
Stochastic Processes MVE330/MSF200 J. Björnberg

SOLUTIONS TO HOMEWORK 2

(1) We saw in the lectures that E
[
(Yn+1 − Yn)Yj | Fn

]
= 0, for all j ≤ n. Writing Yn =

Y0 +
∑n

j=1(Yj − Yj−1) we get

Y 2
n = Y 2

0 +
( n∑
j=1

(Yj − Yj−1)
)2

+ 2Y0

n∑
j=1

(Yj − Yj−1).

Thus

E(Y 2
n ) = E(Y 2

0 ) + E
[( n∑

j=1

(Yj − Yj−1)
)2]

= E(Y 2
0 ) +

n∑
j=1

E
[
(Yj − Yj−1)2

]
,

since the cross-terms give 0. The right-hand-side is increasing in n, thus

sup
n≥0

E(Y 2
n ) = E(Y 2

0 ) +
∞∑
j=1

E
[
(Yj − Yj−1)2

]
.

(2) Since
∑

n≥1 P(Xn = −n2) < ∞, we have P(Xn = −n2 i.o.) = 0 meaning that, with

probability 1, eventually all Xn take value n2/(n2−1)→ 1. So Xn → 1 a.s. which implies
Sn/n → 1 a.s. and therefore Sn → ∞. To see that Sn is a martingale use independence
and that E[Xn] = 0 for all n.

(3) (a) With Ai the event that the given sequence starts in position i, we have

E(Nn) = E
[ n−k+1∑

i=1

1IAi

]
=
n− k + 1

|S|k
.

(b) If |S| ≥
√
n and k ≥ 2 then E(Nn) is bounded. Changing one coordinate Xi changes

Nn by at most k. Hoeffding applied to the martingale Zk = E[Nn | X1, . . . , Xk] (for
k = 0, . . . , n) gives

P(|Nn − E(Nn)| ≥ x) ≤ 2 exp
(
− x2

2nk2

)
.

Thus for any ε > 0,

P(|Nn − E(Nn)| ≥ εn1/2+δ) ≤ 2 exp
(
− ε2n2δ

2k2

)
→ 0.

Since E(Nn) is bounded this proves the claim.

(4) Since Zn+1 = Zn + Sn+1Xn+1 we have

E(logZn+1 | Fn) = p log(Zn + Sn+1) + (1− p) log(Zn − Sn+1) = logZn + f(Sn+1/Zn)

where f(x) = p log(1 + x) + (1− p) log(1− x). Now f(x) is maximal for x = 2p− 1 and
f(2p − 1) = −h, which shows that Yn is a supermartingale, and in fact a martingale if
we set Sn+1 = (2p− 1)Zn for each n. The latter is the optimal strategy.
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(5) (a) For any n, the stopping time T ∧ n is bounded, so by Theorem 12.4.11 we have
E[YT∧n] = E[Y0]. Next, YT∧n → YT a.s. and since Y is bounded, the bounded
convergence theorem implies that E[YT∧n]→ E[YT ], which gives the result.

(b) By Fatou, since YT∧r → YT almost surely as r →∞,

E(YT ) = E( lim
r→∞

YT∧r) ≤ lim inf
r→∞

E(YT∧r) = E(Y0).

(6) This is similar to Problem 12.9.16 in GS, so it helps to understand that first. Here we use
similar notation. So at each time n a new gambler Gn enters and starts betting on the
pattern HHTTHHT until failure. When a gambler’s bet fails, the casino gains the gambler’s
initial fortune of $1. Until then the fortune of the gambler is p−#Hq−#T where #H and
#T indicate the number of heads/tails that were correct so far (and q = 1− p), meaning
that the casino has paid out an amount p−#Hq−#T − 1 to the gambler. Write Sn for the
gain (or loss) of the casino so far, this is a martingale as checked in GS.

At the time N of the first HHTTHHT we have seen

∗ ∗ ∗ · · · ∗ ∗HHTTHHT

where the ∗-sequence contains no HHTTHHT and the red ∗ is in position N − 7. This
means that at time N , gambler GN−6 is still winning, as is gambler GN−2. The others
have all lost. So the casino has got N − 2 from the gamblers who lost, but also paid
p−4q−3−1+p−2q−1−1 to the two who are still winning. Thus SN = N−p−4q−3−p−2q−1.
Below we check in detail that Theorem 12.5.1 applies meaning that we have E(SN ) =
E(S0) = 0. Assuming this we get, for (a), E(N) = p−4q−3 + p−2q−1.

Similarly, for (b) we have

∗ ∗ ∗ · · · ∗ ∗HTHTHTH
and then gamblers N−6, N−4, N−2 and N are still winning. Thus SN = N−(p−4q−3+
p−3q−2 + p−2q−1 + p−1) and E(N) = p−4q−3 + p−3q−2 + p−2q−1 + p−1.

Now we verify that Theorem 12.5.1 applies (one could also verify 12.5.9 instead).
Writing r = P(N = 7) = p4q3 > 0, there is probability r that the given sequence occurs in
tosses 1 to 7, in tosses 8 to 14, in tosses 9 to 21, etc. This means that P(N > 7k) ≤ (1−r)k
for any k ≥ 0. Then

E(N) =
∑
n≥0

P(N > n) ≤
∑
k≥0

7P(N > 7k) <∞.

In particular P(N < ∞) = 1. Combined with our expressions for SN this also verifies
that E|SN | <∞. And note that if n < N then gamblers 1, 2, . . . , n− 6 have all lost while
n − 5, n − 4, . . . , n may (in principle, depending on the pattern) still be winning. Those
that are still winning have a fortune of at most p−#Hq−#T ≤ (pq)−6 so a very rough bound
is that

E(|Sn|1I{n < N}) ≤ [n− 6 + 6(pq)−6]P(N > n)

which by our previous bounds on P(N > 7k) gives that E(|Sn|1I{n < N})→ 0 as required.
This method can be used to compute the expected time until a monkey, hitting random

letters on a keyboard, accidentally writes Shakespeare’s play Hamlet. A more reasonable
version of this is to compute the expected time until the monkey types ABRACADABRA.

(7) (a) If we write

Yn+1 = Yn
2 1I{Yn+1 = Yn

2 }+ 1+Yn
2 1I{Yn+1 = 1+Yn

2 }
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then we get

E[Yn+1 | Fn] = Yn
2 E[1I{Yn+1 = Yn

2 } | Fn] + 1+Yn
2 E[1I{Yn+1 = 1+Yn

2 } | Fn]

= Yn
2 P(Yn+1 = Yn

2 | Fn) + 1+Yn
2 P(Yn+1 = 1+Yn

2 | Fn)

= Yn
2 (1− Yn) + 1+Yn

2 Yn = Yn.

It is bounded between 0 and 1 and hence converges a.s. and in Lp for all p ≥ 1.
(b) Expanding and using the martingale property we get

E
[
(Yn+1 − Yn)2

]
= E

[
E[(Yn+1 − Yn)2 | Fn]

]
= E

[
E[Y 2

n+1 | Fn]− Y 2
n

]
.

Similar calculations as for (a) give

E[Y 2
n+1 | Fn] = 1

4(3Y 2
n + Yn).

Hence E[(Yn+1 − Yn)2] = 1
4E[Yn(1− Yn)].

The left-hand-side converges to 0 and the right-hand-side to 1
4E[Y∞(1−Y∞)]. It follows

that

Y∞(1− Y∞) = 0 a.s.

This means that Y∞ has values in {0, 1}. But E[Y∞] = E[Y0] = α, hence Y∞ takes value
1 with probability α and 0 otherwise.

(8) (a) The sequence Yn = E[X1 | Gn] is a backward martingale since the Gn are decreasing.
To see this, we can either note that Pn,r = Pn,1 for all r ≥ 1 since the Xi take
values 0 or 1 only, or (which applies for more general Xi) that Pn−1,1, . . . , Pn−1,n−1
generate all symmetric polynomials in X1, . . . , Xn−1, in particular we can write
Pn,n = Pn−1,n +Xn

n using them together with Xn.
Being a backward martingale, Yn → Y∞ almost surely. Since it is bounded the
convergence also holds in Lp. Next, exchangeability implies that Yn = E[Xi | Gn] for
any i = 1, 2, . . . , n and therefore

Yn = E
[ 1

n

n∑
i=1

Xi | Gn
]

= E
[
1
nPn,1 | Gn

]
=

1

n

n∑
i=1

Xi,

the last step following from Gn-measurability. The claim follows.
(b) By exchangeability, for n ≥ 2,

E[X1X2 | Gn] = E
[ 1

n(n− 1)

∑
1≤i 6=j≤n

XiXj | Gn
]

=
1

n(n− 1)
E
[( n∑

i=1

Xi

)2 − n∑
i=1

X2
i | Gn

]
=

1

n(n− 1)

[( n∑
i=1

Xi

)2 − n∑
i=1

X2
i

]
.

Here, on the left-hand-side, E[X1X2 | Gn] is a backward martingale converging to

E[X1X2 | G∞]. The right-hand-side equals
(
1
n

∑n
i=1Xi

)2
up to a correction which

→ 0 almost surely as n→∞. We conclude that( 1

n

n∑
i=1

Xi

)2 → E[X1X2 | G∞].
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But we also know that ( 1

n

n∑
i=1

Xi

)2 → Y 2
∞.

Hence E[X1X2 | G∞] = Y 2
∞. Taking expectation gives the claim.

(c) This is similar to the previous part. First note that it suffices to prove the statement
for ` = 0 (by expanding and using exchangeability). Then note that, for n ≥ k,

E[X1 · · ·Xk | Gn] = E
[

1
n(n−1)···(n−k+1)

∑
1≤i1 6=···6=ik≤n

Xi1 · · ·Xik | Gn
]

=
(
1
n

n∑
i=1

Xi

)k
+ o(1).

This gives E[X1 · · ·Xk | G∞] = Y k
∞ and hence the claim.

(9) (a) Since B(t) = B(s) + [B(t)−B(s)] and the increments are independent and normally
distributed, the conditional distribution of B(t) given B(s) is N(B(s), t− s).

(b) Use the time-inversion property to see that the pair (B(s), B(t)) has the same dis-

tribution as the pair (B̃(s), B̃(t)) = (sB(1s ), tB(1t )). We have

B̃(s) = sB(1s ) = s
(
B(1t ) + [B(1s )−B(1t )]

)
= s

t B̃(t) + s[B(1s )−B(1t )],

where the term [B(1s )−B(1t )] is independent of B̃(t) and normally distributed with

mean 0 and variance 1
s −

1
t . So the conditional distribution of B(s) given B(t) is

N( stB(t), s
t (t− s)).

(10) (a) Since B is a Gaussian process, any linear combination of terms B(ti) is normally
distributed. Now any linear combination of terms X(ti) or terms Y (ti) reduces to a linear
combination of terms B(ti), and is hence normally distributed. Thus X and Y are both
Gaussian processes.

(b) Assume s < t. Then a simple calculation gives

Cov(X(s), X(t)) = Cov(Y (s), Y (t)) = s(1− t).
(c) It is clear for X, and for Y continuity is clear on [0, 1). To prove that Y (t) is almost

surely continuous at t = 1, write T = 1
1−t , then

P
(

lim
t↑1

Y (t) = 0
)

= P
(

lim
T↑∞

1
TB(T − 1) = 0

)
= 1

by Corollary 1.11 in Mörters–Peres.
Both X and Y are the ‘Brownian bridge’, which may also be interpreted as standard

BM conditioned to hit 0 at t = 1.
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