# Lecture 13: Regression

MVE055 / MSG810 Mathematical statistics and discrete mathematics

Moritz Schauer Last updated October 18, 2021

GU & Chalmers University of Technology

# What is linear regression

Regression is a technique used for estimating the relationship between variables.

Often we want to predict a variable Y (the dependent variable) in terms of another variable x (the independent variable) (or more generally understand the relationship between Y and x).

We want to investigate how the specific heat capacity of a substance (the ability of the substance to store heat energy) depends on temperature.

For each of the five temperatures, two heat capacity measurements are made with the following results:

| Temperature (°C) | 30   | 40   | 50   | 60   | 70   |
|------------------|------|------|------|------|------|
| Heat capacity    | 0.70 | 0.74 | 0.78 | 0.80 | 0.82 |
|                  | 0.72 | 0.73 | 0.75 | 0.78 | 0.81 |

2



We have measured a response variable Y for fixed values of an explanatory variable x that can be controlled without errors.

We use a linear model for  $(Y_i, x_i), i = 1, ..., n$ :

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i \tag{0.1}$$

•  $\varepsilon_i$  are independent  $N(0, \sigma^2)$  random variables describing measurement errors.

4

We have measured a response variable Y for fixed values of an explanatory variable x that can be controlled without errors.

We use a linear model for  $(Y_i, x_i), i = 1, ..., n$ :

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i \tag{0.1}$$

- $\varepsilon_i$  are independent N(0, $\sigma^2$ ) random variables describing measurement errors.
- $\beta_0$  is the intercept parameter.

We have measured a response variable Y for fixed values of an explanatory variable x that can be controlled without errors.

We use a linear model for  $(Y_i, x_i), i = 1, ..., n$ :

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i \tag{0.1}$$

- $\varepsilon_i$  are independent N(0,  $\sigma^2$ ) random variables describing measurement errors.
- ullet  $\beta_0$  is the intercept parameter.
- $\beta_1$  is the slope parameter.

Another way of writing the model is

$$Y_i \sim \mathsf{N}(\beta_0 + \beta_1 x_i, \sigma^2).$$

The expected value of Y is determined by the linear relationship with x, and the variance of measurement error  $\sigma^2$  describes the variation of the individual observations around the expected value  $\beta_0 + \beta_1 x$ . Assumption:  $Y_i$  are independent..

5

### **Task**

Given a sample (visualized by a scatterplot)

$$(Y_1, x_1), (Y_2, x_2), \dots, (Y_n, x_n)$$

we want to estimate the line with parameters  $\beta_0$  and  $\beta_1$  as well as  $\sigma^2$ , the variation of the  $Y_i$ -values from the regression line  $\beta_0 + \beta_1 x$  at  $x_i$ .

### **Task**

Given a sample (visualized by a scatterplot)

$$(Y_1, x_1), (Y_2, x_2), \dots, (Y_n, x_n)$$

we want to estimate the line with parameters  $\beta_0$  and  $\beta_1$  as well as  $\sigma^2$ , the variation of the  $Y_i$ -values from the regression line  $\beta_0 + \beta_1 x$  at  $x_i$ .

With the estimated parameters, we can predict Y for a given value of x.

# Least squares estimator

 $\beta_0$  and  $\beta_1$  are estimated by the method of least-squares which is done by minimizing

SSE = 
$$\sum_{i=1}^{n} \epsilon_i^2 = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

Let  $b_0$  and  $b_1$  values of  $\beta_0$  and  $\beta_1$  respectively minimizing the SSE. Then.

$$b_{1} = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} y_{i}\right)}{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

and

$$b_0 = \bar{y} - b_1 \bar{x}$$

7

# Least squares estimator

An estimator for the variance parameter  $\sigma^2$  is  $s^2 = \frac{Q_0}{n-2}$  where

$$Q_0 = \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i)^2$$

( $b_0$  and  $b_1$  your estimates).

### Different way of computing the estimate

The LS-estimators for  $\beta_0$  and  $\beta_1$  are

$$b_1 = S_{xy}/S_{xx}$$
 and  $b_0 = \bar{y} - b_1\bar{x}$ 

where

$$S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} x_i^2 - n\bar{x}^2$$

$$S_{yy} = \sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} y_i^2 - n\bar{y}^2$$

$$S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = \sum_{i=1}^{n} x_i y_i - n\bar{x}\bar{y}$$

An estimator for the variance parameter  $\sigma^2$  is  $s^2 = \frac{Q_0}{n-2}$  where

$$Q_0 = \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i)^2 = S_{yy} - b_1 S_{xy} = S_{yy} - \frac{S_{xy}^2}{S_{xx}}$$

# Estimators for the example

We estimate parameters of the regression line in the example. We have  $\bar{x}=50, \bar{y}=0.763$  and

$$S_{xx} = \sum_{i=1}^{10} x_i^2 - 10\bar{x}^2 = 27000 - 10 \cdot 50^2 = 2000$$

$$S_{yy} = \sum_{i=1}^{10} y_i^2 - 10\bar{y}^2 = 5.8367 - 10 \cdot 0.763^2 = 0.01501$$

$$S_{xy} = \sum_{i=1}^{10} x_i y_i - 10\bar{x}\bar{y} = 386.8 - 10 \cdot 50 \cdot 0.763 = 5.3$$

and therefor the estimate

$$b_1 = S_{xy}/S_{xx} = 5.3/2000 = 0.00265$$

$$b_0 = \bar{y} - b_1\bar{x} = 0.6305$$

$$s^2 = \frac{1}{n-2} \left( S_{yy} - \frac{S_{xy}^2}{S_{xx}} \right) = 0.00012, \quad s = \sqrt{0.00012} = 0.011$$

# The estimated regression line is $b_0 + b_1 x$



Let X denote the number of lines of executable SAS code, and let Y denote the execution time in seconds. The following is a summary information:

$$n = 10 \quad \sum_{i=1}^{10} x_i = 16.75 \quad \sum_{i=1}^{10} y_i = 170$$

$$\sum_{i=1}^{10} x_i^2 = 28.64 \quad \sum_{i=1}^{10} y_i^2 = 2898 \quad \sum_{i=1}^{10} x_i y_i = 285.625$$

Estimate the line of regression.

$$b_1 = \frac{10(285.625) - (16.75)(170)}{10(28.64) - (16.75)^2} = 1.498$$
$$b_0 = \frac{170}{10} - 1.498 \frac{16.75}{10} = 14.491$$

Estimated model:

$$Y_i = 1.498x_i + 14.491 + \epsilon_i$$

Our estimator for  $\beta_1$  is  $B_1 = \hat{\beta}_1$  (the random quantity w. value  $b_1$ ).

### Properties of the estimator for the slope

We have  $\mathsf{E}(\bar{Y}) = \beta_0 + \beta_1 \bar{x}$  and  $\mathsf{V}(\bar{Y}) = \frac{\sigma^2}{n}$ . The book shows using  $\sum_{i=1}^n (x_i - \bar{x}) = 0$  and the rules of expectation and variance

$$\mathsf{E}(B_1) = \beta_1$$
  $\mathsf{V}(B_1) = \frac{\sigma^2}{S_{xx}} = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$ 

So we see that  $B_1$  is an unbiased estimator for  $\beta_1$ .

Our estimator for  $\beta_0$  is  $B_0=\hat{\beta}_0$  (the random quantity with value  $b_0$ .)  $\hat{\mu}_0(x_0)=B_0+B_1x_0$  is an estimator for  $\mathsf{E}(\beta_0+\beta_1x_0)(=\mathsf{E}Y$  if  $Y=\beta_0+\beta_1x_0+\epsilon)$ 

# Properties of estimators for intercept and prediction of Y

With  $\hat{\mu}_Y(x_0) = B_0 + B_1 x_0$  also

$$\mathsf{E}(\hat{\mu}_Y(x_0)) = \beta_0 + \beta_1 x_0$$

with

$$V(\hat{\mu}_Y(x_0)) = \sigma^2 \left[ \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}} \right]$$

With  $x_0 = 0$  we see that  $B_0$  is unbiased.

### Distribution of the estimators

### **Theorem**

For normally distributed  $\varepsilon_i$  it holds that  $\bar{Y}$ ,  $B_0$ ,  $B_1$  and  $\hat{\mu}_Y(x_0) = B_0 + B_1 x_0$  are also normally distributed.

### Distribution of the estimators

#### **Theorem**

For normally distributed  $\varepsilon_i$  it holds that Y,  $B_0$ ,  $B_1$  and  $\hat{\mu}_Y(x_0) = B_0 + B_1 x_0$  are also normally distributed.

Because the estimator is a sum of  $Y_i$ , by the CLT this also holds approximately if the distribution of the  $\epsilon_i$  deviates from the normal distribution.

### Distribution of the estimators

#### **Theorem**

For normally distributed  $\varepsilon_i$  it holds that  $\bar{Y}$ ,  $B_0$ ,  $B_1$  and  $\hat{\mu}_Y(x_0) = B_0 + B_1 x_0$  are also normally distributed.

Because the estimator is a sum of  $Y_i$ , by the CLT this also holds approximately if the distribution of the  $\epsilon_i$  deviates from the normal distribution.

#### **Theorem**

If  $\varepsilon_i$  is normally distributed it holds that

$$\frac{(n-2)S^2}{\sigma^2} \sim \chi^2(n-2)$$

further  $S^2$  is independent of  $\bar{Y}$ ,  $B_0$ ,  $B_1$  and  $\hat{\mu}_Y(x_0)$ .

### Confidence interval and test

Let  $\theta$  one of  $\beta_0$ ,  $\beta_1$  or  $\mu_Y(x_0) = \beta_0 + \beta_1 x_0$ .

We know that these estimates are normally distributed and have determined the variance of the estimates.

If  $\mathrm{SE}(\hat{\theta})$  denotes the standard error of the estimator, the statistic

$$T = \frac{\hat{\theta} - \theta}{SE(\theta^*)} \sim t(n-2)$$

is often used for tests and a confidence interval is,

$$I_{\theta} = (\hat{\theta} \pm t_{\alpha/2}(n-2)\operatorname{SE}(\hat{\theta}))$$

Consider the previous example and suppose we want to see if there is a relation between X and Y with a significance level  $\alpha=5\%$ . There is a relation between X and Y if and only if  $\beta_1\neq 0$ , which is our alternative hypothesis. Let  $H_0:\beta_1=0$ . We have a two tailed test.

Consider the previous example and suppose we want to see if there is a relation between X and Y with a significance level  $\alpha=5\%$ . There is a relation between X and Y if and only if  $\beta_1\neq 0$ , which is our alternative hypothesis. Let  $H_0:\beta_1=0$ . We have a two tailed test.

$$b_1 = 1.498$$
,  $S_{xx} = \left(n\sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)^2\right)/n = 0.584$ ,  $S_{yy} = 8$  and  $S_{xy} = 0.875$ .

Therefore SSE = 8 - 1.498(0.875) = 6.69 and

$$s^2 = SSE/8 = 0.84$$

The test statistic is

$$T = \frac{b_1 - 0}{\sqrt{S^2 / S_{XX}}} = \frac{1.498}{\sqrt{0.84 / 0.584}} = 1.25$$

 $t_{0.025} = 2.306$ . Hence, we do not reject the hypothesis.

A 95% C.I. on  $\beta_0$  in our previous example is given by

$$14.491 \pm 2.306\sqrt{0.84(28.64)/5.84}$$

$$(14.491 - 4.68, 14.491 + 4.68)$$

$$(9.81, 19.181)$$

We are 95% sure that the true regression line crosses the y -axis between the points y=9.81 and y=19.81.

### Confidence interval

• Confidence interval for  $\beta_0$ :

$$I_{\beta_0} = \left(\hat{\beta}_0 \pm t_{\alpha/2}(n-2)s\sqrt{\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}}}\right)$$

### Confidence interval

• Confidence interval for  $\beta_0$ :

$$I_{\beta_0} = \left(\hat{\beta}_0 \pm t_{\alpha/2}(n-2)s\sqrt{\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}}}\right)$$

• Confidence interval for  $\beta_1$ :

$$I_{\beta_1} = \left(\hat{\beta}_1 \pm t_{\alpha/2}(n-2)\frac{s}{\sqrt{S_{xx}}}\right)$$

# Confidence interval

• Confidence interval for  $\beta_0$ :

$$I_{\beta_0} = \left(\hat{\beta}_0 \pm t_{\alpha/2}(n-2)s\sqrt{\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}}}\right)$$

• Confidence interval for  $\beta_1$ :

$$I_{\beta_1} = \left(\hat{\beta}_1 \pm t_{\alpha/2}(n-2)\frac{s}{\sqrt{S_{xx}}}\right)$$

• Confidence interval for  $\mu_Y(x_0) = \beta_0 + \beta_1 x_0$ :

$$I_{\mu_Y(x_0)} = \left(\hat{\beta}_0 + \hat{\beta}_1 x_0 \pm t_{\alpha/2} (n-2) s \sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}}\right)$$

### Prediction interval

• Sometimes you want to know where a future observation will be for a certain value of x, for this use a prediction interval:

### Prediction interval

- Sometimes you want to know where a future observation will be for a certain value of x, for this use a prediction interval:
- The difference between a prediction interval  $I_{Y(x_0)}$  and a confidence interval  $I_{\mu_Y(x_0)}$  is that  $I_{\mu_Y(x_0)}$  indicates where the expected value (the line!) is likely, while  $I_{Y(x_0)}$  indicates where a future observation is likely.

### Prediction interval

- Sometimes you want to know where a future observation will be for a certain value of x, for this use a prediction interval:
- The difference between a prediction interval  $I_{Y(x_0)}$  and a confidence interval  $I_{\mu_Y(x_0)}$  is that  $I_{\mu_Y(x_0)}$  indicates where the expected value (the line!) is likely, while  $I_{Y(x_0)}$  indicates where a future observation is likely.
- Since observations scatter around the regression line, the prediction interval must be wider than the confidence interval, and it can be shown that

$$\hat{Y}(x_0) \sim N\left(\beta_0 + \beta_1 x_0, \sigma^2 (1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{out}})\right).$$

The prediction interval is

$$I_{Y(x_0)} = \left[ \hat{\beta}_0 + \hat{\beta}_1 x_0 \pm t_{\alpha/2} (n-2) s \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}} \right]$$

# Konfidensintervall och prediktionsintervall



A very important part of a regression analysis is the validation of the model. This means that we must ensure that it is appropriate to use a simple regression model. The most common method for this is the calculation of residuals.

$$e_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i$$

A very important part of a regression analysis is the validation of the model. This means that we must ensure that it is appropriate to use a simple regression model. The most common method for this is the calculation of residuals.

$$e_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i$$

For the regression to be valid the residuals

 must be distributed approximately normally with expected value 0,

A very important part of a regression analysis is the validation of the model. This means that we must ensure that it is appropriate to use a simple regression model. The most common method for this is the calculation of residuals.

$$e_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i$$

For the regression to be valid the residuals

- must be distributed approximately normally with expected value 0,
- ullet do not reveal any special structure as a function of x.

A very important part of a regression analysis is the validation of the model. This means that we must ensure that it is appropriate to use a simple regression model. The most common method for this is the calculation of residuals.

$$e_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i$$

For the regression to be valid the residuals

- must be distributed approximately normally with expected value 0,
- ullet do not reveal any special structure as a function of x.
- Have about the same variation for all different values of x. For example, the variance for large values of x should not increase.

A very important part of a regression analysis is the validation of the model. This means that we must ensure that it is appropriate to use a simple regression model. The most common method for this is the calculation of residuals.

$$e_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i$$

For the regression to be valid the residuals

- must be distributed approximately normally with expected value 0,
- ullet do not reveal any special structure as a function of x.
- Have about the same variation for all different values of x. For example, the variance for large values of x should not increase.

A very important part of a regression analysis is the validation of the model. This means that we must ensure that it is appropriate to use a simple regression model. The most common method for this is the calculation of residuals.

$$e_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i$$

For the regression to be valid the residuals

- must be distributed approximately normally with expected value 0,
- ullet do not reveal any special structure as a function of x.
- Have about the same variation for all different values of x. For example, the variance for large values of x should not increase.

Check this visually by drawing the residuals as a function of  $\boldsymbol{x}$  and using normal distribution plots.



Figure 8.12: Four examples showing when the methods in this chapter are insuf-



Figure 8.12: Four examples showing when the methods in this chapter are insufficient to apply to the data. First panel: linearity fails. Second panel: there are outliers, most especially one point that is very far away from the line. Third panel: the variability of the errors is related to the value of x. Fourth panel: a time series data set is shown, where successive observations are highly correlated.