all n.
(3) (a) With A_{i} the event that the given sequence starts in position i, we have

$$
\mathbb{E}\left(N_{n}\right)=\mathbb{E}\left[\sum_{i=1}^{n-k+1} \mathbb{1}_{A_{i}}\right]=\frac{n-k+1}{|S|^{k}} .
$$

(b) If $|S| \geq \sqrt{n}$ and $k \geq 2$ then $\mathbb{E}\left(N_{n}\right)$ is bounded. Changing one coordinate X_{i} changes N_{n} by at most k. Hoeffding applied to the martingale $Z_{k}=\mathbb{E}\left[N_{n} \mid X_{1}, \ldots, X_{k}\right]$ (for $k=0, \ldots, n)$ gives

$$
\mathbb{P}\left(\left|N_{n}-\mathbb{E}\left(N_{n}\right)\right| \geq x\right) \leq 2 \exp \left(-\frac{x^{2}}{2 n k^{2}}\right)
$$

Thus for any $\varepsilon>0$,

$$
\mathbb{P}\left(\left|N_{n}-\mathbb{E}\left(N_{n}\right)\right| \geq \varepsilon n^{1 / 2+\delta}\right) \leq 2 \exp \left(-\frac{\varepsilon^{2} n^{2 \delta}}{2 k^{2}}\right) \rightarrow 0 .
$$

Since $\mathbb{E}\left(N_{n}\right)$ is bounded this proves the claim.
(4) Since $Z_{n+1}=Z_{n}+S_{n+1} X_{n+1}$ we have
$\mathbb{E}\left(\log Z_{n+1} \mid \mathcal{F}_{n}\right)=p \log \left(Z_{n}+S_{n+1}\right)+(1-p) \log \left(Z_{n}-S_{n+1}\right)=\log Z_{n}+f\left(S_{n+1} / Z_{n}\right)$
where $f(x)=p \log (1+x)+(1-p) \log (1-x)$. Now $f(x)$ is maximal for $x=2 p-1$ and $f(2 p-1)=-h$, which shows that Y_{n} is a supermartingale, and in fact a martingale if we set $S_{n+1}=(2 p-1) Z_{n}$ for each n. The latter is the optimal strategy.
(5) (a) For any n, the stopping time $T \wedge n$ is bounded, so by Theorem 12.4.11 we have $\mathbb{E}\left[Y_{T \wedge n}\right]=\mathbb{E}\left[Y_{0}\right]$. Next, $Y_{T \wedge n} \rightarrow Y_{T}$ a.s. and since Y is bounded, the bounded convergence theorem implies that $\mathbb{E}\left[Y_{T \wedge n}\right] \rightarrow \mathbb{E}\left[Y_{T}\right]$, which gives the result.
(b) By Fatou, since $Y_{T \wedge r} \rightarrow Y_{T}$ almost surely as $r \rightarrow \infty$,

$$
\mathbb{E}\left(Y_{T}\right)=\mathbb{E}\left(\lim _{r \rightarrow \infty} Y_{T \wedge r}\right) \leq \liminf _{r \rightarrow \infty} \mathbb{E}\left(Y_{T \wedge r}\right)=\mathbb{E}\left(Y_{0}\right) .
$$

(6) This is similar to Problem 12.9.16 in GS, so it helps to understand that first. Here we use similar notation. So at each time n a new gambler G_{n} enters and starts betting on the pattern HHTTHHT until failure. When a gambler's bet fails, the casino gains the gambler's initial fortune of $\$ 1$. Until then the fortune of the gambler is $p^{-\# \mathrm{H}} q^{-\# \mathrm{~T}}$ where $\# \mathrm{H}$ and \#T indicate the number of heads/tails that were correct so far (and $q=1-p$), meaning that the casino has paid out an amount $p^{-\# \mathrm{H}} q^{-\# \mathrm{~T}}-1$ to the gambler. Write S_{n} for the gain (or loss) of the casino so far, this is a martingale as checked in GS.

At the time N of the first ннттннт we have seen

```
***\cdots**HHTTHHT
```

where the $*$-sequence contains no ннтTHнT and the red $*$ is in position $N-7$. This means that at time N, gambler G_{N-6} is still winning, as is gambler G_{N-2}. The others have all lost. So the casino has got $N-2$ from the gamblers who lost, but also paid $p^{-4} q^{-3}-1+p^{-2} q^{-1}-1$ to the two who are still winning. Thus $S_{N}=N-p^{-4} q^{-3}-p^{-2} q^{-1}$. Below we check in detail that Theorem 12.5 .1 applies meaning that we have $\mathbb{E}\left(S_{N}\right)=$ $\mathbb{E}\left(S_{0}\right)=0$. Assuming this we get, for (a), $\mathbb{E}(N)=p^{-4} q^{-3}+p^{-2} q^{-1}$.

Similarly, for (b) we have

$$
* * * \cdots * * \text { НтнтнTH }
$$

and then gamblers $N-6, N-4, N-2$ and N are still winning. Thus $S_{N}=N-\left(p^{-4} q^{-3}+\right.$ $\left.p^{-3} q^{-2}+p^{-2} q^{-1}+p^{-1}\right)$ and $\mathbb{E}(N)=p^{-4} q^{-3}+p^{-3} q^{-2}+p^{-2} q^{-1}+p^{-1}$.

Now we verify that Theorem 12.5 .1 applies (one could also verify 12.5 .9 instead). Writing $r=\mathbb{P}(N=7)=p^{4} q^{3}>0$, there is probability r that the given sequence occurs in tosses 1 to 7 , in tosses 8 to 14 , in tosses 9 to 21 , etc. This means that $\mathbb{P}(N>7 k) \leq(1-r)^{k}$ for any $k \geq 0$. Then

$$
\mathbb{E}(N)=\sum_{n \geq 0} \mathbb{P}(N>n) \leq \sum_{k \geq 0} 7 \mathbb{P}(N>7 k)<\infty .
$$

In particular $\mathbb{P}(N<\infty)=1$. Combined with our expressions for S_{N} this also verifies that $\mathbb{E}\left|S_{N}\right|<\infty$. And note that if $n<N$ then gamblers $1,2, \ldots, n-6$ have all lost while $n-5, n-4, \ldots, n$ may (in principle, depending on the pattern) still be winning. Those that are still winning have a fortune of at most $p^{-\# H} q^{-\# \mathrm{~T}} \leq(p q)^{-6}$ so a very rough bound is that

$$
\mathbb{E}\left(\left|S_{n}\right| \mathbb{I}\{n<N\}\right) \leq\left[n-6+6(p q)^{-6}\right] \mathbb{P}(N>n)
$$

which by our previous bounds on $\mathbb{P}(N>7 k)$ gives that $\mathbb{E}\left(\left|S_{n}\right| \mathbb{I}\{n<N\}\right) \rightarrow 0$ as required.
This method can be used to compute the expected time until a monkey, hitting random letters on a keyboard, accidentally writes Shakespeare's play Hamlet. A more reasonable version of this is to compute the expected time until the monkey types ABRACADABRA.
(7) (a) If we write

$$
Y_{n+1}=\frac{Y_{n}}{2} \mathbb{I}\left\{Y_{n+1}=\frac{Y_{n}}{2}\right\}+\frac{1+Y_{n}}{2} \mathbb{I}\left\{Y_{n+1}=\frac{1+Y_{n}}{2}\right\}
$$

then we get

$$
\begin{aligned}
\mathbb{E}\left[Y_{n+1} \mid \mathcal{F}_{n}\right] & =\frac{Y_{n}}{2} \mathbb{E}\left[\left.\mathbb{I}\left\{Y_{n+1}=\frac{Y_{n}}{2}\right\} \right\rvert\, \mathcal{F}_{n}\right]+\frac{1+Y_{n}}{2} \mathbb{E}\left[\left.\mathbb{I}\left\{Y_{n+1}=\frac{1+Y_{n}}{2}\right\} \right\rvert\, \mathcal{F}_{n}\right] \\
& =\frac{Y_{n}}{2} \mathbb{P}\left(\left.Y_{n+1}=\frac{Y_{n}}{2} \right\rvert\, \mathcal{F}_{n}\right)+\frac{1+Y_{n}}{2} \mathbb{P}\left(\left.Y_{n+1}=\frac{1+Y_{n}}{2} \right\rvert\, \mathcal{F}_{n}\right) \\
& =\frac{Y_{n}}{2}\left(1-Y_{n}\right)+\frac{1+Y_{n}}{2} Y_{n}=Y_{n}
\end{aligned}
$$

It is bounded between 0 and 1 and hence converges a.s. and in L^{p} for all $p \geq 1$.
(b) Expanding and using the martingale property we get

$$
\mathbb{E}\left[\left(Y_{n+1}-Y_{n}\right)^{2}\right]=\mathbb{E}\left[\mathbb{E}\left[\left(Y_{n+1}-Y_{n}\right)^{2} \mid \mathcal{F}_{n}\right]\right]=\mathbb{E}\left[\mathbb{E}\left[Y_{n+1}^{2} \mid \mathcal{F}_{n}\right]-Y_{n}^{2}\right]
$$

Similar calculations as for (a) give

$$
\mathbb{E}\left[Y_{n+1}^{2} \mid \mathcal{F}_{n}\right]=\frac{1}{4}\left(3 Y_{n}^{2}+Y_{n}\right)
$$

Hence $\mathbb{E}\left[\left(Y_{n+1}-Y_{n}\right)^{2}\right]=\frac{1}{4} \mathbb{E}\left[Y_{n}\left(1-Y_{n}\right)\right]$.
The left-hand-side converges to 0 and the right-hand-side to $\frac{1}{4} \mathbb{E}\left[Y_{\infty}\left(1-Y_{\infty}\right)\right]$. It follows that

$$
Y_{\infty}\left(1-Y_{\infty}\right)=0 \quad \text { a.s. }
$$

This means that Y_{∞} has values in $\{0,1\}$. But $\mathbb{E}\left[Y_{\infty}\right]=\mathbb{E}\left[Y_{0}\right]=\alpha$, hence Y_{∞} takes value 1 with probability α and 0 otherwise.
(8) (a) The sequence $Y_{n}=\mathbb{E}\left[X_{1} \mid \mathcal{G}_{n}\right]$ is a backward martingale since the \mathcal{G}_{n} are decreasing. To see this, we can either note that $P_{n, r}=P_{n, 1}$ for all $r \geq 1$ since the X_{i} take values 0 or 1 only, or (which applies for more general X_{i}) that $P_{n-1,1}, \ldots, P_{n-1, n-1}$ generate all symmetric polynomials in X_{1}, \ldots, X_{n-1}, in particular we can write $P_{n, n}=P_{n-1, n}+X_{n}^{n}$ using them together with X_{n}.
Being a backward martingale, $Y_{n} \rightarrow Y_{\infty}$ almost surely. Since it is bounded the convergence also holds in L^{p}. Next, exchangeability implies that $Y_{n}=\mathbb{E}\left[X_{i} \mid \mathcal{G}_{n}\right]$ for any $i=1,2, \ldots, n$ and therefore

$$
Y_{n}=\mathbb{E}\left[\left.\frac{1}{n} \sum_{i=1}^{n} X_{i} \right\rvert\, \mathcal{G}_{n}\right]=\mathbb{E}\left[\left.\frac{1}{n} P_{n, 1} \right\rvert\, \mathcal{G}_{n}\right]=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

the last step following from \mathcal{G}_{n}-measurability. The claim follows.
(b) By exchangeability, for $n \geq 2$,

$$
\begin{aligned}
\mathbb{E}\left[X_{1} X_{2} \mid \mathcal{G}_{n}\right] & =\mathbb{E}\left[\left.\frac{1}{n(n-1)} \sum_{1 \leq i \neq j \leq n} X_{i} X_{j} \right\rvert\, \mathcal{G}_{n}\right] \\
& =\frac{1}{n(n-1)} \mathbb{E}\left[\left(\sum_{i=1}^{n} X_{i}\right)^{2}-\sum_{i=1}^{n} X_{i}^{2} \mid \mathcal{G}_{n}\right] \\
& =\frac{1}{n(n-1)}\left[\left(\sum_{i=1}^{n} X_{i}\right)^{2}-\sum_{i=1}^{n} X_{i}^{2}\right]
\end{aligned}
$$

Here, on the left-hand-side, $\mathbb{E}\left[X_{1} X_{2} \mid \mathcal{G}_{n}\right]$ is a backward martingale converging to $\mathbb{E}\left[X_{1} X_{2} \mid \mathcal{G}_{\infty}\right]$. The right-hand-side equals $\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)^{2}$ up to a correction which $\rightarrow 0$ almost surely as $n \rightarrow \infty$. We conclude that

$$
\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)^{2} \rightarrow \mathbb{E}\left[X_{1} X_{2} \mid \mathcal{G}_{\infty}\right]
$$

But we also know that

$$
\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)^{2} \rightarrow Y_{\infty}^{2}
$$

Hence $\mathbb{E}\left[X_{1} X_{2} \mid \mathcal{G}_{\infty}\right]=Y_{\infty}^{2}$. Taking expectation gives the claim.
(c) This is similar to the previous part. First note that it suffices to prove the statement for $\ell=0$ (by expanding and using exchangeability). Then note that, for $n \geq k$,

$$
\begin{aligned}
\mathbb{E}\left[X_{1} \cdots X_{k} \mid \mathcal{G}_{n}\right] & =\mathbb{E}\left[\left.\frac{1}{n(n-1) \cdots(n-k+1)} \sum_{1 \leq i_{1} \neq \cdots \neq i_{k} \leq n} X_{i_{1}} \cdots X_{i_{k}} \right\rvert\, \mathcal{G}_{n}\right] \\
& =\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)^{k}+o(1) .
\end{aligned}
$$

This gives $\mathbb{E}\left[X_{1} \cdots X_{k} \mid \mathcal{G}_{\infty}\right]=Y_{\infty}^{k}$ and hence the claim.
(9) (a) Since $B(t)=B(s)+[B(t)-B(s)]$ and the increments are independent and normally distributed, the conditional distribution of $B(t)$ given $B(s)$ is $\mathrm{N}(B(s), t-s)$.
(b) Use the time-inversion property to see that the pair $(B(s), B(t)$) has the same distribution as the pair $(\tilde{B}(s), \tilde{B}(t))=\left(s B\left(\frac{1}{s}\right), t B\left(\frac{1}{t}\right)\right)$. We have

$$
\tilde{B}(s)=s B\left(\frac{1}{s}\right)=s\left(B\left(\frac{1}{t}\right)+\left[B\left(\frac{1}{s}\right)-B\left(\frac{1}{t}\right)\right]\right)=\frac{s}{t} \tilde{B}(t)+s\left[B\left(\frac{1}{s}\right)-B\left(\frac{1}{t}\right)\right],
$$

where the term $\left[B\left(\frac{1}{s}\right)-B\left(\frac{1}{t}\right)\right]$ is independent of $\tilde{B}(t)$ and normally distributed with mean 0 and variance $\frac{1}{s}-\frac{1}{t}$. So the conditional distribution of $B(s)$ given $B(t)$ is $\mathrm{N}\left(\frac{s}{t} B(t), \frac{s}{t}(t-s)\right)$.
(10) (a) Since B is a Gaussian process, any linear combination of terms $B\left(t_{i}\right)$ is normally distributed. Now any linear combination of terms $X\left(t_{i}\right)$ or terms $Y\left(t_{i}\right)$ reduces to a linear combination of terms $B\left(t_{i}\right)$, and is hence normally distributed. Thus X and Y are both Gaussian processes.
(b) Assume $s<t$. Then a simple calculation gives

$$
\operatorname{Cov}(X(s), X(t))=\operatorname{Cov}(Y(s), Y(t))=s(1-t)
$$

(c) It is clear for X, and for Y continuity is clear on $[0,1)$. To prove that $Y(t)$ is almost surely continuous at $t=1$, write $T=\frac{1}{1-t}$, then

$$
\mathbb{P}\left(\lim _{t \uparrow 1} Y(t)=0\right)=\mathbb{P}\left(\lim _{T \uparrow \infty} \frac{1}{T} B(T-1)=0\right)=1
$$

by Corollary 1.11 in Mörters-Peres.
Both X and Y are the 'Brownian bridge', which may also be interpreted as standard $B M$ conditioned to hit 0 at $t=1$.

