Stochastic Processes MVE330/MSF200 J. Bjornberg
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SOLUTIONS TO HOMEWORK 2

We saw in the lectures that E[(Y,41 — Y)Y | Fn] = 0, for all j < n. Writing Y, =
Yo +251(Y) = Yj1) we get
n 2 n
v2=yg+ (300 - Y5) + 2% > (% - Vi),
J=1 J=1
Thus

n

B(v2) = BOR) +E[( Y05 - Y1) | = EOR) + SB[ - Y507,

j:]- ]:1

since the cross-terms give (. The right-hand-side is increasing in n, thus

supE(Y) = E(¥9) + Y_E[(Y; - ¥j-0)?)
n> j=1

Since >, P(Xp = —n?) < oo, we have P(X,, = —n?i.0.) = 0 meaning that, with
probability 1, eventually all X,, take value n?/(n?—1) — 1. So X,, — 1 a.s. which implies

Sp/n — 1 a.s. and therefore S,, — oo. To see that S, is a martingale use independence
and that E[X,,] = 0 for all n.

(a) With A; the event that the given sequence starts in position ¢, we have

n—k+1 .
BN =B 3 1] = "o

i=1
(b) If |S| > y/n and k > 2 then E(N,,) is bounded. Changing one coordinate X; changes

N,, by at most k. Hoeffding applied to the martingale Z, = E[N,, | Xi,..., X}] (for
k=0,...,n) gives

P(|IN, — E(N,)| > 2) < 2exp (— 525).
Thus for any € > 0,
P(|N,, — E(N,)| > en!/?7%) < 2exp (- ©

2,26
2k?

) = 0.
Since E(NV,,) is bounded this proves the claim.

Since Z,p4+1 = Zp + Sn+1Xnt1 we have

E(log Zn+1 | Fn) = plog(Zn + Spt1) + (1 — p)log(Zn — Spt1) = log Z, + f(Sn+41/Zn)

where f(z) = plog(l+ z) + (1 — p)log(l — z). Now f(z) is maximal for z = 2p — 1 and
f(2p — 1) = —h, which shows that Y,, is a supermartingale, and in fact a martingale if
we set Sp+1 = (2p — 1)Z, for each n. The latter is the optimal strategy.
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(5) (a) For any n, the stopping time 7' A n is bounded, so by Theorem 12.4.11 we have
E[Yran] = E[Yp]. Next, Yrar, — Yr a.s. and since Y is bounded, the bounded
convergence theorem implies that E[Yra,| — E[Yr], which gives the result.

(b) By Fatou, since Yra, — Y almost surely as r — oo,

E(Yr) = E(lim Yry,) < liminf E(Yrs,) = E(Y0).
r—00 T—00

(6) This is similar to Problem 12.9.16 in GS, so it helps to understand that first. Here we use
similar notation. So at each time n a new gambler GG,, enters and starts betting on the
pattern HHTTHHT until failure. When a gambler’s bet fails, the casino gains the gambler’s
initial fortune of $1. Until then the fortune of the gambler is p~#8¢~#T where #H and
#T indicate the number of heads/tails that were correct so far (and ¢ = 1 — p), meaning
that the casino has paid out an amount p~#8¢~#T — 1 to the gambler. Write S,, for the
gain (or loss) of the casino so far, this is a martingale as checked in GS.

At the time N of the first HHTTHHT we have seen

* % %+ x xHHTTHHT

where the x-sequence contains no HHTTHHT and the red * is in position N — 7. This
means that at time N, gambler G_g is still winning, as is gambler G _o. The others
have all lost. So the casino has got N — 2 from the gamblers who lost, but also paid
p~4g 3 —1+p~2¢~ ' —1 to the two who are still winning. Thus Sy = N—p 4¢3 —p~2¢~ 1.
Below we check in detail that Theorem 12.5.1 applies meaning that we have E(Sy) =
E(Sp) = 0. Assuming this we get, for (a), E(N) =p~ 4¢3 + p~2¢~ L.

Similarly, for (b) we have

% % % - - - x xHTHTHTH

and then gamblers N —6, N —4, N —2 and N are still winning. Thus Sy = N — (p~%¢ 3+
PP+ p g+ p ) and E(N) = p ¢ +p g2 +p P 4+ p

Now we verify that Theorem 12.5.1 applies (one could also verify 12.5.9 instead).
Writing » = P(N = 7) = p*¢® > 0, there is probability 7 that the given sequence occurs in
tosses 1 to 7, in tosses 8 to 14, in tosses 9 to 21, etc. This means that P(N > 7k) < (1—7r)*
for any k£ > 0. Then

E(N) =) PN >n)<> TP(N > Tk) < oc.
n>0 k>0

In particular P(N < oo) = 1. Combined with our expressions for Sy this also verifies
that E|Sn| < co. And note that if n < N then gamblers 1,2,...,n — 6 have all lost while
n —5mn—4,...,n may (in principle, depending on the pattern) still be winning. Those
that are still winning have a fortune of at most p~#Hg=#T < (pq)~° so a very rough bound
is that

E(|S | I{n < N}) < [ — 6 + 6(pq) BN > n)
which by our previous bounds on P(N > 7k) gives that E(|S,,|I{n < N}) — 0 as required.
This method can be used to compute the expected time until a monkey, hitting random

letters on a keyboard, accidentally writes Shakespeare’s play Hamlet. A more reasonable
version of this is to compute the expected time until the monkey types ABRACADABRA.

(7) (a) If we write

Yoy = 5 WY = 5} + HoI{Yo = 55}



SOLUTIONS TO HOMEWORK 2 3

then we get

E[YnJrl | fn] = %E[]I{Yn+l = %} | ]:n] + %E[H{Yrﬁl = %} | ]:n]

= %P(Ynﬂ = % | ]:n) + 1+2Yn P(Ynﬂ = szn | fn)

=%1-Y,)+ 1y, =Y,

It is bounded between 0 and 1 and hence converges a.s. and in L? for all p > 1.
(b) Expanding and using the martingale property we get

E[(erl - Yn)Q] = E[E[(YnJrl - Yn)2 | ]:nH = ]E[E[YnQ—i-l | ]:n] - YnQ]
Similar calculations as for (a) give
E[Y,; ' | Fal = 5(3Y7 + Vo).

Hence E[(Y,11 — Y5)?] = 1E[Y,(1 - Y,)].
The left-hand-side converges to 0 and the right-hand-side to iE[YOO(l —Y)]- It follows
that

Yoo(1-Y%) =0 as.

This means that Yo, has values in {0, 1}. But E[Yy] = E[Ys] = «, hence Y, takes value
1 with probability a and 0 otherwise.

(8) (a) The sequence Y,, = E[X | G,] is a backward martingale since the G,, are decreasing.

To see this, we can either note that P, , = P, for all » > 1 since the X; take
values 0 or 1 only, or (which applies for more general X;) that P,_11,...,Pp_1n-1
generate all symmetric polynomials in Xi,...,X,,_1, in particular we can write

P, = Py—1,, + X, using them together with X,,.

Being a backward martingale, Y,, — Y, almost surely. Since it is bounded the
convergence also holds in LP. Next, exchangeability implies that Y, = E[X; | G,] for
any ¢ = 1,2,...,n and therefore

:E[iz;mgn}: Put | Ga] = — ZXZ,

the last step following from G,,-measurability. The claim follows.
(b) By exchangeability, for n > 2,

E[X1X2 | Gn = ( Z XiXj | Gl
1<1;éj<n
= =D ZX ;Xf | Gy

n
- X)) X7
Gl S
Here, on the left-hand-side, E[X; X2 | G,] is a backward martingale converging to

E[X1X5 | Goo). The right-hand-side equals (3", XZ-)2 up to a correction which
— 0 almost surely as n — co. We conclude that

ZX — E[X1 X2 | Gool-
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But we also know that

Hence E[X1 X5 | Goo] = Y.2. Taking expectation gives the claim.
(c) This is similar to the previous part. First note that it suffices to prove the statement
for £ = 0 (by expanding and using exchangeability). Then note that, for n > k,

1<iy i, <n

= (1 En:Xi)’“ +o(1).

This gives E[X1 -+ Xj, | Goo] = YX and hence the claim.

[y

(9) (a) Since B(t) = B(s)+ [B(t) — B(s)] and the increments are independent and normally
distributed, the conditional distribution of B(t) given B(s) is N(B(s), t — s).
(b) Use the time-inversion property to see that the pair (B(s), B(t)) has the same dis-

tribution as the pair (B(s), B(t)) = (sB(),tB(1)). We have
B(s) = sB(%) = s(B(}) + [B(2) - B(})]) = $B() + s[B(L) - B(})),

t s t

where the term [B(1) — B(1)] is independent of B(t) and normally distributed with

mean 0 and variance + — 1. So the conditional distribution of B(s) given B(t) is

N(EB(E), 5(t - 5)). '

(10) (a) Since B is a Gaussian process, any linear combination of terms B(t;) is normally
distributed. Now any linear combination of terms X (¢;) or terms Y (¢;) reduces to a linear
combination of terms B(t;), and is hence normally distributed. Thus X and Y are both
Gaussian processes.

(b) Assume s < t. Then a simple calculation gives
Cov(X(s), X(t)) = Cov(Y(s),Y(t)) = s(1 —t).
(c) It is clear for X, and for Y continuity is clear on [0, 1). To prove that Y(¢) is almost
1

surely continuous at ¢ = 1, write T' = 1=, then

. o _ . l . _ _
P(ltlTr?Y(t) =0) = ]P’(ZLITI(?O +B(T'—1)=0)=1

by Corollary 1.11 in Morters—Peres.
Both X and Y are the ‘Brownian bridge’, which may also be interpreted as standard
BM conditioned to hit 0 att = 1.
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