Examiner: J. Björnberg

The actual exam will consist of 6–8 questions for a total maximum of 50 points. Any bonus points are added on top, and grading is as follows. CTH: 20, 30, 40 points for 3, 4, 5 respectively. GU: 20, 35 points for G, VG respectively. PhD-students: 20 points for pass.

No tools allowed (pen is OK).

- 1. Let X_1, X_2, X_3, \ldots be i.i.d. with $\mathbb{P}(X_i = 1) = 1 \mathbb{P}(X_i = -1) = p$ and let $S_n = X_1 + \ldots + X_n$ (with $S_0 = 0$).
 - (a) Show that $\{S_n = 0 \text{ i.o.}\}$ is not a tail-event for the X_i . (2p)
 - (b) Show that if $p \neq \frac{1}{2}$ then $\mathbb{P}(S_n = 0 \text{ i.o.}) = 0.$ (2p)
 - (c) Show that for any x > 0, the event

$$\left\{ \liminf_{n \to \infty} \frac{S_n}{\sqrt{n}} \le -x \right\} \cap \left\{ \limsup_{n \to \infty} \frac{S_n}{\sqrt{n}} \ge x \right\}$$

is a tail-event, and deduce that if $p = \frac{1}{2}$ then $\mathbb{P}(S_n = 0 \text{ i.o.}) = 1.$ (2p)

- 2. Let X_1, X_2, \ldots be an i.i.d. sequence of integrable random variables.
 - (a) Define a *stopping time* with respect to this sequence. (1p)
 - (b) State and prove *Wald's identity*. (2p)
 - (c) Assume now that the X_i satisfy $\mathbb{P}(X_i > 0) = 1$ and let $N(t) = \max\{n \ge 1 : X_1 + \dots + X_n \le t\}$ be a renewal process. Show that T = N(t) + 1 is a stopping time, for any t > 0. (2p)
 - (d) Give an example of a random time T, measurable with respect to the sequence X_1, X_2, \ldots , such that Wald's identity does not hold for the time T. (2p)
- 3. This problem goes through a proof of the ergodic theorem which is a bit different from that in the lectures and the book. *Remark: this question is certainly at the hard end of the spectrum for exam questions...*

Let X_1, X_2, \ldots be a strongly stationary and ergodic sequence such that $\mathbb{E}|X_1| < \infty$ and $\mu = \mathbb{E}[X_1] > 0$. Let $S_n = X_1 + \cdots + X_n$ and $J_n = \min_{1 \le k \le n} S_k$.

- (a) Show that $\mathbb{E}[J_n] = \mu + \mathbb{E}[\min\{0, J_{n-1}\}]$ for any $n \ge 2$. (2p)
- (b) Let $x^+ = \max\{0, x\}$ denote the positive part of x. Deduce from (a) that

$$\sum_{k=1}^{n} \mathbb{E}[J_k^+] = n\mu + \mathbb{E}[J_1 - J_{n+1}] \quad \text{for } n \ge 2,$$

and hence that $\mathbb{E}[J_n^+] \ge \mu$ for any $n \ge 2$. (3p)

- (c) Deduce that $\mathbb{P}(\inf_{n \ge 1} S_n > -\infty) = 1.$ (2p)
- (d) Use this to establish that $\frac{1}{n}S_n \to \mu$ almost surely as $n \to \infty$. (2p)

 $Continued \rightarrow$

Good luck!

- 4. Let N(t) be a renewal-process whose inter-arrival times are uniformly distributed in [0, 1].
 - (a) Write down the renewal equation for $m(t) = \mathbb{E}[N(t)]$ and use it to show that $m(t) = e^t 1$ for $t \in [0, 1]$. (2p)
 - (b) Work out a renewal-type equation for the second moment $m_2(t) = \mathbb{E}[N(t)^2]$ and use it to find a formula for the variance of N(t) for $t \in [0, 1]$. (3p)
- 5. Let $(\mathcal{F}_n)_{n\geq 0}$ be a filtration in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.
 - (a) Define the following terms: martingale, submartingale and predictable process (also called previsible). (3p)
 - (b) Assume that $(X_n)_{n\geq 0}$ is an integrable submartingale. Define a process $(Z_n)_{n\geq 0}$ by $Z_0 = 0$ and $Z_n = Z_{n-1} + \mathbb{E}[X_n | \mathcal{F}_{n-1}] X_{n-1}$. Show that $(Z_n)_{n\geq 0}$ is predictable, and conclude that any integrable submartingale can be written as a sum of an increasing predictable process and a martingale. (3p)
 - (c) Assume that $(Y_n)_{n\geq 0}$ is a martingale such that $Y_0 = 0$ and $\mathbb{E}(Y_n^2) < \infty$ for all $n \geq 0$, and let $X_n = Y_n^2$. Show that $(X_n)_{n\geq 0}$ is a submartingale, and that the corresponding predictable process $(Z_n)_{n\geq 0}$ may be written as

$$Z_n = \sum_{m=1}^n \mathbb{E}[(Y_m - Y_{m-1})^2 \mid \mathcal{F}_{m-1}].$$
 (3p)

(d) Under the same assumptions as the previous item, show that Z_n has an a.s. limit Z_{∞} (possibly taking the value ∞) and that $\mathbb{E}[\sup_{n\geq 0} Y_n^2] \leq 4\mathbb{E}[Z_{\infty}]$. *Hint: use Doob's* L^r *-inequality.* (3p)