
SOLUTIONS 2022-06-03 Stochastic Processes MVE330/MSF200

1. (a) The first Borel–Cantelli Lemma: If
∑∞

k=1 P(Ak) <∞ then P(Ak i.o.) = 0.
The second Borel–Cantelli Lemma: If the Ak are independent and

∑∞
k=1 P(Ak) =∞

then P(Ak i.o.) = 1.

(b) Let Ak be the event that the pattern 123456789 occurs starting from position 9k.
Then the Ak are independent and P(Ak) = 10−9. So

∑∞
k=1 P(Ak) =∞ and by BCII

Ak happens infinitely often.

(c) For any integer r ≥ 1 we have P(Yn ≥ r) = 10−r. So for any ε > 0 we have

P(Yn ≥ (1 + ε) log10 n) = 10−d(1+ε) log10 ne ≤ n−(1+ε).

These are summable so by BCI we have P
(
Yn ≥ (1 + ε) log10 n i.o.

)
= 0. Then

P
(

lim sup
n→∞

Yn
log10 n

< 1 + ε
)

= 1

which gives the claim.

2. (a) By the conditional Jensen inequality, |Xn| ≤ E[|Y | | Fn] =: Zn. This implies that

E[|Xn|1I{|Xn| ≥ a}] ≤ E[|Zn|1I{Zn ≥ a}] = E[|Y |1I{Zn ≥ a}]
≤ E[|Y |1I{|Y | ≥

√
a}] +

√
aP(Zn ≥ a)

≤ E[|Y |1I{|Y | ≥
√
a}] +

√
a
E[Zn]

a

= E[|Y |1I{|Y | ≥
√
a}] +

E[|Y |]√
a
.

The right side goes to zero as a → ∞ since Y is integrable, and it does not depend
on n.

(b) Writing M = supn≥0 E[|Yn|r] we have

E[|Yn|1I{|Yn| ≥ a}] = E[|Yn|r 1
|Yn|r−1 1I{|Yn| ≥ a}] ≤ 1

ar−1E[|Yn|r] ≤
M

ar−1
→ 0, as a→∞.

(c) By Fatou’s Lemma,

E|Y | = E[ lim
n→∞

|Yn|] ≤ lim inf
n→∞

E|Yn| = lim inf
n→∞

(
E[|Yn|1I{|Yn| ≥ a}] + E[|Yn|1I{|Yn| < a}]

)
≤ a+ sup

n≥0
E[|Yn|1I{|Yn| ≥ a}].

For large enough a > 0, the right-hand-side is at most a+ 1.

3. (a) Renewal process: N(t) = #{k ≥ 1 : X1 + X2 + · · · + Xk ≤ t} where X1, X2, . . . are
i.i.d. non-negative random variables.

(b) The renewal equation: If the Xi are integrable and P(Xi > 0) = 1, then with F (t) =
P(Xi ≤ t),

m(t) = F (t) +

∫ t

0
m(t− s) dF (s).

Proof: Let Ñ(t) = #{k ≥ 2 : X2 + · · ·+Xk ≤ t}. Then

m(t) = E[N(t)1I{X1 > t}] + E[N(t)1I{X1 ≤ t}] = 0 + E[(1 + Ñ(t−X1))1I{X1 ≤ t}]
= F (t) + E

[
E[Ñ(t−X1) | X1]1I{X1 ≤ t}

]
= F (t) + E[m(t−X1)1I{X1 ≤ t}],

as claimed. We used that, given X1, the process Ñ(t −X1) is an independent copy
of N(t), so that E[Ñ(t−X1) | X1]1I{X1 ≤ t} = m(t−X1)1I{X1 ≤ t}.



(c) Assume that the triples (Xi, Yi, Zi) are i.i.d. where Xi are the inter-tram times. Let

Ci = Yi + Zi be the number of users of the i:th tram. Then C(t) =
∑N(t)

i=1 Ci is a
renewal-reward process, so by the renewal-reward theorem

C(t)

t
→ E[C1]

E[X1]
= 2(E[Y1] + E[Z1])

almost surely and in mean.

4. (a) Stopping time: random variable T with values in {0, 1, 2, . . . } ∪ {∞} such that for
each n ≥ 0 we have {T ≤ n} ∈ Fn.
The σ-algebra FT : all A ∈ F such that A ∩ {T = n} ∈ Fn for all n ≥ 0.

(b) Since

YT∧n =
n−1∑
k=0

Yk1I{T = k}+ Yn1I{T ≥ n}

we have

|YT∧n| ≤
n∑
k=0

|Yk|,

all terms of which have finite expectation since this is part of being a martingale.

(c) Let A ∈ FT and write W = E[Yn | FT ]. Then

E[W1IA] = E[Yn1IA] =
n−1∑
k=0

E[Yn1IA∩{T=k}] + E[Yn1IA∩{T≥n}]

=

n−1∑
k=0

E
[
E[Yn | Fk]1IA∩{T=k}

]
+ E[Yn1IA∩{T≥n}]

=
n−1∑
k=0

E
[
Yk∧n1IA∩{T=k}

]
+ E[Yn1IA∩{T≥n}]

= E[YT∧n1IA],

as required. Here we used the martingale property which means that E[Yn | Fk] =
Yk∧n. (Note that we did not need to use P(T <∞) = 1 in fact.)

5. (a) Clearly it is adapted and integrable. We have

E
[

eθSn

cosh(θ)n | Fn−1
]

= eθSn−1

cosh(θ)n−1E
[
eθXn

cosh(θ) | Fn−1
]
.

But
E
[
eθXn

cosh(θ) | Fn−1
]

= E
[
eθXn

cosh(θ)

]
= 1

by independence and explicit computation.

(b) The process YTk∧n is a martingale, thus E[YTk∧n] = Y0 = 1. As n→∞, we have that
YTk∧n → YTk1I{Tk < ∞} a.s. Moreover, since θ > 0 we have YTk∧n ≤ e−kθ so by the
bounded convergence theorem we get E[YTk1I{Tk <∞}] = 1, that is

E
[

ekθ

cosh(θ)Tk
1I{Tk <∞}

]
= 1, or E

[
cosh(θ)−Tk1I{Tk <∞}

]
= e−kθ.

Letting θ ↓ 0 and applying the monotone convergence theorem we get P(Tk <∞) = 1,
as required. The formula also follows.



(c) Since YTk∧n is a martingale and we now know that P(Tk−1 < ∞) = 1, the previous
problem tells us that E[YTk∧n | FTk−1

] = YTk∧n∧Tk−1
= YTk−1∧n. We used that Tk−1 ≤

Tk. Using that P(Tk−1 < ∞) = 1 we see that YTk−1∧n → YTk−1
a.s., thus E[YTk∧n |

FTk−1
]→ YTk−1

a.s. To conclude, take A ∈ FTk−1
and note that

E
[
E[YTk∧n | FTk−1

]1IA
]

= E[YTk∧n1IA].

The right side converges to E[YTk1IA] due to a.s. convergence and the bounded con-
vergence theorem. The left side converges to E[YTk−1

1IA] by what was shown above
(and the bounded convergence theorem). Thus E[YTk | FTk−1

] = YTk−1
as claimed.

(d) The previous part says

eθ(k−1)

cosh(θ)Tk−1
= E

[
eθk

cosh(θ)Tk
| FTk−1

]
= E

[
eθk

cosh(θ)Tk−Tk−1
| FTk−1

]
1

cosh(θ)Tk−1

where the factor we took out was measurable and bounded. Performing cancellations
and taking expectation gives

E
[

1

cosh(θ)Tk−Tk−1

]
= e−θ.

Since

(e−θ)k = E
[

1
cosh(θ)Tk

]
= E

[ k∏
i=0

1
cosh(θ)Ti−Ti−1

]
and since the probability generating function determines the distribution, we conclude
the claim.

6. (a) We have

E[Rn+1 | Fn] = Rn
n+2−Rn
n+2 + (Rn + 1) Rn

n+2 = (n+3)Rn
n+2 .

Thus
E[Yn | Fn] = E

[Rn+1

n+3 | Fn
]

= Rn
n+2 = Yn

as required. Also, 0 ≤ Yn ≤ 1 and a bounded process is UI. So by the UI martingale
convergence theorem, Yn → Y∞ a.s. and in L1 for some Y∞.

(b) We use the maximal inequality: if (Yn)n≥0 is a submartingale then for any x > 0 we
have

P
(

max
1≤k≤n

Yk ≥ x
)
≤ 1

x
E[Y +

n ].

By the maximal inequality, and E[Y +
n ] = E[Yn] = Y0 = 1

2 ,

P
(

sup
n≥1

Yn ≥ 3
4

)
= lim

n→∞
P
(

max
1≤k≤n

Yk ≥ 3
4

)
≤ 2

3 .

(c) The probability of drawing m red balls followed by n−m blue balls is

1

2

2

3
· · · m

m+ 1
· 1

m+ 2

2

m+ 3
· · · n−m

n+ 1
=
m!(n−m)!

(n+ 1)!
.

(d) The probability of picking m red balls and n−m blue balls, in some other fixed order,
is obtained by permuting the factors in the numerator of the previous expression.
That is, all such sequences of picks have the same probability. There are

(
n
m

)
such

sequences, thus

P(Rn = m+ 1) =

(
n

m

)
m!(n−m)!

(n+ 1)!
=

1

n+ 1
, 0 ≤ m ≤ n.



Then for any 0 ≤ t ≤ 1,

P(Yn ≤ t) = P(Rn ≤ bntc) =

bntc−1∑
m=0

P(Rn = m+ 1) =
bntc
n+ 1

→ t.

So Yn converges in distribution to a uniform random variable. Since we know that
Yn → Y∞ a.s., the limit Y∞ must be uniformly distributed.

7. (a) Starts at 0, increments independent and law B(t+s)−B(t) ∼ N(0, s), and continuous
with probability 1.

(b) All properties are immediate except for the distribution of the increments. But
B(a2t + a2s) − B(a2s) is normal with mean 0 and variance a2s, so dividing it by
a gives the correct variance s.

(c) By taking a union over a, b ∈ Q, suffices to consider fixed a, b and the event of being
increasing on [a, b]. We can subdivide [a, b] into n non-empty intervals on each of
which the increment is normally distributed with mean 0. Then the probability of
each of these increments being ≥ 0 is 2−n → 0.


