This examination consists of 7 questions for a total maximum of 50 points. Any bonus points are added on top, and grading is as follows. CTH: 20, 30,40 points for $3,4,5$ respectively. GU: 20, 35 points for G, VG respectively. PhD-students: 20 points for pass.

No tools allowed (pen is OK).

1. (a) State the two Borel-Cantelli lemmas for a sequence of events A_{1}, A_{2}, \ldots in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Randomly sample a number X in $[0,1]$ as follows: let X_{1}, X_{2}, \ldots be independent random variables uniformly distributed in $\{0,1, \ldots, 9\}$ and let X be the number such that X_{n} is the n :th digit in the decimal expansion of X.
(b) Show that the pattern 123456789 appears infinitely often in the decimal expansion of X, with probability 1 .
(c) Let Y_{n} be the length of the 'run' of 0's starting from position n, that is $Y_{n}=\sup \{k \geq$ $1: X_{i}=0$ for all $\left.n \leq i \leq n+k-1\right\}($ where $\sup \varnothing=0)$. Show that

$$
\begin{equation*}
\mathbb{P}\left(\limsup _{n \rightarrow \infty} \frac{Y_{n}}{\log _{10} n} \leq 1\right)=1 \tag{3p}
\end{equation*}
$$

2. Recall that a stochastic process $\left(Y_{n}\right)_{n \geq 0}$ is uniformly integrable if

$$
\sup _{n \geq 0} \mathbb{E}\left[\left|Y_{n}\right| \mathbb{I}\left\{\left|Y_{n}\right| \geq a\right\}\right] \rightarrow 0, \quad \text { as } a \rightarrow \infty
$$

(a) Show that a process $\left(Y_{n}\right)_{n \geq 0}$ of the form $Y_{n}=\mathbb{E}\left[Y \mid \mathcal{F}_{n}\right]$, for $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ a sequence of σ-algebras and Y an integrable random variable, is uniformly integrable.
(b) Show that a process $\left(Y_{n}\right)_{n \geq 0}$, such that $\sup _{n \geq 0} \mathbb{E}\left[\left|Y_{n}\right|^{r}\right]<\infty$ for some $r>1$, is uniformly integrable.
(c) Assuming that a stochastic process $\left(Y_{n}\right)_{n \geq 0}$ is uniformly integrable, and that $Y_{n} \rightarrow Y$ almost surely, prove that $\mathbb{E}|Y|<\infty$.
3. (a) Define what is means for $(N(t): t \geq 0)$ to be a renewal process.
(b) State and prove the renewal equation for the function $m(t)=\mathbb{E}[N(t)]$.
(c) Trams stop at Järntorget on average twice per minute, and for tram i a random number Y_{i} of passengers get off while Z_{i} get on. Making reasonable assumptions, and stating clearly any standard results you use, find an expression for the long-term average number of passengers using the tram stop.
4. Let $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ be a filtration of a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and $\left(Y_{n}\right)_{n \geq 0}$ a martingale.
(a) Define a stopping time T as well as the σ-algebra \mathcal{F}_{T}.
(b) Prove that for each n the random variable $Y_{T \wedge n}$ is integrable, i.e. $\mathbb{E}\left|Y_{T \wedge n}\right|<\infty$. (2p)
(c) Assuming that $\mathbb{P}(T<\infty)=1$, prove that $\mathbb{E}\left[Y_{n} \mid \mathcal{F}_{T}\right]=Y_{T \wedge n}$.
5. In this problem, you may assume the results of the previous problem, as well as the following: If $\left(Y_{n}\right)_{n \geq 0}$ is a martingale and T a stopping time, then $\left(Y_{T \wedge n}\right)_{n \geq 0}$ is a martingale.
Let X_{1}, X_{2}, \ldots be independent random variables with $\mathbb{P}\left(X_{i}=+1\right)=\mathbb{P}\left(X_{i}=-1\right)=\frac{1}{2}$ and let $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$. Also let $S_{0}=0$ and $S_{n}=X_{1}+\cdots+X_{n}$.
(a) For $\theta>0$, show that $Y_{n}=\frac{\exp \left(\theta S_{n}\right)}{\cosh (\theta)^{n}}$ is a martingale.
(b) For $k \geq 0$, let $T_{k}=\inf \left\{n \geq 0: S_{n}=k\right\}$. Carefully prove that $\mathbb{P}\left(T_{k}<\infty\right)=1$ and establish the following formula, valid for $\theta>0$:

$$
\begin{equation*}
\mathbb{E}\left[\cosh (\theta)^{-T_{k}}\right]=e^{-\theta k} \tag{3p}
\end{equation*}
$$

(c) Show that $\mathbb{E}\left[Y_{T_{k}} \mid \mathcal{F}_{T_{k-1}}\right]=Y_{T_{k-1}}$.
(d) Deduce that the differences $\left(T_{k}-T_{k-1}\right)_{k \geq 1}$ are independent copies of T_{1}.
6. This problem concerns Pólya's urn: starting with one blue and one red ball in an urn, we repeatedly (and independently) pick a ball from the urn uniformly at random and replace it with two balls of the same colour. Let R_{n} denote the number of red balls after n steps, and $Y_{n}=R_{n} /(n+2)$ the fraction of red balls. Consider the filtration given by $\mathcal{F}_{n}=\sigma\left(R_{0}, R_{1}, \ldots, R_{n}\right)$.
(a) Show that Y_{n} is a martingale with respect to this filtration, which converges almost surely and in L^{1} to some random variable Y_{∞}.
(b) Show that, with probability at least $\frac{2}{3}$, the proportion of red balls stays below $\frac{3}{4}$ forever.
(c) Calculate the probability of the first n draws consisting of m red balls followed by $n-m$ blue balls.
(d) Calculate the probability $\mathbb{P}\left(R_{n}=m+1\right)$. Use your expression to show that Y_{∞} is uniformly distributed.
7. (a) Define what it means for $(B(t))_{t \geq 0}$ to be a standard Brownian motion.
(b) If $(B(t))_{t \geq 0}$ is a standard Brownian motion and $a>0$ is a constant, show that $\left(\frac{1}{a} B\left(a^{2} t\right)\right)_{t \geq 0}$ is a standard Brownian motion.
(c) If $(B(t))_{t \geq 0}$ is a standard Brownian motion, prove that, with probability 1 , there is no interval $[a, b]$ with $a<b$ on which $B(t)$ is monotone (i.e. either increasing or decreasing).

