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Bivariate distributions

Definition

Informal: A two-dimensional or bivariate random variable pX,Y q
produces a pair of random numbers.

For discrete random variables we have the joint density (probability
mass function)

fX,Y pi, jq “ PpX “ i, Y “ jq “ PpX “ i and Y “ jq.

Here fX,Y pi, jq ě 0 and
ř

all i,j
fX,Y pi, jq “ 1.
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Example

Let X and Y be the number of girls, respectively boys in a
randomly chosen Swedish family. The joint density function
fX,Y px, yq is given in the table below.

Y 0 1 2 3 4
X

0 0.38 0.16 0.04 0.01 0.01
1 0.17 0.08 0.02
2 0.05 0.02 0.01
3 0.02 0.01
4 0.02

ř

all x,y
fX,Y px, yq “ 1

PpX “ 0 and Y “ 1q “ fX,Y p0, 1q “ 0.16
PpX “ 2q “ fXY p2, 0q ` fX,Y p2, 1q ` fXY p2, 2q “ 0.08
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Expected values ♥

EphpX,Y qq “
ÿ

all i,j

hpi, jqfX,Y pi, jq.

For example:

EpX ` Y sq “
ÿ

all i,j

pi` jqfX,Y pi, jq

with hpi, jq “ i` j.
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Expected number of children

X and Y be the number of girls, respectively boys in a randomly
chosen Swedish family.

EpX ` Y q

is the expected number of girls + boys = children.
So hpi, jq “

i` j

.

Y 0 1 2 3 4
X

0 0.38 0.16 0.04 0.01 0.01
1 0.17 0.08 0.02
2 0.05 0.02 0.01
3 0.02 0.01
4 0.02

EpX ` Y q “

p0` 0q ¨ 0.38` p1` 0q ¨ 0.17` .... “ 1.08
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Marginal distributions
Given a pair of discrete random variables pX,Y q with joint
density fX,Y density for X and Y are given by

fXpiq “
ÿ

all j

fX,Y pi, jq

fY pjq “
ÿ

all i

fX,Y pi, jq.

and called marginal densities (marginal p.m.f.’s.)
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Y 0 1 2 3 4 fX
X

0 0.38 0.16 0.04 0.01 0.01 0.60
1 0.17 0.08 0.02 0.27
2 0.05 0.02 0.01 0.08
3 0.02 0.01 0.03
4 0.02 0.02

fY 0.64 0.27 0.07 0.01 0.01 1
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Continuous bivariate random variables

For a pair of continuous random variables: a function fX,Y px, yq
with properties

1. fX,Y px, yq ě 0,

2.
ż ż

fX,Y px, yqdxdy “ 1, and

3. Ppa ď X ď b and c ď Y ď dq “

b
ż

a

d
ż

c

fX,Y px, yqdxdy.
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Marginal distributions
For a bivariate continuous random variable pX,Y q, the probability
density functions for X and Y are given by

fXpxq “

ż

fX,Y px, yqdy

fY pyq “

ż

fX,Y px, yqdx
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Expected value
For a two-dimensional random variable pX,Y q, the expected
values of X and Y are given by

EpXq “

$

&

%

ř

all i, j
ifX,Y pi, jq, for X discrete,

ş ş

xfX,Y px, yqdxdy, for X continuos,
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Conditional distribution

The conditional distribution of X given Y “ y is defined by its
density

fX|Y“ypxq “
fX,Y px, yq

fY pyq
,

provided that fY pyq ą 0.

Independent random variables
Two random variables X and Y are called independent if their
bivariate density can be written as product of the marginal
densities:

fX,Y pu, vq “ fXpuqfY pvq.

There is no “samvariation”, knowing X does not explain Y , etc.
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Covariance

Covariance
Covariance between random variables X and Y is defined as
CovpX,Y q “ ErpX ´ µXqpY ´ µY qs, where µX “ EpXq and
µY “ EpY q.

• According to the definition,

CovpX,Y q “

$

&

%

ř

all i, j
pi´ µXqpj ´ µY qfX,Y pi, jq, discrete

ş ş

px´ µXqpy ´ µY qfX,Y px, yqdxdy, cont.

• Note that CovpX,Xq “ VpXq.

• If X and Y are independent, then CovpX,Y q “ 0 and
EpXY q “ EpXqEpY q.

• Unit??
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Rules for covariance

CovpX,Y q can be calculated as
CovpX,Y q “ EpXY q ´ EpXqEpY q.

For two random variables X and Y , and two numbers a and b we
have

VpaX ` bY q “ a2VpXq ` b2VpY q ` 2ab CovpX,Y q.

Examples:

Vp2Xq “ VpX `Xq “ VpXq ` VpXq ` 2 CovpX,Xq “ 4VpXq

VpX ` Y q “ VpXq ` VpY q when X and Y are independent

(“Fun” thing to do: look up the law of cosines.)
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Correlation and independence

Correlation
The correlation coefficient is defines as

ρpX,Y q “
CovpX,Y q

a

VpXqVpY q
.

• A measure of linear relationship (linjär samvariation) of X and Y .

• It holds ´1 ď ρ ď 1.

• X and Y are called uncorrelated if ρpX,Y q “ 0 (there is no “linjär
samvariation”) .

• Unit??
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Visualisation

Assume 2d measurements pxi, yiq. A scatter plot is a
two-dimensional plot in which each pxi, yiq measurement is
represented as a point in the x-y-plane.
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Descriptive statistic for bivariate data

The sample covariance is defined as,

cxy “
1

n´ 1

n
ÿ

i“1

pxi ´ x̄qpyi ´ ȳq

and sample correlation coefficient is defined as

rxy “

řn
i“1pxi ´ x̄qpyi ´ ȳq

a

řn
i“1pxi ´ x̄q

2
a

řn
i“1pyi ´ ȳq

2
“

cxy
sxsy

The sample correlation is a measure of linear dependence.

In the picture rxy “ 0.8067 i (a), rxy “ 0.2912 i (b),
rxy “ ´0.9884 i (c), och rxy “ 0.3640 i (d).
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and sample correlation coefficient is defined as

rxy “

řn
i“1pxi ´ x̄qpyi ´ ȳq
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We have the following relationship between dependence and
correlation:

• If X and Y are independent, then they are also uncorrelated.

• (Thus if X and Y are uncorrelated, they do not need to be
independent.)

This is natural because two random variables are independent if there is
no “samvariation” at all, while they are not correlated if there is no “ linjär
samvariation”.

18



Correlation, dependence and causality

• Correlation does not say anything about causality!˚

• Sometimes correlation is present but can be explained by a
third variable which was not measured.

• Month with high ice cream sales tend to have more drowning
accidents. Time to ban ice cream?

In this example, an
important variable which perhaps was not measured is the
sunshine. Such variables are sometimes called confounding
variables.

19
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https://twitter.com/dannagal/status/1244082688899919872,
September 13, 2021
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Causality

• Correlation can also be introduced by selection effects.

• Exam with two questions, one difficult, one easy. A student
achieves X out of 10 points on the easy question, Y out of 10
points on the difficult question (random).

• Say X and Y slightly positively correlated. But only students
with X ` Y ě 10 pass. Say I tell you the student has passed.

• Passing students performance on easy questions may now be
negatively correlated with performance on the difficult
question.
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Exam points
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Causality

• If we want to know/predict what will change if we perform an
action we need insight into causality.

• Will the number of drowning accidents change if we ban ice?

• There are many causal statements in the news!

• “Do not skip breakfast if you want to reduce the risk of
coronary heart disease”

• Be careful...

• Candidate for a confounding variable: stress.

• We need to understand the science to answer causal questions!
We will come back to this later.
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Cherry picking

http://www.tylervigen.com/spurious-correlations
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Thinking statistics: Global warming

Two millennia of mean surface temperatures according to different
reconstructions from climate proxies with the instrumental
temperature record overlaid in red.

Stefan Rahmstorf: Paleoclimate: The End of the Holocene.

http://www.realclimate.org/index.php/archives/2013/09/paleoclimate-the-end-of-the-holocene/.

Web. 3 Feb. 2019.
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