CHALMERS

Maskinteknik & Teknisk fysik & Teknisk matematik Dugga 1

10 september 2022,

Maskinteknik 12:00–14:00, Teknisk fysik & Teknisk matematik 12:00–14:00

Skrivtid: 120 min Inga hjälpmedel tillåtna. OBS! Lämna *inte* in kladdpapper och lösningsskisser till uppgifterna 1–20.

Eventuella frågor kan ställas per telefon. Jana Madjarova: 031-7723531

Namn och program:	
Personnummer	

A. Markera rätt svar genom att ringa in. (1p för varje rätt svar; OBS! Endast ett rätt svar per uppgift.)

1. Uttrycket
$$\left(\frac{1}{1+\sqrt{2}} - \frac{1}{1-\sqrt{2}}\right) / \left(\frac{1}{2} - \frac{1}{\sqrt{2}}\right)^{-1}$$
 är lika med
(a) $\sqrt{2} - 2$; (b) $-\frac{8}{2-\sqrt{2}}$; (c) $\frac{8}{2-\sqrt{2}}$; (d) inget av (a)-(c).

2. Uttrycket
$$\left(\frac{1}{\sqrt{1+a}} - \sqrt{1-a}\right) (1+\sqrt{1-a^2})$$
 är för $a=-\frac{3}{4}$ lika med (a) $-\frac{9}{8}$; (b) 0; (c) $\frac{9}{8}$; (d) inget av (a)-(c).

3. Mängden av alla reella x för vilka uttrycket $\frac{\sqrt{16-x^2}}{2-\sqrt{x+3}}$ är definierat (och antar reella värden) är

(a)
$$[-4,4];$$
 (b) $[-3,4];$ (c) $[-3,\infty);$ (d) inget av (a)-(c).

4.		En rektangels ena sida ökar med 40% . För att rektangelns area ska öka med 47% nåste den andra sidan öka med					
	(a) 7%;	(b) 5%;	(c) 3%;	(d) inget av (a)-(c).			
5.	$Om \log_x 3 \cdot \log_3 81 =$	2, så gälle	er att x är lika med				
	(a) $\frac{1}{3}$;	(b) $\sqrt{3}$;	(c)9;	(d) inget av (a)-(c).			
6.	6. Uttrycket $(3-\log_5 500) \cdot (\log_4 400-2) + \log_4 32$ är lika med						
	$(a)\frac{1}{2};$	(b) $\frac{3}{2}$;	(c) $\frac{5}{2}$;	(d) inget av (a)-(c).			
7.	Antalet lösningar till	l ekvatione	$n \sqrt{2x-3} + \sqrt{3x-3}$	$\overline{5} = 0 \text{ är}$			
	(a)0;	(b) 1:	(c) 2; (d) i	nget av (a)-(c).			
8.	Antalet lösningar till						
	(a) 0;	(b) 1;	(c) 2; (d) i	nget av (a)-(c).			
9.	Uttrycket tan 60° · co						
	(a)0;	(b) $\sqrt{3}$;	(c) $-\sqrt{3}$;	(d) annat tal.			
10.	Om $\tan \alpha = 2$, så är	$\cos 2\alpha$ lika	med				
	$(a) - \frac{3}{5};$	(b) $\frac{3}{5}$;	(c) $\pm \frac{3}{5}$;	(d) inget av (a)-(c).			
11.	Antalet lösningar till	l ekvatione	$n\cos x = 1 + \sin^2 x$	i intervallet $[-\pi,\pi]$ är			
	(a) 0;	(b)1;	(c) 2;	(d) inget av (a)-(c).			
12.	Antalet heltalslösnin		= &				
	(a) 0;	(b) 1;	(c)oändligt;	(d) inget av (a)-(c).			
13.	Givet är en cirkel me area har omkrets 56			na rektanglar som har maximal lika med			
	(a) $14\sqrt{2}$; (b) $7\sqrt{2}$; (c) det	finns ingen sådan re	ektangel; (d) inget av (a)-(c).			
14.	En triangels tre höjd						
	((a) triang	elns största vinkel ä	r spetsig;			
			elns största vinkel är				
			elns största vinkel är år inte att avgöra.	i trubbig;			
		(-) -0 80					

- 15. För triangeln ABC gäller att AB = 10 l.e., M är mittpunkten på sidan AB, CM = 7 l.e. och vinkeln vid M i triangeln BMC är 45° . Då gäller
 - (a) $AC^2 + BC^2 > 100$; (b) $AC^2 + BC^2 = 100$; (c) $AC^2 + BC^2 < 100$; (d) det finns ingen sådan triangel.
- B. Lös uppgifterna nedan; ange endast svar. (2p för varje rätt svar)
 - 16. Beräkna

$$\frac{\frac{2}{3} + \frac{1}{5}}{\frac{5}{12} - \frac{3}{7}}.$$

Ange svaret på formen $\frac{p}{q}$, där p, q är relativt prima heltal.

Svar:

17. Lös ekvationen $x^2 - (a+1)x + a + 4 = 0$. Ange summan av de reella a-värden, för vilka ekvationen har en dubbelrot.

Svar:

18. Bestäm definitionsmängden för funktionen $f(x) = \sqrt{\frac{4}{7-x}} - \sqrt{x-5}$. Ange antalet heltal i definitionsmängden.

Svar:

19. Givet är funktionen $f(x) = 2 - \frac{\cos 2x}{\cos^2 x}$, definierad i intervallet $\left[0, \frac{\pi}{4}\right]$. Ange funktionens största värde i intervallet.

Svar:

20. Lös olikheten

$$\sqrt{4x - 3 - x^2} < x - 3.$$

Ange antalet heltalslösningar.

Svar:

C. Ge fullständig lösning till uppgiften nedan. (max 5p)

Lös ekvationssystemet

$$\begin{cases} (x^2-y^2)(x+y) = 117, \\ x-y = 13. \end{cases}$$

$$\begin{cases} (x^2-y^2)(x+y) = (x-y)(x+y)^2 = 117, \\ x-y = 13^{10} \Rightarrow (x+y)^2 = \frac{117}{13} = 9 \end{cases}$$

$$\begin{cases} (x^2-y^2)(x+y) = (x-y)(x+y)^2 = 117, \\ (x+y)^2 = \frac{117}{13} = 9 \end{cases}$$

$$\begin{cases} (x+y)^2 = \frac{117}{13} = 9, \\ (x+y)^2 = \frac{1}{13} = \frac{1}{13} = 9, \\ (x+y)^2 = \frac{1}{13} = \frac{1}{13}$$