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What is linear regression

Regression is a technique used for estimating the relationship
between variables.

Often we want to predict a variable Y (the dependent variable) in

terms of another variable x (the independent variable) (or more
generally understand the relationship between Y and z).



Example

We want to investigate how the specific heat capacity of a
substance (the ability of the substance to store heat energy)
depends on temperature.

For each of the five temperatures, two heat capacity measurements
are made with the following results:

Temperature (°C) 30 40 50 60 70

Heat capacity 0.70 0.74 0.78 0.80 0.82
0.72 0.73 0.75 0.78 0.1
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Model description

We have measured a response variable Y for fixed values of an
explanatory variable 2 that can be controlled without errors.

We use a linear model for (Y;,z;),i =1,...,n:

Y = Bo+ Bixi + & (0.1)

e ¢, are independent N(0, 02) random variables describing
measurement errors.
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Model description

Another way of writing the model is

Y; ~ N(Bo + Brwi, 0%).

The expected value of Y is determined by the linear relationship
with z, and the variance of measurement error o2 describes the
variation of the individual observations around the expected value
Bo + Brx. Assumption: Y; are independent..



Task

Given a sample (visualized by a scatterplot)

(}/lvxl)v (YQ,.’I,'Q), cee (Yna .’En)

we want to estimate the line with parameters 8y and 51 as well as
o2, the variation of the Y;-values from the regression line 8y + iz
at x;.



Task

Given a sample (visualized by a scatterplot)
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we want to estimate the line with parameters 8y and 51 as well as
o2, the variation of the Y;-values from the regression line 8y + iz
at x;.

With the estimated parameters, we can predict Y for a given value
of .



Least squares estimator

Bo and B are estimated by the method of least-squares which is
done by minimizing

SSE = Y€ = > (v — Bo — Puzi)’
i i

Let by and by values of By and ;1 respectively minimizing the SSE.

Then,
n Y, Tl — <Z xz) <Z yi)
by — _i=1 i=1 Sl
1 o n n 2
ny 1:3 — <Z azz)
i=1 i=1
and



Least squares estimator

2 2

An estimator for the variance parameter o° is 5= = %

where

Qo = ), (4 — bo — brz;)?
i=1

(bo and by your estimates).



Different way of computing the estimate
The LS-estimators for 5y and 31 are

b = Sxy/Smc and by = y—bix

where
n
iy = Z(CCZ —z)% = Z z? — nZ?
i=1 i=1
Syy = Z(yz - 9)? = Z?J? —ny’
i=1 i=1
n n
Sey = Y (zi — Z)(ys — §) = Y, Tiys — NP
i=1 i=1

An estimator for the variance parameter o2 is s> = QO where

QO = Z(yz - bO - bl.’L’i)2 = Syy - bISa:y = Syy - Sixi



Estimators for the example

We estimate parameters of the regression line in the example. We have
Z =50,y = 0.763 and

10
Spa = . @7 — 102 = 27000 — 10 - 50> = 2000
i=1

10
Sy = Z y? —105% = 5.8367 — 10 - 0.763% = 0.01501
=1

10
Sey = Y. miy; — 1027 = 386.8 — 10- 50 - 0.763 = 5.3

i=1
and therefor the estimate

by = Syy/Ssa = 5.3/2000 = 0.00265
bo =y — b1z = 0.6305

1 5=
s* n_2 <5yy - S;,) =0.00012, s =+v0.00012 = 0.011

10



The estimated regression line is by + bz

0.9
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Example 2

Let X denote the number of lines of executable SAS code, and let
Y denote the execution time in seconds. The following is a
summary information:

10 10
n=10 > 2;=1675 > y =170
i=1 i=1
10 10 10
Ya?=2864 >y =2898 O my; =285.625
i=1 i=1 i=1

Estimate the line of regression.

12



Example 2

10(285.625) — (16.75)(170)

_ — 1.498
b 10(28.64) — (16.75)2
170 16.75
— — - 1.498— 2 — 14.491
bo =75 50

Estimated model:

Y, = 1.498z; + 14.491 + ¢;

13



Our estimator for 1 is By = f31 (the random quantity w. value
by).

Properties of the estimator for the slope

We have E(Y) = o + 17 and V(Y) = %2 The book shows
using >.. ; (z; — ) = 0 and the rules of expectation and variance

2 2

E(Bl) = 61 V(Bl) = SO-7M = m

So we see that Bj is an unbiased estimator for /3.
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Our estimator for By is By = fo (the random quantity with value
bo.) fuo(xo) = By + Bixg is an estimator for

E(Bo + Bizo) (= EY if Y = By + Przo + €)

Properties of estimators for intercept and prediction of Y
With ﬂy(.%'()) = By + Bixg also

E(fiy (w0)) = Bo + Bizo

with
To — T)2
V(jry (z0)) = o’ [i + (OSM)]

With 2y = 0 we see that By is unbiased.

15



Distribution of the estimators

Theorem

For normally distributed ¢; it holds that Y, By, By and
fiy (zo) = By + Bixo are also normally distributed.

16
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approximately if the distribution of the ¢; deviates from the normal
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Distribution of the estimators

Theorem

For normally distributed ¢; it holds that Y, By, B; and
fiy (zo) = By + Bixo are also normally distributed.

Because the estimator is a sum of Y;, by the CLT this also holds
approximately if the distribution of the ¢; deviates from the normal
distribution.

Theorem
If £; is normally distributed it holds that

(n —2)S?

2 ~X2(’I’L—2)

g

further S2 is independent of Y, By, By and fiy (o).
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Confidence interval and test

Let 6 one of By, 51 or py (xo) = Bo + Bixo.

We know that these estimates are normally distributed and have
determined the variance of the estimates.

If SE() denotes the standard error of the estimator, the

statistic )
0—0
T=sm@n ~ 12

is often used for tests and a confidence interval is,

Ip = (0 + to(n — 2) SE(9))

17



Example

Consider the previous example and suppose we want to see if there
is a relation between X and Y with a significance level a = 5%.
There is a relation between X and Y if and only if 81 # 0, which is
our alternative hypothesis. Let Hy : f1 = 0. We have a two tailed
test.

18



Example

Consider the previous example and suppose we want to see if there
is a relation between X and Y with a significance level a = 5%.
There is a relation between X and Y if and only if 81 # 0, which is
our alternative hypothesis. Let Hy : f1 = 0. We have a two tailed
test.

by = 1498, Sap — (n X0y 2 = (Tfy @) ) /0 — 0584, 5, = 8
and S, = 0.875.

Therefore SSE = 8 — 1.498(0.875) = 6.69 and
s> = SSE /8 = 0.84

The test statistic is
b -0 1498
V/5%/Sxx  4/0.84/0.584

to.025 = 2.306. Hence, we do not reject the hypothesis.

18



Example

A 95% C.I. on By in our previous example is given by

14.491 + 2.306+/0.84(28.64)/5.84
(14.491 — 4.68,14.491 + 4.68)
(9.81,19.181)

We are 95% sure that the true regression line crosses the y -axis
between the points y = 9.81 and y = 19.81.
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Confidence interval

e Confidence interval for Sy:
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e Confidence interval for Sy:

e Confidence interval for (3y:

I, = <Bl T tqp(n—2)
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Confidence interval

e Confidence interval for Sy:

e Confidence interval for (3y:

I, = <Bl T tqp(n—2) ; )

e Confidence interval for py (zo) = Bo + P1xo:

1 (930 = i‘)Q

IMY(wo) = (BO + leo + ta/Q(n —2)s4 (= + SM)

n
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Prediction interval

e Sometimes you want to know where a future observation will
be for a certain value of x, for this use a prediction interval:
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confidence interval 1, ;) is that I, (5, indicates where the
expected value (the line!) is likely, while Iy, ) indicates where

a future observation is likely.
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Prediction interval

e Sometimes you want to know where a future observation will
be for a certain value of x, for this use a prediction interval:

e The difference between a prediction interval Iy (,,) and a
confidence interval 1, ;) is that I, (5, indicates where the
expected value (the line!) is likely, while Iy, ) indicates where

a future observation is likely.

e Since observations scatter around the regression line, the
prediction interval must be wider than the confidence interval,
and it can be shown that

_ 7)2
Y (zo) ~N (,30 + ,31%0,0’2(1 + % 4 W)) .

The prediction interval is

. N 1 2
IY(:L“O) = [50 + frxo £ ta/g(n — 2)3\/1 4 - + (OSTT)—| 21
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Model validation




Model validation

A very important part of a regression analysis is the validation of
the model. This means that we must ensure that it is appropriate
to use a simple regression model. The most common method for
this is the calculation of residuals.

ei = Yi — Bo — P1Ti
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Model validation

A very important part of a regression analysis is the validation of
the model. This means that we must ensure that it is appropriate
to use a simple regression model. The most common method for
this is the calculation of residuals.

ei = Yi — Bo — P1Ti

For the regression to be valid the residuals

e must be distributed approximately normally with expected
value 0,

e do not reveal any special structure as a function of x.

e Have about the same variation for all different values of 2. For
example, the variance for large values of x should not increase.

Check this visually by drawing the residuals as a function of x and
using normal distribution plots.
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Example
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Figure 8.12: Four examples showing when the methods in this chapter are insuf-
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Example
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Figure 8.12: Four examples showing when the methods in this chapter are insuf-
ficient to apply to the data. First panel: linearity fails. Second panel: there are
outliers, most especially one point that is very far away from the line. Third panel:
the variability of the errors is related to the value of 2. Fourth panel: a time series
data set is shown, where successive observations are highly correlated.
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