The actual exam will consist of $6-8$ questions for a total maximum of 50 points. Any bonus points are added on top, and grading is as follows. CTH: 20, 30, 40 points for $3,4,5$ respectively. GU: 20, 35 points for G, VG respectively. PhD-students: 20 points for pass.

No tools allowed (pen is OK).

Good luck!

1. This is Exercise 7.3.3 in Grimmett-Stirzaker
2. (a) See p. 418 of Grimmett-Stirzaker
(b) See Lemma 10.2.9 of Grimmett-Stirzaker
(c) See p. 418 of Grimmett-Stirzaker
(d) For example $T=\max \left\{k \geq 1: X_{1}, \ldots, X_{k}<\frac{1}{2} \mathbb{E}\left[X_{1}\right]\right\}$
3. (a) We have that

$$
J_{n}=X_{1}+\min \left\{0, X_{2}, X_{2}+X_{3}, \ldots, X_{2}+X_{3}+\cdots+X_{n}\right\}=X_{1}+\min \left\{0, J_{n-1}^{\prime}\right\}
$$

where J_{n-1}^{\prime} has the same distribution as J_{n-1}. Thus $\mathbb{E}\left[J_{n}\right]=\mu+\mathbb{E}\left[\min \left\{0, J_{n-1}^{\prime}\right\}\right]=$ $\mu+\mathbb{E}\left[\min \left\{0, J_{n-1}\right\}\right]$.
(b) Using $\min \left\{0, J_{n-1}\right\}-J_{n-1}=-\max \left\{0, J_{n-1}\right\}=J_{n-1}^{+}$we get from (a) that $\mathbb{E}\left[J_{n}-\right.$ $\left.J_{n-1}\right]=\mu-\mathbb{E}\left[J_{n-1}^{+}\right]$. Summing these from 2 to $n+2$ gives

$$
\sum_{k=1}^{n} \mathbb{E}\left[J_{k}^{+}\right]=n \mu+\mathbb{E}\left[J_{1}-J_{n+1}\right] \geq n \mu, \quad \text { for } n \geq 2
$$

where we used that $J_{1} \geq J_{2} \geq \cdots \geq J_{n+1}$. Then for any $m \geq 2$,

$$
\mu \leq \frac{1}{n} \sum_{k=1}^{n} \mathbb{E}\left[J_{k}^{+}\right]=\frac{1}{n} \sum_{k=1}^{m-1} \mathbb{E}\left[J_{k}^{+}\right]+\frac{1}{n} \sum_{k=m}^{n} \mathbb{E}\left[J_{k}^{+}\right] \leq \frac{1}{n} \sum_{k=1}^{m-1} \mathbb{E}\left[J_{k}^{+}\right]+\frac{n-m+1}{n} \mathbb{E}\left[J_{m}^{+}\right]
$$

where we used that $J_{1}^{+} \geq J_{2}^{+} \geq \cdots \geq J_{n+1}^{+}$. Letting $n \rightarrow \infty$ gives $\mathbb{E}\left[J_{m}^{+}\right] \geq \mu$ for any $m \geq 2$.
(c) We have that $J_{n} \rightarrow \inf _{n \geq 1} S_{n}=: J_{\infty}$ almost surely and the limit is decreasing. Then $\mathbb{E}\left[J_{\infty}^{+}\right] \geq \mu>0$ by the previous part and monotone convergence. But then $\mathbb{P}\left(J_{\infty}>0\right)>0$ which implies $\mathbb{P}\left(J_{\infty}>-\infty\right)>0$. The event $\left\{J_{\infty}>-\infty\right\}$ is shiftinvariant so then $\mathbb{P}\left(J_{\infty}>-\infty\right)=1$.
(d) We get that $\mathbb{P}\left(\liminf _{n \rightarrow \infty} S_{n} / n \geq 0\right)=1$ for any X_{n} as in the statement. Applying this to $\tilde{X}_{n}=X_{n}-c$, where $c<\mu$, gives $\mathbb{P}\left(\liminf _{n \rightarrow \infty} S_{n} / n \geq c\right)=1$ and then $\mathbb{P}\left(\liminf _{n \rightarrow \infty} S_{n} / n \geq \mu\right)=1$. Applying it then to $-X_{n}$ gives the reverse inequality $\mathbb{P}\left(\lim \sup _{n \rightarrow \infty} S_{n} / n \leq \mu\right)=1$ also.
4. (a) The renewal equation for $t \in[0,1]$ is

$$
m(t)=F(t)+\int_{0}^{t} m(t-u) d F(u)=t+\int_{0}^{t} m(u) d u
$$

where we used a change of variables. Then $m^{\prime}(t)=1+m(t)$ with $m(0)=0$ which gives $m(t)=e^{t}-1$ as claimed.
(b) We have $N(t)=\mathbb{I}\left\{X_{1} \leq t\right\}\left(1+\tilde{N}\left(t-X_{1}\right)\right)$ where $\tilde{N}(t)$ is a copy of $N(t)$ independent of X_{1}. Then

$$
N(t)^{2}=\mathbb{I}\left\{X_{1} \leq t\right\}\left(1+2 \tilde{N}\left(t-X_{1}\right)+\tilde{N}\left(t-X_{1}\right)^{2}\right) .
$$

which gives (below we always assume $t \in[0,1]$)

$$
m_{2}(t):=\mathbb{E}\left[N(t)^{2}\right]=H(t)+\int_{0}^{t} m_{2}(t-u) d F(u)
$$

where

$$
H(t)=F(t)+2 \int_{0}^{t} m(t-u) d F(u)=2 m(t)-F(t) .
$$

Using Thm 10.1.11 this gives

$$
m_{2}(t)=H(t)+\int_{0}^{t} H(t-u) d m(u)=1-e^{t}+2 t e^{t}
$$

Here we used that $d m(u)=m^{\prime}(u) d u=e^{u} d u$ and performed the integral. Then

$$
\operatorname{Var}(N(t))=m_{2}(t)-m(t)^{2}=2 t e^{t}-e^{2 t}+e^{t} .
$$

5. (a) See the book.
(b) By induction Z_{n-1} is \mathcal{F}_{n-2}-measurable, and the other terms $\mathbb{E}\left[X_{n} \mid \mathcal{F}_{n-1}\right]$ and X_{n-1} are \mathcal{F}_{n-1}-measurable, so Z_{n} is \mathcal{F}_{n-1}-measurable as claimed. We have $Z_{n} \geq Z_{n-1}$ since X_{n} is a submartingale. Further, Z_{n} is integrable for each n by induction. Defining $M_{n}=X_{n}-Z_{n}$ we readily see that M_{n} is a martingale, and $X_{n}=M_{n}+Z_{n}$ is the required decomposition.
(c) By the conditional Jensen inequality: $\mathbb{E}\left[Y_{n}^{2} \mid \mathcal{F}_{n-1}\right] \geq \mathbb{E}\left[Y_{n} \mid \mathcal{F}_{n-1}\right]^{2}=Y_{n-1}^{2}$. It readily follows that $\left(X_{n}\right)_{n \geq 0}$ is a submartingale. We have that

$$
Z_{n}=\sum_{m=1}^{n}\left(\mathbb{E}\left[Y_{m}^{2} \mid \mathcal{F}_{m-1}\right]-Y_{m-1}^{2}\right)=\sum_{m=1}^{n} \mathbb{E}\left[Y_{m}^{2}-Y_{m-1}^{2} \mid \mathcal{F}_{m-1}\right] .
$$

Note that $Y_{m} Y_{m-1}$ is integrable (by Cauchy-Schwarz) and $\mathbb{E}\left[Y_{m} Y_{m-1} \mid \mathcal{F}_{m-1}\right]=$ $Y_{m-1} \mathbb{E}\left[Y_{m} \mid \mathcal{F}_{m-1}\right]=Y_{m-1}^{2}$ so that
$\mathbb{E}\left[\left(Y_{m}-Y_{m-1}\right)^{2} \mid \mathcal{F}_{m-1}\right]=\mathbb{E}\left[Y_{m}^{2}+Y_{m-1}^{2}-2 Y_{m} Y_{m-1} \mid \mathcal{F}_{m-1}\right]=\mathbb{E}\left[Y_{m}^{2}-Y_{m-1}^{2} \mid \mathcal{F}_{m-1}\right]$.
The claim follows.
(d) The a.s. limit Z_{∞} exists since $Z_{n} \geq Z_{n-1}$ for each $n \geq 1$. Next, we use Doob's L^{r} inequality: if $r>1$ and X_{n} is a non-negative submartingale such that $\mathbb{E}\left[X_{n}^{r}\right]<\infty$ for all $n \geq 0$ then $\mathbb{E}\left[\max _{0 \leq m \leq n} X_{m}^{r}\right] \leq\left(\frac{r}{r-1}\right)^{r} \mathbb{E}\left[X_{n}^{r}\right]$. We can use this with $r=2$ and $X_{n}=\left|Y_{n}\right|$ which is a submartingale by the same argument as for Y_{n}^{2}. We get that $\mathbb{E}\left[\max _{0 \leq m \leq n} Y_{m}^{2}\right] \leq 4 \mathbb{E}\left[Y_{n}^{2}\right]$. Next, $Y_{n}^{2}=M_{n}+Z_{n}$ as above, where M_{n} is a martingale satisfying $M_{0}=0$. Then $\mathbb{E}\left[Y_{n}^{2}\right]=\mathbb{E}\left[Z_{n}\right]$. Also, Z_{n} is non-negative and increasing so using the monotone convergence theorem:

$$
\mathbb{E}\left[\sup _{n \geq 0} Y_{n}^{2}\right]=\lim _{n \rightarrow \infty} \mathbb{E}\left[\max _{0 \leq m \leq n} Y_{m}^{2}\right] \leq 4 \lim _{n \rightarrow \infty} \mathbb{E}\left[Z_{n}\right]=4 \mathbb{E}\left[Z_{\infty}\right]
$$

