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Kurslitteratur

(MA) J. Milton, J. Arnold, Introduction to Probability and
Statistics 4th ed McGraw-Hill

(GS) C. Grinstead, J Snell, Introduction to Probability AMS (on-
line).

(EG) E. Eriksson, H. Gavel, Diskret matematik, Studentlitteratur,
ISBN 9144028784. Relevanta delar av boken finns pa Canvas.

(A) J. Anderson, J. Bell, J. Anderson, Discrete Mathematics with
Combinatorics. Vi anvénder bara nagra évningar; dessa kan
hittas pa Canvas.
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Examination

Examinationen har tvd moment

m Skriftlig tentamen i slutet av kursen
m [Inl&mningsuppgifter

Inlamningsuppgifter:
m Tre obligatoriska inlAmningsuppgifter.
m Grupper pa 1-3 personer.
m Uppgifterna Idmnas in via Canvas.
m Deadline: 22 september, 6 oktober och 20 oktober.
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What is probability?

What is the probability that an open heart surgery will be suc-
cessful?

What is the probability to win the lottery?

What is the probability that it will be sunny tomorrow?

The probability is a quantitative measure of the likelihood of an
event to happen.
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Definitions

m Outcome (sv. utfall): Result of a random ftrial.

m Sample space (sv. utfallsrum): The set S of all possible
outcomes.

m Event (sv. hdndelse): A collection of outcomes, a subset
of S.

m The empty set is called the impossible event and is
denoted by @.

m S is called the certain event.

m Two events A och B are said to be disjoint (sv. disjunkta) if
ANnB=02.

m The events A4, Ao, ... are said to be mutually disjoint
(sv. parvis disjunkta) if Ain A;j =@ for all i #j.
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Example

If we roll a fair six-sided die, we have six possible outcomes
1,2,3,4,5,6. The sample space is therefore
S$={1,2,3,4,5,6}.

A={The die shows an odd number } och B={The die shows a
number less than 3} are events. A and B are written as follows:
A={1,3,5} and B={1,2}

Example
If we roll two dice at the same time, then

S={(1,1).(1,2),...,(6,6)}

C="The sum of the numbers is at most 3” =

{(1,1),(1,2),(2,1)}
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The outcome of a trial are sometimes represented by a tree.

A coin is flipped 3 times. We denote Tail by 0 and Head by 1.

S = {000, 001,010,011, 100, 101, 110, 111}
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A coin is flipped until we get Head for the first time.

S={1,01,001,0001, ... }.
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Combinatorics - Multiplication principle

Multiplication principle: Assume that an event takes place in
k consecutive steps. Suppose that the i-th step occurs in n;
different ways. Then, the number of possible ways for the event
to occur is I'Iﬁ‘:1 ni=ng-no-+-ng.

Example

9 men and 7 women were invited to a party. If the men dance
only with women and women dance only with me, we have
9.7 = 63 different couples.
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Combinatorics - Permutation

How many possible numbers can one build from {1, 2, 3} with-
out repeating the same digit twice?

According to the multiplication principle there are 3-2-1 = 6
possible outcomes:

123,132, 213, 231, 312, 321.

Definition
A permutation is the act of arranging the elements of a set into
a sequence.
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To get the number of permutations of n elements we proceed as
follows:

The first element has n choices, the second element has n— 1
choices since the element chosen first cannot be chosen again,
and so on. The total number of possibilities is therefore:

n(n—1)(n—2)---3-2-1=N7 = nl.

n! is called n-fatorial. 0! = 1 by convention.

Theorem
The number of permutations of n elements is equal to n!.
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Combinatorics - Arrangements (sv. ordnad urval)

How many two-digits number can one get from the set {1, 2, 3,4, 5}
without repeating the same digit twice?
By the multﬂig%tﬁon prigciple there exists 5-4 possibilities which

is equal to =553 = B

Theorem (Arrangements)

The number of ways to permute r elements chosen from a set
of n elements is denoted by ,P, and is given by

nPr=n(n—1)---(n—r+4+1)= (n—7)
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Combinatorics - Combination

m The number of ways to pick r elements from a set of n
elements where the order of the elements is not important
is equal to "r—'?’ and is denoted by ,C,

n!

" nCr = G

m ,C; is called the binomial coefficient and is also denoted by

(7).

There exist (%) = g = 251 diifferent ways to pick two cards

from a deck of cards.
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Combinatorics - Permutation with repetition

How many words can we get if we permute the letters in the
word “DADDY”?

The number of permutations of 5 letters is 5!. For each of these
permutations, we can permute the 3 letters D in 3! ways but the
arrangement is unchanged. Therefore, in order to count the dif-
ferent possible permutations, we divide 5! by 3!.

In general, if S has k distinct elements where the first element
is repeated ny times, the second is repeated n» times, ..., the
k-th element is repeated ni times, and ny +... Nk = n, then the
number of permutations of the elements in S is glven by

n! ) n
n,n2,---nc) nilnole-eng!
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Probability

A probability is a number between 0 and 1 that describes how
likely an event to occur. If the event is denoted by A, the proba-
bility that A occurs is denoted by p(A) or P(A).

m The probability of the impossible event is 0 (p(@) = 0).
Probabilities near zero indicate that the event is not very
likely to occur.

m The probability of the certain eventis 1 (p(S=1).
Probabilities near 1 are very likely to occur.
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Relative frequency (sv. Frekventistiska Approximation)

Suppose an experiment was run ntimes. The probability that an
event A occur is approximated by

na number of times A occur

p(A) = — = . -
n  number of times the experiment was run

This probability is based on experience and the approximation
is not accurate when nis too small.
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The following tabel gives the outcome of 10 rolls of a die. We
are interested of the event A="“The die shows the number 6”.

Forsok —Resultat (antal 6gon) Héndelse A Relativ frekvens

1 5 Nej o/1
2 Ja 1/2
3 2 Nej 1/3
4 3 Nej 1/4
5 4 Nej 1/5
6 4 Nej 1/6
7 1 Nej 1/7
8 6 Ja 2/8
9 5 Nej 2/9
10 1 Nej 2/10

If we repeat the experiment many times we see that the relative
frequency tends to 1/6.
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Classical probability (sv. Klassiska sannolikhet)

Suppose now that an experiment has n possible outcomes that
are equally likely to occur and ng is the number of possible out-
comes of the event A. The classical probability theory says that
the probability that the event A occur i

p(A) ==

Example

In the previous example, A= {6} and S = {1,2,3,4,5,6}.
Therefore,
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Probability laws

Let S be the sample space and A and B be two events.

m Complement: The complement event to A is the event
A’="A does not occur.” (denoted by A’ or A or A°)

p(A') =1—p(A).
m Addition rule
p(AU B) = p(A) + p(B) — p(AN B)

m If Aand B are disjoint then, = p(An B) =0 and
p(AU B) = p(A) + p(B)
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Example

Let A and B be two events such that p(A) = 0.5, P(B) = 0.7
and p(An B) = 0.4. Find p(Au B), p(An B’), p(A’ n B) and
p(A'nB).

Solution

p(AuB) =p(A)+p(B)—p(ANnB)=0.5+0.7—0.4=0.8
p(AnB’)=p(A)—p(AnB) =0.5—0.4 =0.1
p(A’NnB)=p(B)—p(ANnB)=0.7—0.4=0.3
p(A’nB’)=p((AuB))=1—p(AuB)=1—-0.8=0.2
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Conditional probability (sv. Betingad sannolikhet)

Example

300 products in a factory have been chosen randomly for a
quality control and they were classified either as "defected” or
"good". Some of these products were produced by an old
machine and the others by a new one. The following table gives
the results of the experiment.

Good Defected | Total

Old machine 170 10 180
New machine 115 5 120
Total 285 15 \ 300
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Example

A product is chosen randomly. Let A, B, and C be three events
defined as follows A=“The chosen product is good”.

B="The chosen product is produced by an old machine.
C="The chosen product is good knowing that (given that) is
was produced by an old machine.”

P(A) = 55, P(B) = 350
The event C invovles both events A and B, and is written as
C = A|B (A given B, or A knowing B). From the table we can
get the probability of C by considering only the row of the old

machine, namely,

170  p(ANB)
180  p(B)
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Conditional probability

Given two events A and B with p(B) # 0. The conditional prob-
ability that A occurs given that B has occured is defined by

p(An B)

p(AlB) = G
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Multiplication rule

Multiplication rule: Suppose that p(A) # 0 and p(B) # 0.
p(AN B) = p(AIB)p(B) = p(BIA)p(A).
The conditional probability can therefore be written as

p(B|A)p(A)

A|B) =
P(A|B) (B)
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Independent events (sv. Oberoende hédndelser)

Independent events: Assume that the information "B has oc-
cured" has no influence on the probability that A occur, then
p(A|B) = p(A), and the multiplication rule can be written as

p(An B) = p(A)p(B).
Theorem
A and B are said to be independent if and only if

p(AN B) = p(A)p(B).

This is equivalent to say that p(A|B) = p(A) if p(B) # 0 and
p(BIA) = p(B) if p(A) # 0.
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Example

At the entrance to a casino, there are two slot machines.
Machine A is programmed so that in the long run it will produce
a winner in 10% of the plays. Machine B is programmed so that
in the long run it will produce a winner in 15% of the plays. The
two machines run independently of each other. If we play each
machine once, what is the probability that we will win on at
least one play?

p(AUB) = p(A)+p(B)—p(AnB) = p(A)+p(B)—p(A)p(B) = 0.235
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Bayes’ theorem

Example

The fire alarm in a certain company seems to be reliable.
However, a false alarm can sometimes occur or a fire could be
missed. Let F="A fire has occured” och A="“The alarm starts
beeping.”, p(F) = 0.05, p(A|F) = 0.98, and p(A|F’) = 0.10.
Find p(F|A).

Lésning:

p(FNA)  p(AIF)p(F)
p(A)  p(A)

p(FlA) =
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To compute p(A) we can use the formula
A=(ANF)U(AnF’)
Since AN F and An F’ are disjoint, then

p(A) = P(ANF)+p(AnF)
= p(AIF)p(F) + p(AIF")p(F’)

Therefore

P(AIF)p(F)

P(AIF)P(F) + p(AIF")p(F’)
0.98-0.05

p(FlA) =

0.98-0.05+0.10(1—0.05)
= 0.34
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Bayes’ theorem

Let Ay, Ay, - - - Ap be mutually disjoint events such that their union
is Sand B # @ be an event. Forall A;,j=1,---n

_ p(BIA)PA)
2.1, P(BIADP(A))

p(A]B)
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