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Time table (1st week)
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Course overview

https://chalmers.instructure.com/courses/15306
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Examination

“För godkänd på kursen krävs godkänd på de tre grupparbetana
samt godkänd på skriftlig tentamen. Betyget på kursen baseras på
betyget på tentan.”

Examination consists of two parts.

Exam:

• Exam takes place on campus. Will look similar to the last
exam.

3 group assignments:

• First assignment: “Skiplist”.
• Groups of up to four students.
• ë Find yourself a group on canvas "Assignment groups".
• One student hands in for the group on canvas.
• Required for passing but does not affect course grade.
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Course content

In probability theory we construct and analyse mathematical
models for phenomena that exhibit uncertainty and variation.

Highlight: Markov chains.

In statistics we observe data and we want to infer the probabilistic
model or parameters of such a model: inverse probability.
(Inverse probability.)

Generating functions allow to solve recursive equations.

The law of large number describes what happens if you perform
the same experiment a large number of times.

Regression to find linear relationships between inputs/explanatory
variables and outputs/explained variables.
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Example: Probability vs statistics

What is the probability to throw 10 times heads in a row with a fair
coin.

This is the 10th time you throw head in a row... is that coin
fair!?
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Describing data



Visual inspection

When analysing a data set, it is a good idea to first visualise it
graphically.

Example:
Throwing a dice 20 times we obtained the following results:

1, 3, 3, 3, 1, 6, 6, 5, 1, 4, 6, 1, 4, 5, 1, 1, 2, 3, 6, 5.
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Frequency table and histogram

Everything starts with data and tables.

If the observations take values in a small set, then we can
summarise the data in a frequency table showing how many
outcomes we have for each possible outcome.

For our results

1, 3, 3, 3, 1, 6, 6, 5, 1, 4, 6, 1, 4, 5, 1, 1, 2, 3, 6, 5

we get

Outcome 1 2 3 4 5 6

Count 6 1 4 2 3 4
Proportion 0.30 0.05 0.20 0.10 0.15 0.20
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Tricky denominators

New York City Health Department, 2021-08-08.

10



Bar chart

Using the frequency table we can draw a bar chart. For each value
we draw a bar whose height is proportional to the number of
observations for that value.

using StatsBase, GLMakie
x = [1, 3, 3, 3, 1, 6, ..., 5, 1, 1, 2, 3, 6, 5,]
barplot(counts(x, 1:6))
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Histogram

Task: Summarise 1000 real numbers which are the outcome of
some experiment,

12.15, 17.33, 0.96, 13.44, 11.27, 4.76, 8.26, 11.37, 24.31, 21.07, . . .

A bar chart doesn’t make sense because the data does not have
only a few different values. We can use a histogram:

• Divide the data into a number of classes (intervals) and then
calculate the number of observations in each class.

• Draw bars where the height is proportional to the number of
observations in the class and the width equals the interval
width.
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Histogram

4 classes 7 classes

9 classes 200 classes
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Sample statistics for location

Case 1 2 3 4 5 6 7 8
Value 2 3 2 6 5 1 2 3

Weights on a bar
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Sample median

• To obtain the sample median,
write the values in sorted order and take the middle one.

If there is an even number of values in the data set, take the
average of the two middle most.
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Median

Median

Value 1 2 2 2 3 3 5 6

Median = 2.5

16



Median

Median

Value 1 2 2 2 3 3 5 8

Median = 2.5
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Sample mean

• The (sample) mean, denoted as x̄, can be calculated as

x̄ “
x1 ` x2 ` ¨ ¨ ¨ ` xn

n
“

1

n

n
ÿ

i“1

xi,

where x1, x2, ¨ ¨ ¨ , xn are the n observed values.

In words: Sum the values of all cases in the data set and divide
by the total number of values.
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Sample mean

Mean

Value 1 2 2 2 3 3 5 6

Mean x̄ “
1¨1` 3¨2` 2¨3` 1¨5` 1¨6

8
“ 3
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Sample mean

Mean

Value 1 2 2 2 3 3 5 8

Mean x̄ “
1¨1` 3¨2` 2¨3` 1¨5` 1¨8

8
“ 3.25
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Sample statistics for variation/spread

Sample variance: The sample variance of a data set x1, . . . , xn is
given by

s2 “
1

n´ 1

n
ÿ

i“1

pxi ´ x̄q2 “
1

n´ 1
ppx1 ´ x̄q2 ` . . .` pxn ´ x̄q2q

Sometimes convenient to use the formula

s2 “
1

n´ 1
p

n
ÿ

i“1

x2i ´ nx̄2q “
1

n´ 1
px21 ` . . .` x2n ´ nx̄2q

Sample standard deviation s: the square root
?
s2 of the sample

variance.
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Example 1 (cont.)

For the dice throw example

1, 3, 3, 3, 1, 6, 6, 5, 1, 4, 6, 1, 4, 5, 1, 1, 2, 3, 6, 5

we obtain the mean

x̄ “ p1` 3` 3` . . .` 3` 6` 5q{20 “ 67{20 “ 3.35

Sorting the values and taking the central one we obtain the median
3.

The variance is

s2 “ pp1´ 3.35q2 ` p3´ 3.35q2 ` . . .` p5´ 3.35q2q{19 “ 3.8184

and the standard deviation is s “ 1.9541.
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Sample spaces



Outcomes

In probability theory we consider experiments which have
non-deterministic, variable or random outcomes.

For example

1. Roll a die and count the eyes.

2. Ask a person on the street which party they would vote for.

3. Throw a handful of coins and count the heads.

4. Examine a unit from a manufacturing process.

5. Measure the round-trip time (ping) of a connection.

The result of the experiment is called outcome ω (utfall). The set
of possible outcomes is called the sample space Ω (utfallsrummet).

ë Sets Ω and elements ω.
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Sample spaces

• Ω “ t1,2,3,4,5,6u.

• Ω “ tV, S, MP, C, L, M, KD, S, Others, No answeru.

• Ω “ t(head, head),(head, tail),(tail, head),(tail, tail)u (for 2
coins).

• Ω “ tdefect, intactu.

• Ω “ r0,8q (seconds).
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Events

We group outcomes into events.

An event A is a set of outcomes, that is, a subset of the sample
space Ω.

Example for events:

1. A “ t1,3,5u, that is “my die shows an odd number”.

2. A “ tC, L, M, KDu, a “vote for the ‘Alliansen’ ”.

3. A “ t(head,head),(tail,tail)u, “both coins show the same face”.

4. A “ tdefectu, the “unit is broken”.

5. A “ tx : x ě 0.5u, round-trip-time larger than 0.5s.

An event A occurs if any of the outcomes ω P A occurs in the
experiment.

25
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experiment.
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Outcome and sample space

Outcome and sample space
The outcome ω is the result of a random experiment, and the set
of all possible outcomes Ω is called the

sample space

.

Events
An event is a collection (a set of) different outcomes. The event
A, as a set of outcomes, is therefore a subset of the sample space
Ω.

We like events because the probability of a single outcome might be
too small or zero.
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Event, outcome and sample space

A

Ω

ω

ω1

Event A, outcome ω P A and sample space Ω

And some other outcome ω1 R A.
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Overview: Intersection, union and complement

For events A and B we have defined:

Complement, Ac

Set of all outcomes ω not contained in A.

Ac “ ΩzA.

Union, AYB

Set of all outcomes ω in A

or

B.

Intersection, AXB

Set of all outcomes ω in A

and

B.

Ac, AYB, AXB are

also events

. ∅ and Ω are also events, the
impossible event and the sure event.

Mutually exclusive events
If AXB “ ∅ then A and B are mutually exclusive events.
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Example: The set t2, 4, 6u and the set t1, 3, 5u are disjoint.

30



Complement

A

Ac

The complement of a A are all outcomes not in A.

Ac “ ΩzA.

In the example with the die: Here A “ t1, 3, 5u. So if the die shows
a 2, then Ac “ t2, 4, 6u happened.
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A
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The complement of a A are all outcomes not in A.

Ac “ ΩzA.

In the example with the die: Here A “ t1, 3, 5u. So if the die shows
a 2, then Ac “ t2, 4, 6u happened.

31



Complement

A

Ac

The complement of a A are all outcomes not in A.

Ac “ ΩzA.

In the example with the die: Here A “ t1, 3, 5u. So if the die shows
a 2, then Ac “ t2, 4, 6u happened.
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Union

A B

pAYBqc

If we have events, A and B we can define AYB, the union of A
and B .

• AYB occurs if A or B occur (or both).
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Union

A B

pAYBqc

If we have events, A and B we can define AYB, the union of A
and B .

• AYB occurs if A or B occur (or both).
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Intersection

A B

pAXBqc

The intersection AXB are all elements both in A and B.

• So for AXB to occur, both A and B need to occur.

AXB “ ∅ means that A andB exclude each other.
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Set inclusion

A B

A Ă B.
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Disjoint sets

A B

AXB “ ∅.

35



The empty set ∅
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Permutations and combinations

Permutation
A specific order of a number of objects.

p1, 3, 2, 5, 6, 4q is a permutation of the numbers 1 to 6.

Combination
A selection of objects without regard for their order.

t1, 3, 5u is a combination of 3 the of the numbers 1 to 6.

Note p1, 2q ‰ p2, 1q but t1, 2u “ t2, 1u.
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Permutations and combinations

Multiplication principle
If there are a ways to make a choice and there are b ways to make
a second choice, then there are ab ways to make a combined
choice.

Factorial
For n P N define n! “ n ¨ pn´ 1q ¨ pn´ 2q ¨ ¨ ¨ ¨ 2 ¨ 1 and 0! “ 1.
n! is read “n-factorial”.

4! “

4 ¨ 3 ¨ 2 ¨ 1 “ 24
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Calculate the number of combinations

Number of combinations
The number of ways we can choose r objects out of a total of n
distinct objects, ignoring their order, is given by

nCr “

ˆ

n
r

˙

“
n!

r!pn´ rq!

• nCr is usually called binomial coefficient.

Example: Draw five cards from a poker set of 52 cards.
2 598 960 combinations are possible:

ˆ

52

5

˙

“
52!

5!p52´ 5q!
“

52 ¨ 51 ¨ 50 ¨ 49 ¨ 48

5 ¨ 4 ¨ 3 ¨ 2 ¨ 1
“ 2 598 960

nPr “
n!

pn´rq!
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Probabilities of events

• Probability is a numerical measure of how likely an event is to
happen.

• Probability is a proportion, a number between 0 and 1.
Notation

Ppsomething that can happenq “ a probability.

E.g.

Ppcoin heads-upq “
1

2
.

Figure from https://mathwithbaddrawings.com/.
40
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Equally likely outcomes

What is probability?

(How do we assign probability?)

• A classical and useful view considers equally likely outcomes.
Then

PpAq “
number of outcomes for which A occurs

total number of outcomes

• Probability to throw an odd number with a fair die.

PpAq “
|t1, 3, 5u|

|t1, 2, 3, 4, 5, 6u|
“

3

6
“

1

2

41
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Frequentist interpretation of probability

• Sometimes it is not reasonable to assume that all outcomes
are equally likely.

• The frequentist interpretation of probability: Suppose we
repeat a random experiment many times under identical
conditions. As the number of repetitions n grows, we observe
that the proportion nA{n of times that an event A occur
converges to a number. This number is the probability of A,
or as formula

nA

n
Ñ PpAq,where nÑ8

Example: With a fair die, we observe the proportion of times where
A “ teven number of eyesu occurs converge to 1

2 .
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Kolmogorov’s axioms

Let Ω be a sample space.

Kolmogorov’s axioms
A probability measure P is function A ÞÑ PpAq assigning each
event A Ă Ω a probability,

a positive number such that

1. 0 ď PpAq ď 1.

2. PpΩq “ 1.

3. For pairwise disjoint events A1, A2, . . .

P

˜

8
ď

i“1

Ai

¸

“

8
ÿ

i“1

PpAiq.

Especially for disjoint/mutually exclusive events A and B,

PpAYBq “ PpAq ` PpBq.
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Properties of probability distributions

The axioms determine all further properties of probabilities...

Properties
For the probability measure P it holds that:

1. Pp∅q “ 0.

2. PpAcq “ 1´ PpAq.

3. PpAYBq “ PpAq ` PpBq ´ PpAXBq.

All these properties can be seen with the help of Venn
diagrams.
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Probability of the union of non-disjoint events

What is the probability of drawing a jack or a red card from a well
shuffled full deck (52 cards)?

Ppjack or redq “ Ppjackq ` Ppredq ´ Ppjack and redq

“
4

52
`

26

52
´

2

52
“

28

52

Figure from http://www.milefoot.com/math/discrete/counting/cardfreq.htm.
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General addition rule

PpAYBq “ PpAq ` PpBq ´ PpAXBq

46



Combined experiment

Throw a coin ( 1 , e ), and throw a 6 sided die. What is

Pp 1 ,�q “

1

12

Use multiplication rule and the classical approach.

� � � � 	 


1 1
12

1
12

1
12

1
12

1
12

1
12

1
2

e 1
12

1
12

1
12

1
12

1
12

1
12

1
2

1
6

1
6

1
6

1
6

1
6

1
6 1

The table also shows the marginal probablities.
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Example with the bugs

Drawing a random bug out of the aquarium, with (g)reen and (r)ed
bugs on (l)and and (w)ater.

R G

L 2 3 5
W 2 5 7

4 8 12

R G

L 1
6

1
4

5
12

W 1
6

5
12

7
12

1
3

2
3 1

Frequency table and probability table.
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Thinking statistics

Flawed reasoning
Students at an elementary school are given a questionnaire that
they are required to return after their parents have completed it.

One of the questions asked is, “Do you find that your work
schedule makes it difficult for you to spend time with your kids
after school” Of the parents who replied, 85% said “no”.

Based on these results, the school officials conclude that a great
majority of the parents have no difficulty spending time with their
kids after school.

What went wrong?
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Conditional probability

Drawing a random bug out of the aquarium, with (g)reen and (r)ed
bugs on (l)and and (w)ater.

Ppis redq “ 1{3

50



Conditional probability

Drawing a random bug out of the aquarium, with (g)reen and (r)ed
bugs on (l)and and (w)ater.

We catch a red bug. What is the probability it is “dry”:

50%-50%

Pplives on land | is redq “
Ppred and land

Ppis redq
“

2{12

4{12
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Conditional probability

The conditional probability of the event of interest A given
condition B is calculated as

PpA | Bq “
PpAXBq

PpBq

Multiplication rule
If A and B represent two events, then

P pAXBq “ P pA|Bq ¨ P pBq

Note that this formula is simply the conditional probability formula,
rearranged.
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