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Samples and point estimators



Statistics

Example: p5.27, 4.07, 5.48, 3.38q are measurements of the weight
of n “ 4 randomly (independent) selected cats.

The weight of a cat is modelled as normal random variable
X1, X2, X3, X4 each Npµ, p1.2q2q-distributed with unknown
parameter µ. Here Npµ, p1.2q2q is a model for the population of all
cats.

p5.27, 4.07, 5.48, 3.38q is a sample of X1, X2, X3, X4.
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Definition: Sample
A sample px1, . . . , xnq of size n is made of n independent
observations (realisations) of a random variable. Or – the same –
of random variables X1, . . . , Xn where all Xi are independent and
equally distributed (thus have the same distribution).
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Definition: Anti-Example

p5.27, 5.27, 5.27, 5.27, 5.27q is perhaps not a sample

(lack of independence because some genius just weighted the same
cat over and over).
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Statistics

Like in the “cat“-example we can often say what kind of distribution
is appropriate for X but we do not know the right
parameters.

Many statistical problems can be reduced to the following question:
Given the observations x1, . . . , xn, what can we say about the
parameters in the distribution of Xi (assuming each Xi is drawn
independently from the same distribution)?

Definition: i.i.d.

We write X1, X2, . . . Xn
i.i.d.
„ D if X1, X2, . . . , Xn are

independently and identically distributed with distribution D.

5



Statistics

Like in the “cat“-example we can often say what kind of distribution
is appropriate for X but we do not know the right
parameters.

Many statistical problems can be reduced to the following question:
Given the observations x1, . . . , xn, what can we say about the
parameters in the distribution of Xi (assuming each Xi is drawn
independently from the same distribution)?

Definition: i.i.d.

We write X1, X2, . . . Xn
i.i.d.
„ D if X1, X2, . . . , Xn are

independently and identically distributed with distribution D.

5



Statistics

Like in the “cat“-example we can often say what kind of distribution
is appropriate for X but we do not know the right
parameters.

Many statistical problems can be reduced to the following question:
Given the observations x1, . . . , xn, what can we say about the
parameters in the distribution of Xi (assuming each Xi is drawn
independently from the same distribution)?

Definition: i.i.d.

We write X1, X2, . . . Xn
i.i.d.
„ D if X1, X2, . . . , Xn are

independently and identically distributed with distribution D.

5



The sample mean as estimator

X̄pnq “ 1
n

n
ř

i“1
Xi is the sample mean.

Example: Let p5.27, 4.07, 5.48, 3.38q our sample.
x̄p4q “ p5.27` 4.07` 5.48` 3.38q{4 “ 4.55 is a realisation
X̄pnq.

We model X̄pnq itself as random variable with its own expectation,
variance and realization etc. Now with µ “ EpX1q “ EpX2q “ ...
and σ2 “ VarpX1q “ VarpX2q “ ...

E

˜

1

n

n
ÿ

i“1

Xi

¸

“
1

n

n
ÿ

i“1

EXi

p˚q

“ µ

Var

˜

1

n

n
ÿ

i“1

Xiq

¸

i.i.d
“

1

n2

n
ÿ

i“1

VarpXiq “
σ2

n

Ah! Smaller uncertainty, 4.55 is perhaps closer to µ than most the
values in our sample which vary from µ by σ.
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The sample mean as random variable

Expectation and variance of the sample average

E
`

X̄pnq
˘

“ µ and Var
`

X̄pnq
˘

“ σ2{n.

Quiz: How fast goes uncertainty down if n increases?

Standard error of the mean
σ
?
n

is called standard error of the mean.
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Point estimate and standard error

Example: Take p5.27, 4.07, 5.48, 3.38q our sample. Model
X1, . . . Xn

i.i.d
„ Npµ, σ2q with n “ 4 and σ “ 1.2 and µ

unknown.

x̄p4q “ p5.27` 4.07` 5.48` 3.38q{4 “ 4.55 is an estimate for
µ

The standard error associated with x̄p4q is
σ{
?
n “ 1.2{

?
4 “ 0.6.

Our estimate
µ « 4.55˘ 0.6
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The sample mean as random variable: Gaussian case

Average of Gaussian distributed random variables.

Let X1, . . . , Xn an independent sample of a Npµ, σ2q r.v. Then
X̄pnq is Npµ, σ2{nq-distributed.
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Point estimators

Estimation

An estimator for a parameter θ is a function θ̂pX1, . . . , Xnq

mapping the observations into the parameter space Θ.

Example: X̄pnq is an estimator for µ “ EX1 “ EX2 “ ....

θ̂ can refer both to a random variable and to actual observed
values.

• θ̂pX1, . . . , Xnq is a random variable with a certain distribution
(random in Ñ random out).

• θ̂px1, . . . , xnq is a number calculated from data. This is called
the point estimate of the parameter.
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Properties of estimators

Two important qualities of estimators:

• unbiased: Epθ̂pX1, . . . , Xnqq “ θ.

• Small variance in large samples: Vpθ̂pX1, . . . , Xnqq small if n
large.
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If the expected value of the estimator is the true value (the
estimator is unbiased), that means that the estimated values center
on average around the true value if we make several repeated
samples of size n.

• For a given sample, the value need not be close to the true
value.

• The standard deviation of an unbiased estimate gives an
indication of how far it may be from the actual value.

• Often the standard error of the estimate is reported, which is
the standard deviation of the estimate.
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Important estimators

Sample mean and sample variance
Consider an i.i.d sample pX1, . . . , Xnq and assume that
EpXiq “ µ and VpXiq “ σ2.

The sample mean µ̂ “ X̄pnq is an unbiased estimator of µ, that
is Epµ̂q “ µ. It has standard error

a

V pµ̂q “ σ?
n
.

An unbiased estimator for the variance σ2 is the sample variance

S2 “
1

n´ 1

n
ÿ

i“1

pXi ´ X̄q
2.

13



Important estimators

Sample mean and sample variance
Consider an i.i.d sample pX1, . . . , Xnq and assume that
EpXiq “ µ and VpXiq “ σ2.

The sample mean µ̂ “ X̄pnq is an unbiased estimator of µ, that
is Epµ̂q “ µ. It has standard error

a

V pµ̂q “ σ?
n
.

An unbiased estimator for the variance σ2 is the sample variance

S2 “
1

n´ 1

n
ÿ

i“1

pXi ´ X̄q
2.

13



Sample variance can also be computed as

S2 “
n
řn
i“1X

2
i ´ p

řn
i“1Xiq

2

npn´ 1q
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Percentiles and quantiles

The pth percentile P is the value of X such that p% or less of the
observations are less than P and p100´ pq% or less are greater
than P . pth percentiles are p%-quantiles.

In particular, P25 is the 25th percentile or the first quartile denoted
also by Q1.P50 is the 50th percentile or the second quartile Q2,
which is also the median, and P75 is the 75th percentile or the
third quartile Q3.

Note that Q1 “
n`1
4 th ordered observation, Q2 “

2pn`1q
4 “ n`1

2

th ordered observation, and Q3 “
3pn`1q

4 th ordered
observation.
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Example

Given the following set of data :

18, 1, 20, 15, 12, 15, 14, 7, 11, 9, 6, 4

Order the numbers from the lowest to the highest

1, 4, 6, 7, 9, 11, 12, 14, 15, 15, 18, 20

x̄p12q “ 1`4`¨¨¨`18`20
12 “ 11.

Median: Me “ 11`12
2 “ 11.5.
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Example

Given the following set of data :

18, 1, 20, 15, 12, 15, 14, 7, 11, 9, 6, 4

Variance

s2 “
p20´ 11q2 ` p18´ 11q2 ` ¨ ¨ ¨ ` p´7q2 ` p´10q2

12´ 1
« 33.3

Order the numbers from the lowest to the highest

1, 4, 6, 7, 9, 11, 12, 14, 15, 15, 18, 20

Q1 “ 6.25, Q3 “ 15.
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Boxplot
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Bivariate samples



Visualisation

Assume 2d measurements pxi, yiq. A scatter plot is a
two-dimensional plot in which each pxi, yiq measurement is
represented as a point in the x-y-plane.
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Statistics for bivariate data

The sample covariance is defined as,

cxy “
1

n´ 1

n
ÿ

i“1

pxi ´ x̄qpyi ´ ȳq

and is an unbiased estimator of the covariance CovpX,Y q.

The sample correlation coefficient is defined as

rxy “

řn
i“1pxi ´ x̄qpyi ´ ȳq

a

řn
i“1pxi ´ x̄q

2
a

řn
i“1pyi ´ ȳq

2
“

cxy
sxsy

The sample correlation is an empirical measure of linear
dependence.
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2
“

cxy
sxsy

The sample correlation is an empirical measure of linear
dependence.

20



Statistics for bivariate data

The sample covariance is defined as,

cxy “
1

n´ 1

n
ÿ

i“1

pxi ´ x̄qpyi ´ ȳq
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Example: Course results 2017

Exam grade (Y ) versus points in exam question 5 (X).
Correlation: rxy “ 0.7261
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Sum of Gaussian r.v.

Let X „ NpµX , σ
2
Xq and Y „ NpµY , σ

2
Y q with X and Y

independent. Then

X ` Y „ NpµX ` µY , σ
2
X ` σ

2
Y q

Note: A normal random variable with mean µ and variance σ2 has
moment generating function mptq “ expptµ` t2σ2{2q. So if you tell me
your moment generating function, I tell you if you are normally
distributed and if, what your parameters are. We can prove the theorem
by computing and identifying the m.g.f of X ` Y (next slide)
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Proof with m.g.f.

So we now mXptq “ E expptXq “ expptµX ` t
2σ2X{2q and

mY ptq “ E expptY q “ expptµY ` t
2σ2Y {2q.

We compute and identify mX`Y

mX`Y ptq “ E expptpX ` Y qq “ E pexpptXq expptY qq

indep
“ E pexpptXqqE pexpptY qq

“ mXptqmY ptq “ expptµX ` t
2σ2X{2q expptµY ` t

2σ2Y {2q

“ expptpµX ` µY q ` t
2pσ2X ` σ

2
Y q{2q

which is m.g.f of NpµX ` µY , σ
2
X ` σ

2
Y q so X ` Y must be

NpµX ` µY , σ
2
X ` σ

2
Y q distributed.
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