
MOCK EXAMINATION 2022
Stochastic Processes MVE330/MSF200

Examiner:
J. Björnberg

The actual exam will consist of 6–8 questions for a total maximum of 50 points. Any bonus
points are added on top, and grading is as follows. CTH: 20, 30, 40 points for 3, 4, 5 respecti-
vely. GU: 20, 35 points for G, VG respectively. PhD-students: 20 points for pass.

No tools allowed (pen is OK). Good luck!

1. This is Exercise 7.3.3 in Grimmett–Stirzaker

2. (a) See p. 418 of Grimmett–Stirzaker

(b) See Lemma 10.2.9 of Grimmett–Stirzaker

(c) See p. 418 of Grimmett–Stirzaker

(d) For example T = max{k ≥ 1 : X1, . . . , Xk <
1
2E[X1]}

3. (a) We have that

Jn = X1 + min{0, X2, X2 +X3, . . . , X2 +X3 + · · ·+Xn} = X1 + min{0, J ′n−1}

where J ′n−1 has the same distribution as Jn−1. Thus E[Jn] = µ+ E[min{0, J ′n−1}] =
µ+ E[min{0, Jn−1}].

(b) Using min{0, Jn−1} − Jn−1 = −max{0, Jn−1} = J+
n−1 we get from (a) that E[Jn −

Jn−1] = µ− E[J+
n−1]. Summing these from 2 to n+ 2 gives

n∑
k=1

E[J+
k ] = nµ+ E[J1 − Jn+1] ≥ nµ, for n ≥ 2.

where we used that J1 ≥ J2 ≥ · · · ≥ Jn+1. Then for any m ≥ 2,

µ ≤ 1

n

n∑
k=1

E[J+
k ] =

1

n

m−1∑
k=1

E[J+
k ] +

1

n

n∑
k=m

E[J+
k ] ≤ 1

n

m−1∑
k=1

E[J+
k ] +

n−m+ 1

n
E[J+

m].

where we used that J+
1 ≥ J+

2 ≥ · · · ≥ J+
n+1. Letting n→∞ gives E[J+

m] ≥ µ for any
m ≥ 2.

(c) We have that Jn → infn≥1 Sn =: J∞ almost surely and the limit is decreasing.
Then E[J+

∞] ≥ µ > 0 by the previous part and monotone convergence. But then
P(J∞ > 0) > 0 which implies P(J∞ > −∞) > 0. The event {J∞ > −∞} is shift-
invariant so then P(J∞ > −∞) = 1.

(d) We get that P(lim infn→∞ Sn/n ≥ 0) = 1 for any Xn as in the statement. Applying
this to X̃n = Xn − c, where c < µ, gives P(lim infn→∞ Sn/n ≥ c) = 1 and then
P(lim infn→∞ Sn/n ≥ µ) = 1. Applying it then to −Xn gives the reverse inequality
P(lim supn→∞ Sn/n ≤ µ) = 1 also.

4. (a) The renewal equation for t ∈ [0, 1] is

m(t) = F (t) +

∫ t

0
m(t− u) dF (u) = t+

∫ t

0
m(u) du

where we used a change of variables. Then m′(t) = 1 + m(t) with m(0) = 0 which
gives m(t) = et − 1 as claimed.



(b) We have N(t) = 1I{X1 ≤ t}(1+ Ñ(t−X1)) where Ñ(t) is a copy of N(t) independent
of X1. Then

N(t)2 = 1I{X1 ≤ t}(1 + 2Ñ(t−X1) + Ñ(t−X1)
2).

which gives (below we always assume t ∈ [0, 1])

m2(t) := E[N(t)2] = H(t) +

∫ t

0
m2(t− u) dF (u)

where

H(t) = F (t) + 2

∫ t

0
m(t− u) dF (u) = 2m(t)− F (t).

Using Thm 10.1.11 this gives

m2(t) = H(t) +

∫ t

0
H(t− u) dm(u) = 1− et + 2tet.

Here we used that dm(u) = m′(u)du = eudu and performed the integral. Then

Var(N(t)) = m2(t)−m(t)2 = 2tet − e2t + et.

5. (a) See the book.

(b) By induction Zn−1 is Fn−2-measurable, and the other terms E[Xn | Fn−1] and Xn−1
are Fn−1-measurable, so Zn is Fn−1-measurable as claimed. We have Zn ≥ Zn−1 since
Xn is a submartingale. Further, Zn is integrable for each n by induction. Defining
Mn = Xn − Zn we readily see that Mn is a martingale, and Xn = Mn + Zn is the
required decomposition.

(c) By the conditional Jensen inequality: E[Y 2
n | Fn−1] ≥ E[Yn | Fn−1]

2 = Y 2
n−1. It readily

follows that (Xn)n≥0 is a submartingale. We have that

Zn =

n∑
m=1

(
E[Y 2

m | Fm−1]− Y 2
m−1

)
=

n∑
m=1

E[Y 2
m − Y 2

m−1 | Fm−1].

Note that YmYm−1 is integrable (by Cauchy–Schwarz) and E[YmYm−1 | Fm−1] =
Ym−1E[Ym | Fm−1] = Y 2

m−1 so that

E[(Ym−Ym−1)2 | Fm−1] = E[Y 2
m +Y 2

m−1−2YmYm−1 | Fm−1] = E[Y 2
m−Y 2

m−1 | Fm−1].

The claim follows.

(d) The a.s. limit Z∞ exists since Zn ≥ Zn−1 for each n ≥ 1. Next, we use Doob’s Lr-
inequality: if r > 1 and Xn is a non-negative submartingale such that E[Xr

n] < ∞
for all n ≥ 0 then E[max0≤m≤nX

r
m] ≤

(
r

r−1
)rE[Xr

n]. We can use this with r = 2 and

Xn = |Yn| which is a submartingale by the same argument as for Y 2
n . We get that

E[max0≤m≤n Y
2
m] ≤ 4E[Y 2

n ]. Next, Y 2
n = Mn +Zn as above, where Mn is a martingale

satisfying M0 = 0. Then E[Y 2
n ] = E[Zn]. Also, Zn is non-negative and increasing so

using the monotone convergence theorem:

E
[

sup
n≥0

Y 2
n

]
= lim

n→∞
E
[

max
0≤m≤n

Y 2
m

]
≤ 4 lim

n→∞
E[Zn] = 4E[Z∞].


