
Teaching and Fostering Reflection
in Software Engineering Project Courses

H̊akan Burden1,2 and Jan-Philipp Steghöfer2

1 RISE Viktoria, Gothenburg, Sweden
hakan.burden@ri.se

2 Chalmers | University of Gothenburg, Gothenburg, Sweden
jan-philipp.steghofer@gu.se

Abstract Reflection is an important part of agile software processes as
witnessed, e.g., by the Sprint Retrospectives in Scrum or by the vari-
ous learning feedback loops in XP. Engineering education also empha-
sises the importance of reflective practice, e.g., in Kolb’s learning cycle
and Schön’s reflection-in/on-action. Our contribution in this chapter is
a toolkit for reflective practice that shows how reflection can be used
by software engineering students for two purposes: to reflect on the ap-
plication of a software process and to reflect on their learning process.
In order to help students understand the purpose of reflection and how
to approach reflection, we follow a cognitive apprenticeship approach in
which the teachers reflect about the events in the course, their own goals,
and how they are aligned with the teaching. Students are asked to re-
flect during supervisions and as part of their written assignments from
the very beginning of the course. We thus combine a meta-cognitive ap-
proach where reflection is taught as a learning strategy with a common
software engineering practice of continuous improvement through reflec-
tion. We evaluate the reflective model and a course design based on it
through the student, teacher, and theoretical lenses based on empirical
data.

Keywords: Agile, Scrum, Computer Science Education, Software Engineering,
Project Course, Reflective Practice

1 Introduction

Reflective practice is to evaluate your own actions and their consequences to
engage in a process of continuous learning and is therefore an essential ability
for professional development (Brookfield, 1995; Lyons, 2010). It enables us to
not only learn from our experiences but to grow as professionals since reflection
helps us challenge our assumptions and develop new professional skills as well as
meta-cognitive strategies which will help us make informed decisions even when
time and resources are scarce (Schön, 1983).

Despite the known benefits of reflection for professional development, there is
a lack of attention within engineering education on integrating reflective practice



2 Burden and Steghöfer

in both courses and educational programs (Turns, Sattler, Yasuhara, Borgford-
Parnell, & Atman, 2014). One of the reasons is that reflection can be intimidating
since it is often perceived as sharing private thoughts and even shortcomings
(Gunn, 2010). It is also challenging in the sense that reflection in some way or
other asks the question of what could have been done differently. A third obstacle
for teaching and learning reflective practice is that there is no clear definition of
what reflection actually is.

We therefore explore reflective practice — from both a student and a teacher
perspective — within an engineering project course and provide answers to two
research questions:

RQ 1 How can we facilitate reflective practice in a software engineering project
course?

RQ 2 How do students utilise opportunities for reflective practice for their con-
tinuous learning?

We will answer these research questions in the context of the development
of a software engineering project course, which also shows how the outcomes
directly inform a course design.

Our contribution is a toolkit for reflective practice, an artefact based on our
strategy to plan, perform, and assess reflection in our course.

This chapter is structured so that first, Section 2 details the theoretical
framework and related work and Section 3 describes action design research, the
methodology we have chosen for our own course development. The situation as
it stood when we started teaching the course is described in Section 4 which is
then followed in Section 5 by a description of the toolkit for reflective action we
derived from applying our methodology to the challenges we faced. Section 6
details the changes to the course after applying the toolkit. We then share both
our own and the student reflections in Section 7 before we broaden the scope
in Section 8 to look at how the toolkit could be applied outside software engi-
neering. Finally, the last section concludes our reflection and points to future
work.

2 Background

In this section, we will discuss the role of reflection in software engineering edu-
cation and in software engineering practice as a starting point for our proposal
to introduce reflection as a mainstay in software engineering project courses.

2.1 Reflection and Education

There are numerous definitions of reflection in the educational literature. Shkedi
states that “Reflection is meta-thinking (thinking about thinking) in which we
consider the relationship between our thoughts and our actions in a particular
context” (2000). Smith defines reflection as “What is in relation to what might



Teaching and Fostering Reflection 3

or should be and includes feedback to reduce the gap” (2001) while Mann defines
that “reflection is a process of inner dialogue” (2005, 03). Loughran summarises
the situation by stating that “for some [reflection] simply means thinking about
something, whereas for others it is a well-defined and crafted practice that carries
very specific meaning and associated action” (2002).

Schön — in describing the reflective practitioner — distinguishes between
reflection-in-action and reflection-on-action (1983). Reflection-in-action is what
we do when we encounter new situations and need to improvise on how to best
proceed. Reflection-on-action is when we later on have an opportunity to sit
down and go through the experience again in our minds to assess how it went
and see what we could have done differently. On the same bearing, Freire defines
praxis as the balance between theory and action where reflection is a means to
achieve practices grounded in reflection (2000). He further states that praxis is
not easy as it requires “wise and prudent practical judgement about how to act
in this situation”.

Kolb’s learning cycle (2014) ties concrete experiences in a specific context to
conceptualised insights from reflective practice. The transformation is facilitated
by reflecting on one’s own experiences to modify known concepts, generate new
hypotheses and seek out what others have to say about similar situations. The
gained insights are then used to set up new experiments where the hypotheses
can be tested and new experiences gained.

However, applying Kolb’s learning cycle will yield different results depending
on who does it. Brookfield refers to this by using different lenses, where applying
a new lens gives new insights (1995). For an educational setting, Brookfield
defines four lenses to structure reflection for the teacher. The first lens is the
autobiographical lens which is used to reflect from a personal point of view.
The second lens is the student’s perspective while the third lens is that of the
teacher’s peers. Finally, the fourth lens represents relevant theory and proven
practice.

Cognitive apprenticeship (Brown, Collins, & Duguid, 1989) can be seen as
an attempt to reason around the two lenses of student and teacher from the
well-known concept of apprenticeship. But instead of a setting where the craft
has a central role, the focus is on the cognitive skills needed for higher education.
The roles of novice and master are now substituted for the roles of teacher and
student as the teacher uses different techniques for the students to fathom the
knowledge and skills of the master. There are six techniques:

Modelling: The master demonstrates explicitly how a task is done.
Coaching: The master supervises the novice in carrying out a task.
Scaffolding: The master sets up supportive structures to guide and help the

student to experiment on their own.
Articulation: The novice uses the terminology of the trade to express new

insights, their reasoning and formulate new challenges.
Reflection: The novice is given the opportunity to compare their own knowl-

edge and skills in relation to those of the master.
Exploration: The novice is given the freedom to explore on his or her own

without the interference of the master.



4 Burden and Steghöfer

Figure 1. The triple learning cycle, adapted from Elmgren and Henriksson, 2010. Stu-
dent and teacher learning is interconnected.

Being the master in such a context requires to both assess in advance how to
conduct the different techniques but also to reflect-in-action to adjust them, such
as in the case of scaffolding or coaching.

Inspired by Kolb, Elmgren and Henriksson (2010) represent Brookfield’s four
lenses in a triple learning cycle (cf. Figure 1) where the students and the teachers
meet in the concrete experience and the teacher’s generalisations are shared
and reviewed by peers. In this way each cycle is informed by other cycles and
knowledge is shared and spread beyond the personal cycle.

Apart from the aspects already mentioned, the literature referenced above re-
veals two more interesting take-aways: 1) reflection requires doing, be it in terms
of experimentation (Kolb, 2014), action (Freire, 2000) or exploration (Brown et
al., 1989); and 2) reflection is contextual and varies over time (Schön, 1983) and
person (Brookfield, 1995).

2.2 Reflection in Software Engineering

Reflective practice is an essential aspect of software process improvement (SPI).
The classic SPI loop championed, e.g. by Villalón et al., 2002, consists of the four
steps “evaluation of the current situation”, “plan for improvement”, “implement
the improvements”, and “evaluate the effect of the improvements” and thus
constitutes a classic reflection loop as discussed above. Most SPI methods are
built around this notion and contain approaches for some or all of these steps. For
instance, inductive approaches like Quality Improvement Paradigm (QPI)/Ex-
perience Factory (1993, 1995) and iFLAP (2008) focus on the evaluation of the
current situation, the derivation of goals, and the creation of measurement plans
to determine whether any changes were successful. Descriptive approaches like
CMMI (2010) on the other hand focus on the planning of concrete improvement
steps.

Since a structured improvement effort using one of the methods mentioned
above is usually associated with a dedicated effort on the organisation level and
significant resources are contributed to it, long-term strategic goals are the fo-
cus of SPI (Huber, 1996). Reflection therefore takes place on an abstract level
that encompasses a larger part of the organisation and several software develop-
ment efforts. The goals are often to increase long-term productivity, quality, or
responsiveness to customer needs.



Teaching and Fostering Reflection 5

In contrast, iterative processes, in particular agile ones, have a strong focus
on constant change and improvement (Williams & Cockburn, 2003) and allow
embedding a similar loop into each iteration and even in daily activities. An
overview of such activities is provided by Babb, Hoda, and Nørbjerg, 2014.
They include group programming where reflection-in-action is practised by the
people working together, estimation and planning activities, as well as the daily
standups that many agile teams perform. In these cases, the reflection is implicit
in the interaction of the team members and thus constitutes a social effort in
communities of practice (Wenger, 1998).

Reflection is most explicitly practised in sprint or iteration retrospectives
that are used to allow the team to discuss the current situation, identify desired
future states, and devise a plan to get there. This shortens the round-trip time
for improvements considerably and allows the developers to quickly try out and
evaluate improvement ideas that can be helpful in the short term. Three ques-
tions are usually addressed in these short meetings: What worked well for us?
What did not work well for us? What actions can we take to improve our process
going forward? These questions focus the team on rather immediate issues. The
reflection is therefore mostly tactical. This is in the agile spirit where immedi-
ate benefits, responding to changes, and short-term wins are emphasised over
long-term strategy. However, even in such an environment, retrospectives with
a broader scope that stretch all iterations for one release have been suggested as
a way to reflect on the longer-term planning (Maham, 2008).

In situations in which iterations are not used (e.g., in classic waterfall projects
or in projects using the V-model prominent in the automotive industry), post-
mortem reviews are a tool that allows the development team to reflect on their
work (Dingsøyr, 2005). In contrast to iteration retrospectives, post-mortems have
a broader scope that goes beyond a single iteration, are usually more formal and
more involved, and emphasise organisational learning (Dingsøyr, 2005). Com-
bining several post-mortems from the same organisation can even help to reflect
on high-level management practices that influence the effectiveness of all soft-
ware development efforts in the company (Dingsøyr, Moe, Schalken, & St̊alhane,
2007).

Even though reflective practice is widespread and its positive impact is re-
ported and empirically validated, the concrete design of the reflective activities
needs to be carefully tuned to achieve the desired results. The accuracy of ef-
fort estimations, e.g., is a common problem in software development projects. It
was shown that it does not improve if the engineers that estimated the efforts
reflected on their estimations themselves, but that improvements are only made
if other professionals provide feedback (Jørgensen & Gruschke, 2009). This in-
dicates that reflection needs to be explicitly fostered and “engineered” in order
to be effective in practice.



6 Burden and Steghöfer

3 Methodology

We use a modified version of action design research (Sein, Henfridsson, Purao,
Rossi, & Lindgren, 2011), a combination of action research and design science
research that focuses on designing and evaluating artifacts in a situation that
“is dependent on the interaction of the participants of the research” and “can
only be performed in the context of the organization and with the involvement
of people within the environment under study.” (Dresch, Lacerda, & Antunes,
2014, p. 94). Our modifications target the type of artifact created: instead of an
ensemble of IT artifacts as described by Sein et al., 2011, we create an ensemble
of teaching artifacts. This ensemble constitutes our toolkit for reflective practice
in SE education (cf. Section 5). We describe the main characteristics and steps
of action design research and how we implemented them in the following.

3.1 Action Design Research applied to Education

Action design research is characterised by how it engages with the organisation
the subject of the research is embedded in. In particular, it is suitable for situa-
tions in a specific organisational setting that are addressed by intervention and
evaluation within this setting. This maps very well to the educational context
since we address situations that are dependent on the specific settings of the
course, the students, the program, the university, etc. Solutions to challenges
observed in specific courses thus constitute the artifacts that are the outcome of
the methodology. They address this situation and have to be evaluated within
it. The artifact is thus not only an outcome achieved by the knowledge and ex-
pertise of the researchers, but heavily influenced by the users (the students and
teachers in this case) and the dynamically changing situation it is designed for
and evaluated in.

We follow the four stages and the associated principles suggested by Sein
et al. (2011), mapping each to the educational context to which we apply the
methodology. In the following, we will describe these stages and how we mapped
them to our situation.

Stage 1: Problem Formulation The intended outcome of this stage is the framed
problem and the theoretical premise. The two principles to follow prescribed
by Sein et al. (2011) are that the research should be practice-inspired and that
the artifact should be theory-ingrained. We found ourselves in a situation where
there was a gap between the course’s intended learning outcomes and the tools
available to achieve them. This was clearly a practically relevant problem since it
affected our work as teachers as well as the learning process of the students. Con-
structive alignment (Biggs, 1996) served as a theoretical foundation to evaluate
this gap and the principle of the reflective practitioner (Schön, 1983) informed
our first ideas for a solution approach. An additional, important practical com-
ponent was that both involved teachers had a long-term commitment to the
course and were thus not only interested in improving it in several iterations but
could also expend the necessary resources to do so.



Teaching and Fostering Reflection 7

Stage 2: Building, Intervention, and Evaluation This stage’s intended outcome
is a realised (educational) artifact that has been evaluated and refined by use
in the relevant situation. It is based on the problem formulation from the first
stage. In this stage, we developed the artifact, a toolkit of reflective practices for
the software engineering project to improve the course’s constructive alignment.
The artifact was deployed and evaluated in several iterations of the course and
refined after each iteration. We followed the principle of reciprocal shaping since
the educational artifact shapes the work with the students in the classroom
which in turn has an influence on the artifact. We also ensured the mutual
learning principle by giving the students the chance to learn from us and our
attempts to use the toolkit and using the feedback from the students to learn
about the effectiveness of the different tools. Finally, we adhered to the authentic
and concurrent evaluation principle by evaluating the interventions immediately
in an authentic setting.

Stage 3: Reflection and Learning The intended outcome of the reflection and
learning stage is a generalised artifact that applies “to a broader class of prob-
lems” (Sein et al., 2011) achieved within a continuous learning cycle. In our
context, that meant abstracting the developed toolkit from the specifics of the
course and making it applicable to different course settings. We achieved this
through continuous evaluation of the results in the classroom w.r.t. our goals
and constructive alignment. Generality was achieved by identifying the specific
issues in the course, separating them from the abstract concepts and ideas we
applied, and using these concepts to identify new approaches (i.e., new tools to
add to our toolkit). The artifact thus emerged guided by our reflection of the
evaluation results, fulfilling the principle of guided emergence.

Stage 4: Formalisation of Learning This stage builds upon the previous one by
abstracting the generalised artifact and the problem further into design princi-
ples and the characteristics of a problem class. This stage thus allowed us to
move the toolkit from the specific course instance into a broader context and
abstract it to become usable for other teachers. We generalised the outcomes of
the specific course to formalise the toolkit as described in Section 5. The ab-
stract toolkit was then instantiated for the course iteration in spring 2017 and
evaluated there to show its viability. Our final result includes a generalisation
of the problem instance (software engineering project courses), a generalisation
of solution (toolkit), and design principles (model aspect of toolkit), thus fol-
lowing the generalised outcomes principle. The formalisation of the results for
dissemination is represented by this publication.

3.2 Data collection and analysis

In order to formulate the problem (stage 1) and to reflect and learn (stage
2) from our experience, we used a number of data sources that we analysed
repeatedly, mostly to derive qualitative data about the effectiveness of the toolkit
for reflective practice and thus our teaching approach. While we evaluated data



8 Burden and Steghöfer

from all course iterations between autumn 2014 and spring 2017, our discussion
in this chapter is focused on the latter iteration and the insights we gain from
the evaluation of our current, stable version of the developed artifact.

Course evaluations We used the course evaluations conducted by the university
as a tool to gauge the satisfaction of the students and identify issues with con-
structive alignment, workload, and cognitive demand. The evaluations consist of
a voluntary, anonymous, web-based survey among the students and a meeting
with student representatives from the course itself as well as from the student
union that is led by course coordinator. We thus had the results of the survey
as well as the notes from the evaluation meetings as a basis for our own anal-
ysis. We focused the analysis of the evaluation results on course development
(Edström, 2008) and used it to understand which aspects the students struggled
with and needed to be addressed better. As such, we attempted to receive for-
mative feedback from the students, in particular through the discussions at the
meeting.

Student reports A further source of information were the reports the students
wrote throughout the course. There are three mandatory written hand-ins: the
students need to reflect on how they defined their process, they need to give a
report on their progress by half-time of the course, including how they refined the
process, and they need to describe their overall process and lessons learned at the
end of the course. In many cases, the students refer to lessons they transferred
from specific teaching moments. In addition, the feedback the students got from
the teachers on their reports contains connections between the reports and the
individual teaching moments. We use this information to check if our toolkit is
constructively aligned and yields the desired outcomes. We analysed the reports
quantitatively, applying a light-weight coding in a separate session that was
independent of the grading.

Teacher notes Whenever we introduced a new teaching moment (i.e., a new
tool in our reflective toolkit), we took extensive notes about the reaction of
the students, whether or not we feel we achieved our objective, which questions
students asked, if the time allotted was sufficient, etc. Usually, there were two
sets of notes available, but occasionally only one teacher could be present during
the introduction of a new tool and we relied on his notes in this case.

3.3 Threats to Validity

We discuss threats to the validity of our study and the methods used to minimize
the threats, following the classification in Tomal (2010). While this classification
was intended for action research, it applies well to action design research since
it has a strong focus on the participants of the study, i.e., the organisational
setting in which the research takes place.

One of the main threats is differential selection, i.e., collecting and com-
paring data from different groups of students in the different iterations of the



Teaching and Fostering Reflection 9

course. Indeed, in different course iterations, there are changing proportions of
students from different programs. In the spring iterations, most of the students
come from the program on Industrial Economy, while in the autumn most of
the students are from Information Technology or Computer Engineering. The
different backgrounds cause differences in how the students perceive different
teaching moments and which expectations they have coming into the course.
We addressed this threat by leveraging the longitudinal aspect of our study and
trying out our tools in both settings for increased generality.

A related threat is that of history, i.e., differences when data is collected at
different points in time. This is certainly an issue here since we combine data
from different course iterations. However, we have mitigated this threat since
we evaluated the data directly after the course instance in order to develop the
course and our toolkit further.

Contamination, i.e., unaccounted factors outside of the study influencing its
result, can be a factor here. For instance, a persistent student complaint is that
the scheduling of students of different programs is not compatible, making it hard
for mixed groups to find time to work together. However, due to the considerable
experience of the teachers, we have a good overview of the course environment
and can take such factors into account.

The threat of instrumentation, i.e., influences of the data collection method,
can play a role, in particular since graded material was used. However, all data
sources were always cross-referenced and none used in isolation. In particular
the anonymous course evaluation survey reduced the threat of bias. However,
since the different data sources capture different kinds of data, a residual effect
might remain.

Finally, the threat of researcher bias has been addressed by planning, de-
signing, acting, and evaluating as a team. While it is possible that the team
as a whole has a bias, the two teachers provide complementary viewpoints and
approaches. In addition, there has been continuous exchange with program man-
agers, the student union, students in the course, and other teachers about the
course and the different attempts made to improve it.

Furthermore, there are a number of potential threats to validity that were
not observed in our study: Attrition, i.e., the loss of participants while the study
was ongoing, was not a major issue in this study since almost all students that
enrolled in the course instances finished them. The Hawthorne effect, i.e., par-
ticipants perform better since they are given attention, is also negligible since
our data collection methods are non-intrusive and only use elements that occur
in the normal progress of the course anyway. While there is maturation of the
participants during each course instance as an effect of the teaching, this is not
a major concern for our study since each course instance started with a new set
of students with little to no carry-over from previous instances. The threat of
testing, i.e., participants learning from pre-tests and thus answering differently
in post-tests, was also not an issue since our data sources did not include such
tests. There might be a learning effect from the different student reports based
on the feedback by the teachers, but this effect is intentional.



10 Burden and Steghöfer

4 The Old Course Design

The starting point for our endeavour is the course instance in which the authors
were first involved in the autumn of 2014. The Software Engineering Project
Course represents 7.5 ECTS or ten weeks of half-time studies and was taken
by 173 students from three different bachelor programs run by the Computer
science and Engineering department, which is a shared department of Chalmers
University of Technology and the University of Gothenburg. The students formed
29 teams and collaborated with an external stakeholder in developing Android
apps for truck drivers which were safe to use while driving.

The rest of this section is organised following a constructive alignment per-
spective where we first introduce the intended learning outcomes (ILO), learning
activities and assessment tasks (Biggs, 1996) before we discuss the benefits and
shortcomings of the course from a teacher and a student perspective.

4.1 Intended Learning Outcomes

The course’s intended learning outcomes reflect the ambition to give an overview
of what canonical software engineering is as a subject area (Burden, 2017), for
instance as defined in the Software Engineering Body of Knowledge (SWEBOK,
Bourque, Fairley, et al., 2014). Thus the course aims regarding knowledge and
understanding state that the student should be able to. . .

ILO1 . . . identify the complexities of software design and development,
ILO2 . . . describe the fundamentals of software engineering, such as stakehold-

ers and requirements, and
ILO3 . . . describe the difference between the Customer, the Solution, and the

Endeavour as well as the different methods used for each

after successfully finishing the course. In terms of skills and abilities, the student
should be able to. . .

ILO4 . . . elicitate requirements from and design a solution to a real-world prob-
lem,

ILO5 . . . plan and execute a small software development project in a team,
ILO6 . . . apply skills from programming and other relevant courses, as well as
ILO7 . . . learn new tools and APIs on his/her own.

Finally, the students are also expected to be able to. . .

ILO8 . . . reflect on the choice of software engineering methods used throughout
the project.

Following Bloom’s revised taxonomy (Anderson, Krathwohl, & Bloom, 2001),
the first three ILOs revolve around factual and conceptual knowledge such as
basic terminology and how these relate to each other. The rest of the ILOs focus
on procedural knowledge such as methods and procedures within the SE domain.
The exception is ILO7 which is meta-cognitive since it requires the students to
reason around their own learning.



Teaching and Fostering Reflection 11

4.2 Learning Activities

The learning activities consisted of lectures and supervision with a final presen-
tation at the end of the course. The supervision was run on a weekly basis and
students who had already taken the course were paid to supervise. The content
of the supervision was supposed to target the process aspects that the student
teams encountered but often revolved around tool and technology issues, such
as git merging or Android debugging. There were 13 lectures which included
a lecture each to introduce the course and the project scope, four lectures on
the project specific tools and technologies, two lectures on software engineering
in general and two lectures on Scrum, one guest lecture and a lecture on which
tests and documentation the teams were supposed to hand in. Since the students
were supposed to reflect on their choice of methods and practices but never had
been given the opportunity to get feedback on their reflections, a final lecture
was added while the course was running to give the students an idea of what
reflection could be. During the reflection lecture one of the authors presented
his own reflections on how the course had panned out and what could be done
differently for the next course instance.

The project started the same week as the course so that the second lecture
introduced the project scope. This meant that the lectures regarding Scrum were
given after the students had started their development effort. Subsequently they
had to make large changes to how they worked or disregard Scrum to continue
working in an ad-hoc manner.

4.3 Assessment

The assessment was purely summative in terms of teacher engagement and con-
sisted of five major elements:

Vision 30% of the grade was determined by how well the product matched the
vision, the stability of the product and the user experience;

Design Design decisions and how these were documented accounted for 10% of
the final grade;

Code The code quality and the technical complexity of the solution made up
15% of the final grade;

Tests A further 15% of the final grade depended on which tests had been done
and the documentation of the product;

PMR Finally, 30% of the final grade was based on a post-mortem report written
after the final presentation.

The five elements assessed the team performance. To be able to give the
students individual grades, the students were also asked to fill out a personal
evaluation for each team member. Together with a summary of who had con-
tributed what to the code base, this enabled the teachers to give individual
students a grade that differed from the team’s overall grade.



12 Burden and Steghöfer

Table 1. The course alignment matrix for the old course design.

ILO Learning Activity Assessment Tasks

ILO1 11 lectures & project 7 supervisions & terminology
ILO2 11 lectures & project 7 supervisions & terminology
ILO3 8 lectures & project 7 supervisions, Vision, Design & PMR

ILO4 6 lectures & project 7 supervisions, Vision, Design & PMR
ILO5 3 lectures & project 7 supervisions & PMR
ILO6 5 lectures & project 7 supervisions, Design, Code & Tests
ILO7 5 lectures & project 7 supervisions, Design, Code & Tests

ILO8 1 lecture & project 7 supervisions & PMR

4.4 Constructive Alignment and Student Perception

The relationship between the ILOs, learning activities and assessment tasks is
visualised in Table 1. Activities and tasks can overlap: the lecture on how to use
Android, e.g., relates both to ILO6 and ILO7 since it both offers an opportunity
to apply skills from previous courses and learn new technologies. In the same way,
the project was used to identify the complexities of software development (ILO1)
and give an opportunity to execute a small software project in a team (ILO5). A
shortcoming of the old course design was how the student teams needed to find
ways to transfer the theoretical content of the lectures into practical skills during
the project themselves. This was also remarked upon in the course evaluation and
strategies to carry out the transfer were requested by the students. Regarding
ILO7 — students should be able to learn new tools and APIs on their own —
the content of the five lectures centred around demonstrating how to configure
the tools and make calls to the API. During the course it became obvious that
the students struggled with reflecting on their process and the decisions they
took. Therefore one of the teachers decided to add a final lecture to the schedule
where he reflected himself upon the design of the course and what he would do
differently if he had the opportunity to give the course again.

Regarding assessment, the only opportunity for formative feedback was dur-
ing the weekly supervision slots. This relied on the student supervisors to be
present and capable of handling process-related discussions. The course evalu-
ations indicate that a recurring problem was that half of the supervisors were
difficult or impossible to get in touch with and that those who carried out their
supervision focused on tool related issues: “The TA was not involved [, did not
have] enough knowledge of the course or helped us in any way”. There were no
assessment tasks directly related to ILO1 and ILO2. Instead the understanding
of the complexities and the fundamentals of software engineering was assessed
indirectly by the terminology used by the students throughout the project and
in their written deliverables.

Since the teams found it difficult to adjust their way of working to Scrum their
experiences of the Scrum practices were often superficial which led to imprecise
descriptions of how they had implemented Scrum and what they learnt from their



Teaching and Fostering Reflection 13

Table 2. Mean and median student responses to questions in the course evaluation on
a scale from 1 to 5 where 5 is best unless otherwise noted.

Statement Mean Median

“I had enough prior knowledge to follow the course” 3.63 4
“The learning outcomes clearly describe what I was expected to
learn in the course”

3.5 4

“The course structure is appropriate in order to reach the in-
tended learning outcomes of the course”

2.54 2

“The teaching worked well” 2.53 3
“The assessment tested whether I had reached the intended
learning outcomes of the course”

3.22 3

“The course administration worked well” 2.98 3
“The course workload as related to the number of credits was
1 – too low, 5 – too high”

3.31 3

“What is your overall impression of the course?” 2.69 3

application. Instead, quite a few of the teams focused on technical descriptions
of the technology they had used or the product they delivered. Furthermore, a
recurring situation among those teams that did describe their process decisions
focused on what happened but not alternative paths, turning the reflection into
an experience report. This is also mirrored by the fact that only three out of
29 teams made a clear connection to the literature or the guest lectures when
reflecting on their own praxis.

Among the comments given by the students in the course survey we could
see both that “It’s not easy to divide the learning goals into concrete goals which
I can check if I learned” as well as that “It is very easy to understand what I was
supposed to learn, but the course did not make it easy to learn”. Table 2 shows
the student responses to selected relevant statements in the course evaluation
survey.

5 A Toolkit for Reflective Practice

The artifact we developed to address the shortcomings of the course described
in the previous section is a toolkit composed of different learning activities,
assessment tasks, and professional practices applied by the teachers. These com-
ponents are complemented by guidelines for a course structure as well as a model
of reflective practice in an educational setting that provides a framework for the
deployment and use of the different tools. We are going to discuss the different
elements of the toolkit in the following using the model of reflective practice as
a starting point and structure for our explanations.

Our toolkit for reflective practice is not limited to teaching software processes.
It is also appropriate for software architecture, testing, etc. since the ability
to describe what is, what might or should be and how to bridge the gap is a



14 Burden and Steghöfer

useful exercise to include in all software engineering education. This is further
elaborated for non-software engineering courses in Section 8.

5.1 Model of Reflective Practice

The model of reflective practice we developed (cf. Figure 2) is based on reflection
loops by both the student (who is the novice in terms of cognitive apprenticeship
(Brown et al., 1989)) and the teacher (who is the master in terms of cognitive
apprenticeship). These reflection loops are connected to each other and follow
the structure of Kolb’s learning cycle (Kolb, 2014). Out of experimentation arises
experience which is reflected upon either in-action or on-action (i.e., directly in
the situation in which the experience is created or later on). This reflection leads
to new insights that are either conceptualised before being used in a new round
of experimentation or lead to new experimentation directly.

The reflection-in-action loop (Schön, 1983) shown at the top also operates
on a different time-scale than the lower one. For the students, the upper loop
operates on the time-scale of a sprint (usually about a week), while the lower
loop operates on several weeks where the conceptualisation is supported by de-
liverables in which the students document their reflection. For the teachers, the
upper loop has a similar time-scale to that of the students, but the lower loop
operates on the scale of course instances, where conceptualisation is performed
after the end of each course instance and experimentation begins again with
the new course. Thus, the student side represents a continuous learning pro-
cess (Schön, 1983) facilitated by reflection whereas the teacher side represents
in-course intervention and long-term course development.

There are numerous connections between these reflection loops. The teachers’
conceptualisation and its manifestation in experimentation provide the students
with the opportunity to experience and enter their own reflection loop. On the
other hand, the teachers observe the students’ experiences and use them in their
own reflection. More subtly, when teachers transition through Kolb’s learning cy-
cle from conceptualisation to experimentation, they explain their own reasoning
to the students and thus share their own reflections (see professional practices
below) by articulating their praxis to the students. This is in turn a way to
model the teachers’ own reflections and serves as an example for the students
in how they can reflect on their own experiences to better understand and form
new concepts.

In summary, the model captures that reflection requires doing in that both
students and teachers are involved in various actions and thereby also acquire
shared experiences throughout the course. In addition, since reflection is concep-
tual it is not planned as a one-shot activity but repeatedly carried out during
the course and different viewpoints are shared and considered to be able to form
informed concepts (cf. Section 2).



Teaching and Fostering Reflection 15

Experimentation

Conceptualisation Reflection

Experience

ReflectionRetrospective
Stand-up

• on-action
• autobiographical
• teacher/master
• peer
• theory

• in-action

ARTICULATE

PRAXIS

Exploration

Student
Novice

Experimentation

Conceptualisation Reflection

Experience

ReflectionSupervision
Teacher meetings

• on-action
• autobiographical
• student/novice
• peer
• theory

• in-actionCoaching
Scaffolding
Modeling

Teacher
Master

Figure 2. A model of reflective practice, showing the different reflection loops for both
teachers and students.

5.2 Course structure

The second part of the toolkit is the way the course is structured. In general,
we try to get the students started as quickly as possible and avoid theory-laden
lectures at the start. Instead, we apply the practical learning activities early on
and then begin the iterative-incremental development quickly. The main part of
the course is thus organised in sprints where each sprint starts with a planning
session and concludes with a review and a retrospective. Students are encouraged
early on to take other obligations into account when planning a sprint and set a
reasonable velocity for each. Necessarily, estimations of velocity and of the user
story effort are unreliable in the beginning, but we encourage the students to
learn from these mistakes and continuously improve their estimations based on
their reflections. The reviews are coupled with a supervision learning activity,
but are itself focused on the product and thus ideally conducted by a third party
that provided the project. Students perform their retrospectives on their own,
but need to record them (cf. Section 5.4).

5.3 Learning activities

An important part of the toolkit is learning activities that provide students with
shared experiences that they can use to develop their knowledge and skill through
reflective practice. The learning activities are thus designed to trigger reflection
in the students and are accompanied by specific assessment tasks that reinforce
this (see below). In particular, we are utilising three learning activities, further
discussed below: a Lego Scrum simulation, a Kata for learning about scientific
thinking and continuous improvement, and an exercise to teach students how to
break down and estimate tasks.

To familiarise students with a modern software development process, we
utilise Lego Scrum simulations (Steghöfer, Burden, Alahyari, & Haneberg, 2017).
In these simulations, the students apply the Scrum methodology to build a Lego
city based on user stories provided by the teachers. An essential element of the
simulation is that the students need to reflect after each sprint and learn from



16 Burden and Steghöfer

their experiences. The setup of the simulations forces some issues — e.g., com-
munication problems and a lack of planning — to come up that negatively affect
the students. Through the reflective practice in the retrospectives, by reflections
done by the product owner during the sprint reviews, and by reflection-on-action
after the simulation, the students improve their process and approach during and
after the simulation.

In order to help students understand the reflective cycle (cf. Figure 1), we are
using “Kata to Grow” (Rother, 2017), a simple exercise in which students apply
repeated experiments to reach their goal based on the analysis of their current
condition. The goal is to complete a jigsaw as quickly as possible and the students
improve this process with changing constraints (e.g., “all jigsaw pieces need to
be face down at the start”) iteratively based on “experiments” they devise and
measurements of their current state. The kata therefore embodies a reflection
loop and shows how small improvements based on clear measurements and a
defined goal can make tremendous differences. This thinking is reinforced when
students are later asked to define KPIs and reflect on them in their assessment.

Finally, we are using the Elephant Carpaccio (Kniberg & Cockburn, 2013)
exercise to demonstrate how a large assignment can be accomplished by cutting
it into very thin slices — like eating an elephant. The students are asked to create
small implementation tasks for a shipping cost calculator that are prioritised to
deliver customer value as quickly as possible. During the exercise the students
are asked to share their reasoning in multiple iterations. After each iteration
students reformulate the tasks. The exercise concludes with a reflection on how
the exercise went, what the students learnt, and how this relates to the upcoming
project.

5.4 Assessment tasks

A particular focus of the assessment tasks is to embed each individual learning
activity into the overall learning process. For that purpose, supervision sessions
and hand-ins are distributed over the duration of the course. The final deliverable
is used for setting the grade and should contain the content of all the previous
hand-ins. This allows us to spread the workload over the course, get input for our
reflection in the classroom (see below), and incentivises the students to reflect
on the learning activities right after they took place. After the Lego Scrum
simulation, e.g., the students are asked to reflect on their experience and how it
influences the way they set up the development process for the project.

An important ongoing assessment strategy is the process supervision per-
formed by the teachers with each of the groups on a weekly basis. These su-
pervisions are coupled with the reviews the groups conduct with the Product
Owner and precede the groups’ own retrospectives. In the supervisions, no tech-
nical details of the solution are discussed. Instead, the students are asked to
describe their experiences with the process and associated topics such as team-
work. If students have trouble formulating issues themselves, they are nudged
along those lines by questions such as “which aspect required more time than
you expected?” followed by asking about the lessons learned. This triggers a



Teaching and Fostering Reflection 17

reflection process that allows the teams to analyse shortcomings in the process
and to have a focused discussion later on in the retrospective. It also allows
the teachers to provide an outside perspective on any challenges or plans for
improvement.

Since the learning outcomes state that students should demonstrate the abil-
ity to “learn new tools and APIs on his/her own”, the final deliverable should
contain a reflection of how well these tools worked for them. The practices the
students pick up (e.g., pair programming, continuous integration, or a certain
merging scheme) then become part of the reflective practice again and students
evaluate their own application and their usefulness in the context of their expe-
rience. This also generates ideas on how to apply these practices better in the
future, allowing students to create connections to their praxis in coming courses
and their professional careers, thus lifting the learning from the current course
into a larger perspective.

Furthermore, students are asked to reflect on their overall process, including
the sprint reviews and retrospectives, as well as the relationship between proto-
type, process and stakeholder value and the relationship between their process
and the theoretical literature and guest lectures. These reflections are intended
to let the students reflect on the purpose of a process and how its implementation
influences its effectiveness. The process should be driven by stakeholder value,
result in a prototype to deliver that value, and use the different activities in the
Scrum lifecycle to evaluate both the quality of the product and the quality of
the process. Since the guest lectures illuminate process issues in a context that
is different from the students’, it allows the students to establish whether their
experience is generalisable or not and how the industrial experience differs from
their own.

In the final deliverable, students are also asked to reflect on the previous
deliverables and how they influenced the progress of the team and the learning.
This is intended as a kind of meta-reflection to let the students reflect on their
own learning process. By revisiting previous decisions and their reasoning, stu-
dents are able to see the impact of their choices and how they influenced their
work.

5.5 Professional practices

Finally, the teachers themselves use reflective practice throughout the course,
both in their own praxis as well as in front of the class. Reflections within the
teacher group about the different course moments are in-action and allow teach-
ers to react to emerging situations within the course. Regularly, the teachers also
reflect in front of the class, thus providing an element of cognitive apprentice-
ships. For instance, at the beginning of a lecture, the teachers could discuss the
past week or issues that have come up since they last saw the students. They
would then discuss the current state, describe the state they would like to reach,
and outline the plan they would like to take to get there. This kind of critical
evaluation of the teachers’ own work creates an atmosphere in which criticism
is welcomed and students feel that their issues are being taken up. Finally, the



18 Burden and Steghöfer

teachers share their reflections on the course evaluation as well as on their own
assessment as well as ideas and results of course development activities with the
students.

6 The New Course Design

The course instance to which we applied the full toolkit took place during the
spring of 2017 and was taken by 50 undergraduate students with a major in
Industrial Engineering and Management and 8 students from other undergrad-
uate programs. We use the same structure to describe the course instance as in
Section 4 to describe the new course design.

6.1 Intended Learning Outcomes

Since the intended learning outcomes have not been identified as a prominent
issue in the course, they have remained the same throughout our endeavour.
Thus the ILOs are the same as those found in Section 4.

6.2 Learning Activities

The learning activities are taken from our toolkit (cf. Section 5.3) and combined
with professional practices (cf. Section 5.5). All activities align with our model
(cf. Section 5.1). An overview of the course structure, how the learning activities
and assessment tasks are distributed over the duration of the course, and how
they relate to the model of reflective practice in Figure 2 is given in Table 3.

The course as a whole is modelled after an iterative-incremental process that
provides fast feedback to the students. A main principle to achieve this is to
reduce the up-front theoretical lectures to a minimum and expose the students
to practical experiences that they can use to reflect-in/on-action as quickly as
possible. At the same time, these shared experiences are extremely useful in
the classroom since the teachers can also reflect-on-action and help the students
with the conceptualisation of the experience. The other principle is to provide
formative feedback to the students as often as possible in the second part of the
course and to let them experience the whole reflective cycle (cf. Figure 2) several
times during the course.

The first lecture introduces the learning outcomes, the activities and the
assessment tasks. We also describe what is new for this course instance based on
the last course evaluation. This serves two purposes: first, it lets us communicate
that we apply a reflective approach to our own course improvement; second, it
lets us discuss what we came up with as concrete changes from reflecting on
the course, thus employing one of our professional practices from the toolkit. As
definition of reflection we cite Smith’s “assessment of what is in relation to what
might or should be and includes feedback designed to reduce the gap” (2001). We
end the first lecture by introducing Scrum in terms of roles and activities in the
lifecycle.



Teaching and Fostering Reflection 19

Table 3. The course structure, outlining the different activities. Elements taken from
the toolkit or using elements of the toolkit are emphasised. The relation to the elements
of the model in Figure 2 is made from the teacher perspective (T:) and the student
perspective (S:). Reflection-in-action and reflection-on-action are abbreviated as RiA
and RoA, respectively.

Week Type Activity/Task Relation to model

0 Course
Preparation

Preparation of material, lec-
tures, course plan, schedule,
guest lectures, etc.

T: RoA, Conceptuali-
sation

1 Learning Activity Lecture: Course introduction T: Experiment.;
S: Concept.

Lego Scrum Simulation, Kata to
Grow

T: Experiment., RiA;
S: Whole cycle

Assessment Technical supervision
D1: Reflections on Lego Scrum
simulation

S:RoA

D2: KPI

2 Learning Activity Lectures: Scrum & Assessment,
Software Quality

T: Experiment., RiA;
S: Concept., RiA

Elephant Carpaccio T: Experiment., RiA;
S: Whole cycle

Assessment Process supervision T: Experiment.;
S: RoA, Concept.

D3: Initial product backlog

3 Learning Activity Lecture: Project background S: RoA, Concept., RiA
Assessment Process supervision

4 Assessment Process supervision

5 Learning Activity Guest lecture S: RoA, Concept., RiA
Assessment Process supervision

D4: Half-time evaluation; reflec-
tion on the work so far

S: RoA

6 Learning Activity Guest lecture
Assessment Process supervision

7 Learning Activity Lecture: Reflections on course
and project

T: RoA, Experiment.;
S: Concept.

Assessment Process supervision

8 Assessment Final presentations
D5: Working prototype

9 Assessment D6: Reflection report S: RoA

10 Course
Evaluation

Feedback from students and dis-
cussions in teacher group

T: RoA, Concept.;
S: Concept.



20 Burden and Steghöfer

The next scheduled activity is the Lego Scrum simulation. In the simulation,
the students carry out a mini project in terms of building a lego city (Steghöfer
et al., 2017). The students go through the reflective cycle several times (once in
each of four sprints) with the aim to understand and improve how they conduct
Scrum. Thus we practice an agile methodology in an iterative and incremental
way, where each cycle builds on the previous one and includes explicit reflective
activities. The students are then asked to reflect and conceptualise their findings
in D1. As teachers, we treat each sprint as one iteration of the experiment—
experience—reflection-on-action cycle. In each cycle, our reflection on how we
perceive the students efforts influences our feedback to the teams during the
review and the retrospective, what we want to accomplish with the next sprint,
how the current exercise relates to previous exercises, and how we want to use
the exercise next time around.

The practical activity of the Lego Scrum simulation is followed by a lecture
where the more intricate details of Scrum as well as how to scale Scrum in a large
organisation are explained. The teachers relate the new theory to the experiences
from the Scrum exercise and thus couple theory to practice and reflect on specific
situations during the exercise together with the students.

Next up is the Kata to Grow exercise (Rother, 2017). The students are asked
to complete a jigsaw as a team, iteratively improving their approach and reducing
the required time. In total, the students complete the plan-act-reflect cycle six
times this way. We end the exercise by sharing our reflections on the outcome
and introducing the concept of key performance indicators (KPI). The exercise
concludes with a presentation of KPIs other than time that can be used for
evaluating process improvement.

The third exercise, Elephant Carpaccio (Kniberg & Cockburn, 2013), shows
how a large assignment can be accomplished by cutting it into very thin slices.
During the exercise the students are asked to share their reasoning at multiple
intervals and receive feedback for each iteration. The exercise concludes with a
reflection on how the exercise went, what the students learnt and how it relates
to the upcoming project.

We follow up with more lectures on software engineering basics, such as
requirements and testing and introduce the project topic. After that, the lecture
format shifts to guests from industry presenting their experiences from agile
software development where each presentation is limited to the first half of the
lecture. The second half is then used to reflect on how the guests’ experiences
resonate with those of the students and how they tie in to the learning outcomes
of the course. The guest lectures are in this way a possibility for the students to
reflect on the praxis of a professional in relation to their own experiences.

In the last lecture we repeat how the course evaluation has led to changes to
the current course instance, how we assess the outcome and what we propose to
change for the next course instance, thus highlighting our own plan-act-reflect
cycle. The students are also given the opportunity to share their reflections on
how the course panned out. The ILOs are then discussed with the students and
they are asked to reflect on which opportunities they have had to reach the



Teaching and Fostering Reflection 21

ILOs and what kind of assessment they have been given or expect to receive.
The last lecture concludes by detailing the remaining deliveries and how the final
presentation will be handled.

6.3 Assessment

The assessment tasks are now both formative and summative. We use the su-
pervision slots to give the students formative feedback on their application of
Scrum and discuss other aspects of the course as the teams find appropriate for
their current needs. This is also inspired by agile practices: we aim to provide
the students with fast and frequent feedback to adapt their behaviour as they go
along, instead of having to rely on a single feedback opportunity at the end of the
course. The supervisions are divided into feedback on the product the students
are building (modelled after sprint reviews) and feedback about the process the
students apply (modelled after sprint retrospectives). The teachers are only en-
gaged in the latter kind of feedback while the sprint review is conducted with
an external Product Owner.

Assessment is also done by the teams handing in six different deliverables
during the course, most of which contain elements of reflection as described in
Section 5.4:

D1: Three reflections from the Lego exercise in terms of what the team would
like to continue doing, stop doing or do differently when they apply Scrum in
their project. The changes should be motivated and feasible to implement.
D1 serves as the basis for a session where we select some of the reflections
to illustrate how the assessment strategy will be applied. The teams also
submit a social contract detailing their ambition levels, when and how to
have meetings, etc. D1 is handed in at the end of the first course week.

D2: After the Kata exercise the teams are asked to choose three KPIs to monitor
the strategies detailed in D1. To be handed in by the end of week two.

D3: When the project scope has been introduced the teams are asked to come
up with an initial product backlog in week three. The backlog can contain
epics and larger elements but should have enough user stories to fit the first
sprint. D3 is then used during the Elephant Carpaccio exercise to illustrate
how large stories can be split more and more thinly.

D4: Half-way through the project, in week six of the course, the teams are asked
to hand in a one-page document reflecting on the work so far, both in terms
of process and product. At the subsequent supervision slot, the teams pair
up to facilitate the sharing of experiences and insights across teams but also
to give opportunities for reflecting on each other’s progress.

D5: The fifth deliverable is a working prototype for the final presentation in
week eight. It does not need to be documented but it should be executable
so that the students can demonstrate how they have chosen to tackle the
project scope and what value they deliver to the PO.

D6: The last deliverable consists of the source code and the output from a git
repository analysis tool as well as the artefacts asked for under Prototype



22 Burden and Steghöfer

and the Reflection Report (see below). D6 is handed in at the end of week
nine which is the last week of the course.

The final team grade now relies on three elements:

Value The relevance and completeness of what is delivered in relation to how
the teams have scoped what the stakeholder has asked for makes up 24% of
the final grade, as described during the final presentation.

Prototype 30% of the final grade is based on the documentation, automatic
code quality analysis, automatic and manual tests as well as design decisions.

Process Reflecting on how the team has applied Scrum as well as on the in-
termediate deliveries D1 to D5, describing their best practices for using new
tools, and how their process relates to literature and guest lectures makes
up the remaining 46% of the final grade.

Just as in the old course design we use personal evaluations and metrics from
the code base to assess if there are team members that deserve a higher or a
lower grade than the team grade. Deviations are never based on one source but
need to be anchored in both and are often supplemented by our own observations
during supervision or follow-up discussions.

6.4 Constructive Alignment and Student Perception

We supply data to show what the students report w.r.t. the course design in
Table 4. Since both what we assess and how we prepare the students is different,
it is not possible to say what has caused the change in student perception.
However, the overall increase of the scores indicates that the new course design
is not seen as contradicting a good learning situation as well as supporting our
view as teachers that the new design supports the students’ ability to reach the
intended learning outcomes.

In response to the free text question about what should be kept for next
course instance, one student replied “The practical setup and ‘trial and error’
approach. You learn better from making mistakes, rather than doing it right
the first time.” This implies that we still have something to work on. It is not
mistakes that drive learning, but reflecting on the practical experience. However,
mistakes tend to force reflection since the identification of the mistake resonates
with the description of what is. If the mistake is to be corrected, a change
is needed which also encourages to consider what should be and feedback to
reduce the gap. But success is also an experience worth reflecting over since
understanding what enabled the success and how it can be repeated saves both
effort and time in the future.

In terms of constructive alignment, comparing Table 1 with Table 5 shows
that the intended learning outcomes are now addressed with additional exercises,
thus emphasising skill development and practical experience instead of a mostly
theoretical approach. Since these exercises are always connected to reflections,
this element is significantly strengthened accordingly.



Teaching and Fostering Reflection 23

Table 4. Mean and median student responses to questions in the course evaluation for
Spring 2017 on a scale from 1 to 5 where 5 is best unless otherwise noted.

Statement Mean Median

“I had enough prior knowledge to follow the course” 3.85 4
“The learning outcomes clearly describe what I was expected to
learn in the course”

4.35 5

“The course structure is appropriate in order to reach the in-
tended learning outcomes of the course”

4.25 4

“The teaching worked well” 4.45 5
“The assessment tested whether I had reached the intended
learning outcomes of the course”

4.10 4

“The course administration worked well” 4.25 5
“The course workload as related to the number of credits was
1 – too low, 5 – too high”

3.30 3

“What is your overall impression of the course?” 4.20 5

Table 5. The course alignment matrix for the new course design.

ILO Learning Activity Assessment Tasks

ILO1 6 lectures, 2 exercises & project 5 supervisions, D2 & terminology
ILO2 6 lectures, 2 exercises & project 5 supervisions & terminology
ILO3 6 lectures, 2 exercises & project 5 supervisions, Process & terminology

ILO4 4 lectures, 2 exercises & project 5 supervisions, D3 & Prototype
ILO5 3 lectures, 3 exercises & project 5 supervisions, D1, D2, Prototype & Process
ILO6 3 lectures, 3 exercises & project 5 supervisions
ILO7 1 lecture, 3 exercises & project 5 supervisions & Process

ILO8 4 lectures, 3 exercises & project 5 supervisions, D1, D4 & Process

In relation to ILO7 — students should be able to learn new tools by them-
selves — the lectures and exercises do not mention how to use the new tools
but reflect on what the students have experienced during the exercises and how
that can be transferred to the project. The exercises also present teachers and
students with shared experiences that can serve as basis for reflecting together as
illustrative examples to explain concepts and strategies for handling these. For
instance, the students played with Lego as kids but still struggle with finding
the right Lego pieces for their buildings. This shared experience is something we
can go back to as we reflect on how their programming skills might transfer to
using a new API and development tools.



24 Burden and Steghöfer

7 Reflections on the Toolkit

This section will first detail how the students utilised the opportunities for
reflection-in- and -on-action, before we describe our own thoughts and relate
those to existing literature.

7.1 Student Lens

Immediate reflection-in-action is relevant as events unravel during the course
and students need to handle situations for which they are not prepared. These
reflections are sometimes difficult to document due to the time and place when
and where they occur. However, the students have recurring opportunities to
reflect on their experiences, e.g., during daily stand up meetings or sprint retro-
spectives. These opportunities are easier to document and reflect on since they
occur at defined points during the sprints and allow to define what should be
and how to bridge the gap while the project still runs. The teams’ reflection-on-
action is documented in the reflection report after the final presentation (D6),
meaning that the students do not have the possibility to implement their sug-
gested feedback within the course. Instead, the intention is that the insights will
be of use in their future studies and professional life.

Reflection-in-Action Two teams decided to structure their reports to mirror
Smith’s definition of reflection by first describing what they did, and then de-
scribed what they would do differently and how. The first team consistently used
the subheadings “The situation as it is” and “What we would like it to be” where
the latter also included strategies for realising the change. The other team de-
fined what went well, what could improve and how they could improve for each
of the bullets required for the reflection report. As an example they stated that
their communication with the PO went well, that they could improve in how
they used roles within the team and that the improvement could be realised
by not only assigning responsibilities but also defining what each responsibility
covered.

One of the student teams wrote in their reflection report that they would
include how to conduct daily Scrum meetings in their social contract. Since the
team members took different parallel courses they had difficulties finding a time
that suited everyone. They therefore suggested to regulate how all team members
can participate even if they cannot be physically present upfront. Another team
stated that it was difficult in the beginning to keep the meetings short and
concise since when a team member described what they had done, other members
wanted to know how a specific task had been solved. The meetings therefore
tended to involve lengthy technical descriptions. The team came up with two
strategies to shorten the meeting time. First, they decided to stand up during the
meetings since this improved focus and was recommended by literature. Second,
they planned meetings where insights regarding how to handle new tools and
technologies could be shared. Their conclusion was that while it is important to
share information it is also important to know when to share what.



Teaching and Fostering Reflection 25

A similar experience was reported by a third team in relation to the sprint
retrospectives. In the beginning of the project these were held at the supervision
slot and as a consequence just after the retrospective and before the planning
as well as in the same location. The discussions quickly became technical and
focus shifted from process to product. Therefore they decided to have the ret-
rospectives at another physical location and ban visible computers. In this way
the focus on process improved and the team reports that their satisfaction with
the retrospectives increased over time.

Reflection-on-Action Regarding the peer lens, one team stated that it was helpful
to see how another team handled the same challenges they faced. However,
they did not provide details about the challenges and what they could have
done differently. Other teams were more articulate but concluded that the peer
discussion came a week too late for them to have a real impact. By the time
they were asked to reflect on their first two deliverables they had just overcome
a major obstacle in how to communicate with the shared backend. Therefore
they felt that the rest of the sprints would be more straight-forward and would
allow the team to focus on delivering value instead of debugging. This gave them
the opportunity to assess what lay ahead and to evaluate what they just had
done in relation to what they thought they would do.

In relation to the first delivery (D1) one team felt that they were initially
right in stating the importance of understanding the needs of the Product Owner
(PO) instead of the desired solution since there might be other ways of delivering
value: “Focus was on how our sketch and vision could be adapted to the PO’s
instead of understanding why the PO came with a specific solution”. Half-way
through the project the team managed to shift focus and concentrate on the
context of the PO and from there redirect their development effort towards a
system more suitable for the needs of the PO.

An example of how a team identified their own learning progress throughout
the project relates to the definition of done that they used for their user stories:
“As our understanding of the system and project grew, it became easier to identify
and structure these definitions.” As we saw in relation to daily Scrums and the
introduction of meetings with the specific purpose of sharing knowledge between
team members, the peer lens was also applied within teams to share knowledge
and reflect on how to improve their way of working.

An interesting observation is that while all teams relate their reflections to the
course literature and the guest lectures, none of the teams relate their reflections
to what the teachers have said.

7.2 Teacher Lens

The toolkit for reflective practice proposed in Section 5 allowed us to address
the gap between what we imagined the course to be and what it was. It is the
result of a three-year effort to improve the course and move it from a product-
focused programming project with poor constructive alignment and a mismatch



26 Burden and Steghöfer

between theory from lectures and what was practically applied towards a process-
focused engineering course that is driven by practical experience and continuous
reflection.

Reflection-on-Action Our own perception of the course has improved signifi-
cantly with the introduction of the different elements of the toolkit for reflective
practice. While the course is still known amongst the student body as “the an-
droid course”, we are confident that we now focus on the process issues that are
at the heart of the intended learning outcomes much better. This also makes
it easier for us to communicate our vision for the course to the students. The
expectations on the students and the place of the course in the different pro-
grams is also much clearer. Instead of being yet another development project,
the course now offers different and novel content.

In relation to the old course design the project now starts on the third week
of the course. Instead of letting the students immediately get to work on the
project we use the first weeks to introduce the central concepts and Scrum.
These concepts are then explored during three exercises where each exercise has
a component of reflection and feedback. This change means that there are fewer
supervisions but also that the students get help in bridging the gap between
theory presented in the lectures and the practice they are asked to explore during
the project as well as an opportunity to reflect on what they have done during
the exercise and what they want to do during the project.

Including collective feedback into the lectures also means that we as teachers
not only have the opportunity to motivate the exercise and the deliverable, we
can also reflect on what went well with the exercise and how we aim to improve it
for the next time. We thereby verbalise our own reflection in front of the students
and model how we came to give the exercise the way we did. In this way the
exercises supply a scaffold for the students to reflect on how they plan, execute
and evaluate a team project as well as agile practices like splitting user stories
into tasks. Since supervision is handled by the teachers with a deliberate focus
on process matters they provide opportunities to coach the students in their
reflective practice based on the ideas, uncertainties, and milestones they want
to bring up. We as teachers can also bring up topics we find worth discussing.
Throughout the different activities we can go back and relate what is happening
and how we reflect within the current context to the shared experiences we
obtained through the three exercises. In this way our new course design mirrors
the recommendations to combine subject matter with reflective practice so that
the task becomes more concrete and has an immediate bearing on the students’
professional development (Mathiassen & Purao, 2002).

An important aspect of this new structure and the progression of assessment
tasks is that we are able to build a trustful relationship with the students (Gunn,
2010). Since they have the opportunity to receive formative feedback continu-
ously but only the final hand-in is graded, they understand our expectations and
how they can address them much better. Trust is also built by articulating our
own reflections and being open about problems in the course and how we are
going to address them. We thus demonstrate that failure is an opportunity to



Teaching and Fostering Reflection 27

learn and that admitting mistakes is an important step in the learning process.
We thus allow a cognitive apprenticeship to form in classroom.

Reflection-in-Action Having reflected on what we do and how we want to im-
prove the course gives us an understanding of what we want to achieve with
the different learning activities and the corresponding assessment. At the same
time, we also gain new experiences from each time we give the course. By sharing
these experiences and how we acted and reasoned provides us teachers with a
portfolio of situated reflections that we can rely upon when we encounter situ-
ations for which we are not prepared. In this way reflection-on-action supports
our reflection-in-action.

7.3 Theoretical Lens

When comparing our own work with related literature, it becomes evident that
reflective practice is a recurrent theme in software engineering education. In the
work of Hazzan, e.g., reflection is seen as a driving factor in education about
human factors in software engineering (2004). The same author also suggests to
use reflection with a tutor as a way to continuously drive a project forward in
a studio environment (Hazzan, 2002). However, Hazzan couples reflective prac-
tice in software engineering education directly to the specific method of the
studio in which students meet with a capable tutor several times a week, thus
increasing commitment and motivation and exposing the students to construc-
tive criticism and different social interactions connected to collaborative work.
While this method is very intriguing, it also requires significant resources, both
in terms of meeting space and effort by the tutors. Such a method is thus not
feasible in the resource-constrained environment we find ourselves in.

Another take on the studio as an instrument for reflection is presented by
Bull and Whittle (2014). They argue that project-based courses are better for
facilitating reflection than lecture-based courses since they give students the
opportunity to work iteratively. Still, such courses often suffer from consider-
ing reflection as an implicit learning objective and do not explicitly address it
through the teaching activities. The authors conclude that the studio approach
is recommendable for fostering reflection at program level and allows addressing
learning objectives over multiple courses. We agree, while we also believe that our
own course is an example of how a single course can introduce explicit learning
objectives, activities, and assessment strategies that foster student reflection.

The studio method championed by Hazzan and Bull and Whittle is one
example of the more abstract concept of communities of practice (Wenger, 1998).
They regard learning as a social and collaborative effort that is based on the
common passion for a subject and the interaction between the learners and
the teachers. Our toolkit for reflective practice helps us in establishing such a
community of practice: joint activities in the course within a common domain
create a community that is based on practical experience and reflective practice
about this experience. Continuous interaction between the students and between
students and teachers and the learning activities are designed to create a “shared



28 Burden and Steghöfer

repertoire of resources” that helps the students in their learning process and in
achieving the intended learning outcomes.

Reflection has also been acknowledged as a problem-solving strategy in soft-
ware engineering education. For instance, teaching students how to reflect in
order to improve their skills in writing software tests (Edwards, 2004) enables
them to move away from a trial-and-error approach and thus allows them to find
solutions more quickly and efficiently. In particular, the role of feedback for the
success of reflective practice is emphasised in Edwards, 2004. While this feed-
back is provided by an automated system in the course the contribution reports
on, we aim to provide formative feedback in our supervision sessions with the
students and in the different learning activities throughout the course.

In terms of assessment, the assessment strategies in our toolkit for reflective
practice are instantiated, among others, in the final deliverable that contains a
reflection report in which students reflect on their experience with the process.
This is similar to the use of post-mortem reports to evaluate software archi-
tecture projects suggested by Wang and Stalhane, 2005. Such reports are often
used in the industry to analyse a product development effort and draw con-
clusions that can support a software process improvement initiative (Dingsøyr,
2005). However, the cited paper proposes to only include positive and negative
experiences in the report. While this is an important part of reflective practice,
the crucial part of deriving concrete improvement steps and evaluating those in
practice — an essential part of our toolkit for reflective practice — is missing.

8 Applying the Toolkit outside SE Education

While we developed the toolkit for use in a software engineering project course,
its general outline should be applicable to different course structures within
engineering and the sciences in general. The model of reflective practice (cf.
Section 5.1) is independent of concrete course content and only mandates an
iterative approach. The assessment tasks (cf. Section 5.4) we use are likewise
independent of the concrete product or discipline of engineering and focus on
reflecting on the students’ praxis and choices. Similarly, the professional practice
of the teachers (cf. Section 5.5) of reflecting about the course amongst themselves
and in front of the class is completely independent of the concrete discipline being
taught.

We see the main application area in engineering project courses in which an
artifact needs to be developed by students following a specific process. In these
situations, students often exhibit a “product over process” attitude (Steghöfer et
al., 2016). Using reflective practice that is focused on the process draws the stu-
dents’ attention to these issues and makes it easier for the teachers to put process
aspects into the foreground. The course structure (cf. Section 5.2) is applicable
in such project courses with minimal modifications based on the background
knowledge and skills students need to acquire before being able to start working
on the product and the length of the course. The learning activities (cf. Section
5.3) might also be adapted. While the kata and the process supervision are trans-



REFERENCES 29

ferrable to other disciplines, the Lego Scrum exercise uses a dedicated software
development process. However, other simulations or serious games could be used
to achieve a similar effect. One example is the urban planning game described in
Mayer, Carton, de Jong, Leijten, and Dammers, 2004 in which students simulate
the development of a city and the necessary negotiations between the involved
stakeholders.

9 Conclusions

In this chapter, we have described the toolkit for reflective practice, a set of
teaching, assessment, and professional practices based on a model of reflective
practice for engineering courses with a particular focus on software engineering.
We have shown how the toolkit was developed using action design research based
on issues observed in a project course we teach and how the toolkit is applied
in the current version of the course. The toolkit is thus an answer to RQ1: How
can we facilitate reflective practice in a software engineering project course?
Our discussion of the student perception, our own perception and the relation
to other published work also shows that the toolkit is viable, thus providing an
answer to RQ2: How do students utilise opportunities for reflective practice for
their continuous learning?

It is important to note that our toolkit for reflective practice contains many
aspects that allow us to teach how reflection actually works. Being able to reflect
is a skill that needs to be acquired by our students. Our experience shows that
students are successful in doing this by following the teachers example and by
being encouraged to reflect continuously while the course is running.

In the future, we would like to make reflection of both students and teachers
an even more prominent feature of the course. One way to achieve this is to in-
state daily stand-up meetings, a practice that many student groups already take
up on their own. Another would be to start each lecture could with a reflection
by the teachers. At the moment, this only happens if there are events that make
it prudent to do so. A further possibility is to include additional opportunities
for peer assessment in the course, where students perform peer reviews of the
reflection reports of the other students to see positive and negative examples.
Notably, being able to write a good review is another skill that we cannot expect
from our students. Thus, reviewing would have to be introduced and formative
feedback on the reviews would be necessary. However, since architecture and
code reviews are common practices in software engineering, this could provide
an additional opportunity to include an important professional practice in the
course.

References

Anderson, L., Krathwohl, D., & Bloom, B. (2001). A taxonomy for learning,
teaching, and assessing: a revision of Bloom’s taxonomy of educational
objectives. Longman.



30 REFERENCES

Babb, J., Hoda, R., & Nørbjerg, J. (2014, July). Embedding reflection and
learning into agile software development. IEEE Software, 31 (4), 51–57.
doi:10.1109/MS.2014.54

Basili, V. R. (1993). The experience factory and its relationship to other improve-
ment paradigms. In European software engineering conference (pp. 68–83).
Springer.

Basili, V. R. & Caldiera, G. (1995). Improve software quality by reusing knowl-
edge and experience. MIT Sloan Management Review, 37 (1), 55.

Biggs, J. (1996). Enhancing teaching through constructive alignment. Higher
education, 32 (3), 347–364.

Bourque, P., Fairley, R. E. et al. (2014). Guide to the software engineering body
of knowledge (swebok (r)): version 3.0. IEEE Computer Society Press.

Brookfield, S. (1995). Becoming a critically reflective teacher. San Francisco:
Jossey-Bass.

Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture
of learning. Educational researcher, 18 (1), 32–42.

Bull, C. & Whittle, J. (2014, July). Supporting reflective practice in software
engineering education through a studio-based approach. IEEE Software,
31 (4), 44–50.

Burden, H. (2017). DAT255 Software Engineering Project, HT2014. Accessed on
March 29th, 2018. Retrieved from https://github.com/hburden/DAT255/
tree/ht2014

CMMI Product Team. (2010). Cmmi for development, version 1.3 (tech. rep.
No. CMU/SEI-2010-TR-033). Software Engineering Institute, Carnegie Mel-
lon University.

Dingsøyr, T. (2005). Postmortem reviews: purpose and approaches in software
engineering. Information and Software Technology, 47 (5), 293–303.

Dingsøyr, T., Moe, N., Schalken, J., & St̊alhane, T. (2007). Organizational learn-
ing through project postmortem reviews–an explorative case study. Soft-
ware Process Improvement, 136–147.

Dresch, A., Lacerda, D. P., & Antunes, J. A. V. (2014). Design science research: a
method for science and technology advancement. Springer Publishing Com-
pany, Incorporated.

Edström, K. (2008). Doing course evaluation as if learning matters most. Higher
Education Research & Development, 27 (2), 95–106. doi:10.1080/07294360701805234.
eprint: http://dx.doi.org/10.1080/07294360701805234

Edwards, S. H. (2004). Using software testing to move students from trial-and-
error to reflection-in-action. In Proceedings of the 35th sigcse technical sym-
posium on computer science education (pp. 26–30). SIGCSE ’04. Norfolk,
Virginia, USA: ACM. doi:10.1145/971300.971312

Elmgren, M. & Henriksson, A. (2010). Universitetspedagogik. Norstedts.
Freire, P. (2000). Pedagogy of the oppressed: 30th anniversary edition. Blooms-

bury Academic.
Gunn, C. L. (2010). Exploring MATESOL student ’resistance’ to reflection. Lan-

guage Teaching Research, 14 (2), 208–223.



REFERENCES 31

Hazzan, O. (2002). The reflective practitioner perspective in software engineering
education. Journal of Systems and Software, 63 (3), 161–171.

Hazzan, O. & Tomayko, J. E. (2004, March). Reflection processes in the teaching
and learning of human aspects of software engineering. In 17th conference
on software engineering education and training, 2004. proceedings. (pp. 32–
38). doi:10.1109/CSEE.2004.1276507

Huber, G. P. (1996). Organizational learning: a guide for executives in technology–
critical organizations. International Journal of Technology Management,
11 (7-8), 821–832.

Jørgensen, M. & Gruschke, T. M. (2009, May). The impact of lessons-learned
sessions on effort estimation and uncertainty assessments. IEEE Transac-
tions on Software Engineering, 35 (3), 368–383. doi:10.1109/TSE.2009.2

Kniberg, H. & Cockburn, A. [Alistair]. (2013). Elephant Carpaccio exercise. Last
accessed on October 30th, 2017. Retrieved from https : / / docs . google .
com / document / d / 1TCuuu8Mm14oxsOnlk8DqfZAA1cvtYu9WGv67Yj
sSk/pub

Kolb, D. A. (2014). Experiential learning: Experience as the source of learning
and development (2nd ed.). FT press.

Loughran, J. J. (2002). Effective reflective practice in search of meaning in learn-
ing about teaching. Journal of teacher education, 53 (1), 33–43.

Lyons, N. (Ed.). (2010). Handbook of Reflection and Reflective Inquiry – Mapping
a Way of Knowing for Professional Reflective Inquiry. Springer, New York,
NY.

Maham, M. (2008, August). Planning and facilitating release retrospectives. In
Agile 2008 conference (pp. 176–180). doi:10.1109/Agile.2008.60

Mann, S. (2005, July). The language teacher’s development. Language Teaching,
38, 103–118.

Mathiassen, L. & Purao, S. (2002). Educating reflective systems developers.
Information Systems Journal, 12 (2), 81–102.

Mayer, I. S., Carton, L., de Jong, M., Leijten, M., & Dammers, E. (2004). Gaming
the future of an urban network. Futures, 36 (3), 311–333.

Pettersson, F., Ivarsson, M., Gorschek, T., & Öhman, P. (2008, June). A practi-
tioner’s guide to light weight software process assessment and improvement
planning. J. Syst. Softw. 81 (6), 972–995. doi:10.1016/j.jss.2007.08.032

Rother, M. (2017). Kata to grow – a simple, free exercise to help teach scientific
thinking. online. accessed October 30, 2017. Retrieved from https://www.
katatogrow.com/

Schön, D. A. (1983). The Reflective Practitioner: How Professionals Think in
Action. Harper torchbooks. Basic Books.

Sein, M. K., Henfridsson, O., Purao, S., Rossi, M., & Lindgren, R. (2011). Action
design research. MIS Quarterly, 35 (1), 37–56. Retrieved from http://www.
jstor.org/stable/23043488

Shkedi, A. (2000). Educating reflective teachers for teaching culturally valued
subjects: evaluation of a teacher-training project. Evaluation & Research
in Education, 14 (2), 94–110.



32 REFERENCES

Smith, R. A. (2001). Formative evaluation and the scholarship of teaching and
learning. New Directions for Teaching and Learning, 2001 (88), 51–62.

Steghöfer, J.-P., Burden, H., Alahyari, H., & Haneberg, D. (2017). No silver
brick: Opportunities and limitations of teaching Scrum with Lego work-
shops. Journal of Systems and Software, 131, 230–247.

Steghöfer, J.-P., Knauss, E., Alégroth, E., Hammouda, I., Burden, H., & Eric-
sson, M. (2016, May). Teaching Agile – Addressing the Conflict Between
Project Delivery and Application of Agile. In Software engineering edu-
cation and training track, the 38th international conference on software
engineering. Austin, TX.

Tomal, D. R. (2010). Action research for educators. Rowman & Littlefield Pub-
lishers.

Turns, J., Sattler, B., Yasuhara, K., Borgford-Parnell, J., & Atman, C. J. (2014).
Integrating reflection into engineering education. In Proceedings of the asee
annual conference and exposition, acm.

Villalón, J. A. C.-M., Agust́ın, G. C., Gilabert, T. S. F., Seco, A. D. A., Sánchez,
L. G., & Cota, M. P. (2002). Experiences in the application of software
process improvement in smes. Software Quality Journal, 10 (3), 261–273.

Wang, A. I. & Stalhane, T. (2005, April). Using post mortem analysis to evaluate
software architecture student projects. In 18th conference on software en-
gineering education training (cseet’05) (pp. 43–50). doi:10.1109/CSEET.
2005.42

Wenger, E. (1998). Communities of practice: learning, meaning, and identity.
Cambridge University Press.

Williams, L. & Cockburn, A. [A.]. (2003, June). Agile software development:
it’s about feedback and change. Computer, 36 (6), 39–43. doi:10.1109/MC.
2003.1204373


